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Abstract— We consider the problem of small-gain analysis
of asymptotic behavior in interconnected nonlinear dynamic
systems. Mathematical models of these systems are allowed to
be uncertain and time-varying. In contrast to standard small-
gain theorems that require global asymptotic stability of each
interacting component in the absence of inputs, we consider
interconnections of systems that can be critically stable and
have infinite input-output L∞ gains. For this class of systems

we derive small-gain conditions specifying state boundedness
of the interconnection. The estimates of the domain in which
the system’s state remains are also provided. Conditions that
follow from the main results of our paper are non-uniform
in space. That is they hold generally only for a set of initial
conditions in the system’s state space. We show that under
some mild continuity restrictions this set has a non-zero volume,
hence such bounded yet potentially globally unstable motions
are realizable with a non-zero probability. Proposed results can
be used for the design and analysis of intermittent, itinerant
and meta-stable dynamics which is the case in the domains of
control of chemical kinetics, biological and complex physical
systems, and non-linear optimization.

I. INTRODUCTION

Small-Gain theorems are widely recognized as effective

tools for the analysis of asymptotic behavior of the cascades

and interconnections of linear and nonlinear systems [1], [2].

They are especially advantageous in those situations when

mathematical models of systems are uncertain, and only

estimates of the input-output properties of each component

are available. The latter property together with the notions

of input-output and input-to-state stability [1], [3], [4] makes

the small-gain technique a promising instrument in the

analysis of complex biological and physical systems, see for

instance, [5], [6], [7].

Conventional small-gain results often require (global)

Lyapunov asymptotic stability of unperturbed dynamics of

each interacting subsystems [4]. Yet, there are physical and
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biological systems that fail to satisfy these requirements.

Furthermore, as the methods of control expand from purely

engineering applications into wider areas of science, there

is a need for maintaining behavior that fail to obey the

usual notion of Lyapunov stability [8]. Here are few exam-

ples of systems in which explorative, searching rather than

Lyapunov-unstable behavior is considered useful or inherent.

Example 1. In problems of nonlinear output regulation

Lyapunov-unstable convergence allowed to address the ques-

tion of minimal information about the plant that is to be

made available in order to designing an adaptive controller

[9], [10] solving the adaptive output regulation problem. The

proposed solution has been called the universal algorithm for

adaptive control, and equations of the controlled system are

as follows:

ẋ = f(x, λ) + g(x, t)u, f : R
n × R → R

n

u = β(λ)x

λ̇ = |h(x)|p, γ ∈ R>0

(1)

In (1) u is a control input, λ is a dynamic variable of the

feedback, β : R → R
m×n is a dense trajectory in ΩK ⊂

R
m×n, h : R

n → R is a Lipschitz function, and there exists

β∗ ∈ ΩK such that the origin of

ẋ = f(x, λ) + g(x, t)β∗x (2)

is exponentially stable.

Example 2. Systems with Lyapunov-unstable yet bounded

solutions emerge in models of decision-making and recogni-

tion in neural systems [11], [12]. These models are networks

of nonlinear oscillators [13]:

ẋi = xi



hi −



xi +

N
∑

j 6=i

ρijxj







+ ηi(t)

ḣi = −γ
∂Ui(hi, I)

∂hi

,

where xi are internal states, hi are the stimuli-dependent

control parameters, ρij ∈ R defines the strength of the

competitive interaction from the state j to state i, I models

external stimulation, ηi model external noise, and Ui is a

”potential” determining system’s response to stimulation. In

general Ui depends on sate variables xi of the system.

In these models equilibria are associated with decision

stages, and trajectories are to explore the system state space

along one-dimensional unstable manifolds forming hetero-

clinic sequences and channels [11] connecting so-called
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dissipative saddles. Saddle-node heteroclinic connections are

among possible configurations in such systems:

ẋ = f(x, λ, t), f : R
n × R × R → R

n

λ̇ = γ‖x‖, γ ∈ R>0.
(3)

In (3) the origin of ẋ = f(x, 0, t) is assumed uniformly

asymptotically stable, and f(x, λ, t) be locally Lipschitz in

λ uniformly in t. Controlling and determining domain of

attraction for the point attractor at the origin of (3) is crucial

for this concept.

Example 3. Analysis of kinetic equations:

ẋ1 = −λ1(t)x1 + c1(x2, t) + u (4)

ẋ2 = −λ2(t)x2 + c2(x1, t), (5)

where the function λ1 : R≥0 → R>0 is separated from zero,

i.e. ∃ λ∗ ∈ R>0 : λ1(t) ≥ λ∗, and λ2 : R≥0 → R≥0 can

assume zero values over R≥0. The functions c1, c2 : R ×
R≥0 → R are globally Lipschitz in x1, x2, and c2(x1, t) is

non-negative (non-positive) in x1. Variable u ∈ R constitutes

an external regulatory input.

All these examples share common characterization –

asymptotically stable dynamics (stable subsystem) is cou-

pled with explorative motions in the system state space

(explorative subsystem). Furthermore, right-hand sides of the

equations governing these subsystems are likely to be subject

of external perturbations. For instance, the λ1(t), λ2(t) in (4),

(5) may vary with time, and functions f(x, λ), f(x, λ, t) in

(1), (3) may be unknown. When precise knowledge of ordi-

nary differential equations governing the system dynamics

is not available the system can be thought of as a mere

interconnection of input-output maps. Small-gain theorems

[1], [2] are usually efficient in this case. These results,

however, apply only under the assumption of stability of

each component in the interconnection. The latter condition

is violated for (1) – (5).

In the present study we aim to find a proper balance

between the generality of input-output approaches [1], [2]

in the analysis of convergence and the specificity of the

fundamental notions of limit sets and invariance. The object

of our study is a class of systems that can be decomposed into

an attracting, or stable, component Sa and an exploratory,

generally unstable, part Sw. Typical systems of this class are

nonlinear systems in cascaded form

Sa : ẋ = f(x, z),

Sw : ż = q(z,x)
(6)

where the zero solution of the x-subsystem is asymptotically

stable in the absence of input z, and the state of the z-

subsystem are functions of
∫ t

t0
‖x(τ)‖dτ . Even when both

subsystems in (6) are stable and the x-subsystem does not

depend on state z, the cascade can still be unstable [14]. We

show, however, that for unstable interconnections (6), under

certain conditions that involve only input-to-state properties

of Sa and Sw, there is a set V in the system state space, such

that trajectories starting in V remain bounded. The result is

formally stated in Theorem 1. In case an additional measure

of invariance is defined for Sa (in our case a steady-state

characteristic), a weak, Milnor attracting set [15] emerges.

Its location is completely determined by the zeros of the

steady-state response of system Sa.

Due to space limitation we concentrate on presenting the

main ideas and applications of our approach rather than

technical details. Proofs of the statements can be found in

[16], [17].

The paper is organized as follows. Section II describes

notational agreements. In Section III we specify the class

of systems of our study and formally state the problem.

Section IV contains main results of our paper. Namely,

Theorem 1 provides a set of general sufficient conditions

for non-uniform convergence, and Corollary 1 shapes these

conditions into the usual small-gain formulae for a wide class

of nonlinear systems. Section V provides discussion of these

results and concludes the paper.

II. NOTATION

Throughout the paper we use the following notational

conventions.

• Symbol R denotes the field of real numbers, symbol

R+ stands for the following subset of R: R+ = {x ∈
R| x ≥ 0}; N and Z denote the set of natural numbers

and its extension to the negative domain respectively.

• Symbol Ck denotes the space of functions that are at

least k times differentiable.

• K denotes the class of all strictly increasing continuous

functions κ : R+ → R+ such that κ(0) = 0. If, in

addition, lims→∞ κ(s) = ∞ we say that κ ∈ K∞.

• Symbol KL denotes the class of functions β : R+ ×
R+ → R+ such that β(·, s) ∈ K for each s ∈ R+,

and β(r, ·) is monotonically decreasing to zero for each

r ∈ R+.

• Let x ∈ R
n and x can be partitioned into two vectors

x1 ∈ R
q, x1 = (x11, . . . , x1q)

T , x2 ∈ R
p, x2 =

(x21, . . . , x2p)
T with q + p = n, then ⊕ denotes their

concatenation: x = x1 ⊕ x2.

• The symbol ‖x‖ denotes the Euclidian norm in x ∈ R
n.

• By Ln
∞[t0, T ] we denote the space of all functions f :

R+ → R
n such that ‖f‖∞,[t0,T ] = sup{‖f(t)‖, t ∈

[t0, T ]} < ∞, and ‖f‖∞,[t0,T ] stands for the Ln
∞[t0, T ]

norm of f(t).
• Let A be a set in R

n and ‖ · ‖ be the usual Euclidean

norm in R
n. By the symbol ‖·‖A we denote the follow-

ing induced norm:

‖x‖A = inf
q∈A

{‖x− q‖}

III. PROBLEM FORMULATION

Similar to [16], we consider a system that can be decom-

posed into two interconnected subsystems, Sa and Sw:

Sa : (ua,x0) 7→ x(t)

Sw : (uw, z0) 7→ z(t)
(7)

where ua ∈ Ua ⊆ L∞[t0,∞], uw ∈ Uw ⊆ L∞[t0,∞] are the

spaces of inputs to Sa and Sw, respectively x0 ∈ R
n, z0 ∈
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R
m represent initial conditions, and x(t) ∈ X ⊆ Ln

∞[t0,∞],
z(t) ∈ Z ⊆ Lm

∞[t0,∞] are the system states.

System Sa represents the contracting dynamics. More

precisely, we require that Sa is input-to-state stable [18] with

respect to a compact set A:

Assumption 1 (Globally stable dynamics):

Sa : ‖x(t)‖A ≤ β(‖x(t0)‖A , t − t0) + (8)

c‖ua(t)‖∞,[t0,t], ∀ t0 ∈ R+, t ≥ t0

where the function β(·, ·) ∈ KL, and c > 0 is some positive

constant.

In what follows we will assume that the function β(·, ·) and

constant c are known or can be estimated a-priori. Clearly,

Assumption 1 holds for (4). In particular, when A = 0 the

function β(‖x(t0)‖A , t − t0) is defined as β(|x1(t0)|, t −
t0) = e−λ∗(t−t0)|x1(t0)|, and coefficient c = C1/λ∗ where

C1 is the Lipschitz constant of c1(x2, t) with respect to x2.

The system Sw stands for a critically stable, explorative,

wandering subsystem (compartment). We will restrict our

attention to those systems Sw that satisfy the following

constraints:

Assumption 2 (Critically stable, wandering dynamics):

The system Sw is forward-complete:

uw(t) ∈ Uw ⇒ z(t) ∈ Z, ∀ t ≥ t0, t0 ∈ R+

and there exists an ”output” function h : R
m → R, and two

”bounding” functions γ0 ∈ K∞,e, γ ∈ K∞,e such that the

following integral inequality holds:

Sw :

∫ t

t0

γ1(uw(τ))dτ ≤ h(z(t0)) − h(z(t)) ≤

∫ t

t0

γ0(uw(τ))dτ, ∀ t ≥ t0, t0 ∈ R+

(9)

In case system Sw is specified in terms of vector-fields

ż = fz(z, uw), fz(·, ·) ∈ C1, (10)

Assumption 2 can be viewed, for example, as postulating

the existence of a function h : R
m → R+ of which the

evolution in time is a mere integration of the input uw(t).
In general, for uw : uw(t) ≥ 0 ∀ t ∈ R+, inequality (9)

implies monotonicity of function h(z(t)) in t. Regarding the

function γ0(·) in (9), we assume that for any M ∈ R+ there

exists a function γ0,1 : R+ → R+ and a non-decreasing

function γ0,2 : R+ → R+ such that

γ0(a · b) ≤ γ0,1(a) · γ0,2(b), ∀ a, b ∈ [0, M ]. (11)

Requirement (11) is a technical assumption which will be

used in the formulation and proof of the main results of the

paper. Yet, it is not too restrictive; it holds, for instance, for

a wide class of locally Lipschitz functions γ0(·) : γ0(a ·b) ≤
L0(M) · (a · b), L0(M) ∈ R+. Another example for which

the assumption holds is the class of polynomial functions

γ0(·) : γ0(a · b) = (a · b)p = ap · bp, p > 0. No further

restrictions will be imposed a-priori on Sa, Sw.

Now consider the interconnection of (8), (9) with coupling

ua(t) = h(z(t)), and us(t) = ‖x(t)‖A. Equations for the

combined system can be written as:

‖x(t)‖A ≤ β(‖x(t0)‖A , t − t0) + c‖h(z(t))‖∞,[t0,t]
∫ t

t0

γ1(‖x(τ)‖A)dτ ≤ h(z(t0)) − h(z(t))

≤

∫ t

t0

γ0(‖x(τ)‖A)dτ.

(12)

A diagram illustrating the general structure of the entire

system (12) is given in figure 1.

In what follows we aim to derive simple small-gain condi-

tions for interconnection (12) that can be used to determine

state boundedness of the system. Given that conventional

notion of the input-output gain hardly applies to subsystem

Sw, we do not wish to present these conditions in the

standard form, e.g. that the loop gain is less than unit [1].

We rather search for conditions that can be formulated as

follows:

c · G(β, γ0, γ1) < 1, (13)

where G(·) is a functional β(·), γ0(·) and γ1(·) in (12).

Despite that the ”gains” in (13) refer to the different spaces,

equation (13) has familiar small-gain form. Small-gain like

conditions (13) follow as a corollary (Corollary 1) from a

more general statement (Theorem 1). Detailed formulations

of these results are provided in the next section.

IV. MAIN RESULTS

Before we formulate the main results of this section let us

first comment briefly on the machinery of our analysis. First

of all we introduce three sequences

S = {σi}
∞
i=0, Ξ = {ξi}

∞
i=0, T = {τi}

∞
i=0

The first sequence, S, partitions the interval [0, h(z0)],
h(z0) > 0 into the union of shrinking subintervals Hi:

[0, h(z0)] = ∪∞
i=0Hi, Hi = [σi+1h(z0), σih(z0)] (14)

We define this property in the form of Property 1

Property 1 (Partition of z0): The sequence S is strictly

monotone and converging

{σn}
∞
n=0 : lim

n→∞
σn = 0, σ0 = 1 (15)

Sequences Ξ and T will specify the desired rates ξi ∈ Ξ of

the contracting dynamics (8) in terms of function β(·, ·) and

τi ∈ T . Let us, therefore, impose the following constraint

on the choice of Ξ, T .

Property 2 (Rate of contraction, Part 1): For the given

sequences Ξ, T and function β(·, ·) ∈ KL in (8) the

following inequality holds:

β(·, Ti) ≤ ξiβ(·, 0), ∀ Ti ≥ τi (16)

Property 2 states that for the given, yet arbitrary, factor ξi

and time instant t0, the amount of time τi is needed for the

state x in order to reach the domain:

‖x‖A ≤ ξiβ(‖x(t0)‖A , 0)
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h t( ( ))z x( )t

x( )tu t( )a

b

h( )z
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t1 t2

x

h(
)

z

Fig. 1. a. The class of interconnected systems Sa and Sw . System Sa, the “contracting system”, has an attracting invariant set A in its state space,
system Sw does not necessarily have an attracting set. It represents the “wandering” dynamics. A typical example of such behavior is the dynamics of the
flow in a neighborhood of a saddle point in three-dimensional space (diagram b).

In order to specify the desired convergence rates ξi, it will

be necessary to define another measure in addition to (16).

This is a measure of the propagation of initial conditions x0

and input h(z0) to the state x(t) of the contracting dynamics

(8) when the system travels in h(z(t)) ∈ [0, h(z0)]. For this

reason we introduce two systems of functions, Φ and Υ:

Φ :
φj(s) = φj−1 ◦ ρφ,j(ξi−j · β(s, 0)), j = 1, . . . , i
φ0(s) = β(s, 0)

(17)

Υ :
υj(s) = φj−1 ◦ ρυ,j(s), j = 1, . . . , i
υ0(s) = β(s, 0)

(18)

where the functions ρφ,j, ρυ,j ∈ K satisfy the following

inequality

φj−1(a + b) ≤ φj−1 ◦ ρφ,j(a) + φj−1 ◦ ρυ,j(b) (19)

Notice that in case β(·, 0) ∈ K∞ the functions ρφ,j(·), ρυ,j(·)
will always exist [2]. The properties of sequence Ξ which

ensure the desired propagation rate of the influence of initial

condition x0 and input h(z0) to the state x(t) are specified

in Property 3.

Property 3 (Rate of contraction, Part 2): The sequences

σ−1
n · φn(‖x0‖A), σ−1

n ·

(

n
∑

i=0

υi(c|h(z0)|σn−i)

)

,

n = 0, . . . ,∞, are bounded from above, e.g. there exist

functions B1(‖x0‖), B2(|h(z0)|, c) such that

σ−1
n · φn(‖x0‖A) ≤ B1(‖x0‖A) (20)

σ−1
n ·

(

n
∑

i=0

υi(c|h(z0)|σn−i)

)

≤ B2(|h(z0)|, c) (21)

for all n = 0, 1, . . . ,∞
For a large class of functions β(s, 0), for instance those that

are Lipschitz in s, these conditions reduce to more trans-

parent ones which can always be satisfied by an appropriate

choice of sequences Ξ and S. This case is considered in

detail as a corollary of the main theorem.

The main differences between the standard and the

presently proposed approaches for the analysis of asymptotic

behavior of dynamical systems are illustrated with figure 2.

In order to prove the emergence of the trapping region

we consider the following collection of volumes induced by

the sequence Si and the corresponding partition (14) of the

interval [0, h(z0)]:

Ωi = {x ∈ X , z ∈ Z| h(z(t)) ∈ Hi} (22)

For the given initial conditions x0 ∈ X , z0 ∈ Z two

alternative possibilities exist. First, there exists an i such

that the trajectory x(t,x0) ⊕ z(t, z0) enters Ωi and stays

there forever. Hence for t → ∞ the state will converge into

Ωa ={x ∈ X , z ∈ Z|

‖x‖A ≤ c · h(z0), z : h(z) ∈ [0, h(z0)]}
(23)

The second alternative is that for each i = 0, 1, . . . the trajec-

tory x(t,x0)⊕z(t, z0) enters Ωi and leaves sometimes later.

Let ti be the time instances when it hits the hyper-surfaces

h(z(t)) = h(z0)σi. Then the state of the coupled system

stays in ∪∞
i=0 Ωi only if the sequence {ti}

∞
i=0 diverges.

Theorem 1 provides sufficient conditions specifying the latter

case in terms of the properties of sequences S, Ξ, T and

function γ0(·) in (12). For a large class of interconnections

(12) it is possible to formulate these conditions in terms of

the input-output properties of systems Sa and Sw explicitly,

i.e. in terms of functions β(·, ·), γ0(·), and the values of c.

This is presented an immediate corollary of Theorem 1.

Theorem 1 (Non-uniform Small-gain Theorem 1): Let

systems Sa, Sw be given and satisfy Assumptions 1, 2.

Consider their interconnection (12) and suppose there exist

sequences S, Ξ, and T satisfying Properties 1–3. In addition,

suppose that the following conditions hold:

1) There exists a positive number ∆0 > 0 such that

1

τi

(σi − σi+1)

γ0,1(σi)
≥ ∆0 ∀ i = 0, 1, . . . ,∞ (24)
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Standard Proposed

1) Domain of attraction is a neighborhood
1) Domain of attraction is a set of positive measure (not

necessarily a neighborhood)

2) Implies Lyapunov stability
2) Allows to analyze convergence in Lyapunov-unstable

systems

Given: a sequence of diverging time instances ti
Given: a sequence of sets Ωi whose distance ∆i to A is

converging to zero

Prove: convergence of norms ‖x(ti)⊕ z(ti)‖ = ∆i to zero Prove: divergence of {ti}, where ti : x(ti) ⊕ z(ti) ∈ Ωi

Fig. 2. Key differences between the conventional concept of convergence (left panel) and the concept of weak, non-uniform, convergence (right panel).
In the uniform case, trajectories which start in a neighborhood of A remain in a neighborhood of A (solid and dashed lines). In the non-uniform case,
only a fraction of the initial conditions in a neighborhood of A will produce trajectories which remain in a neighborhood of A (solid black line). In the
most general case a necessary condition for this to happen is that the sequence {ti} diverges. In our current problem statement divergence of {ti} implies
boundedness of ‖x(t)‖

A
. To show state boundedness and convergence of x(t) to A an additional information on the system dynamics will be required.

2) The set Ωγ of all points x0, z0 satisfying the inequality

γ0,2(B1(‖x0‖A) + B2(|h(z0)|, c)+c|h(z0)|)

≤ h(z0)∆0

(25)

is not empty.

3) Partial sums of elements from T diverge:

∞
∑

i=0

τi = ∞ (26)

Then for all x0, z0 ∈ Ωγ the state x(t, z0) ⊕ z(t, z0) of

system (12) converges into the set specified by (23).

(See [16] for details of the proof).

Remark 1: Conditions 1), 3) of the theorem can be easily

checked for the given sequences S, T . Verifying condition

2), however, might be a nontrivial operation. Therefore, a

simpler statement that does not involve explicit verification

of condition 2) of Theorem 1 is desirable.

In what follows we will show that this goal can be

achieved in case additional information about the function

β(·, ·) is available. This information is the knowledge of

functions βx(·), βt(·) in the following factorization:

β(‖x‖A , t) ≤ βx(‖x‖A) · βt(t), (27)

where βx(·) ∈ K and βt(·) ∈ C0 is strictly decreasing1 with

lim
t→∞

βt(t) = 0 (28)

It is shown in [19] (Lemma 8) that factorization (27) is

always achievable for any KL function. In case the function

βx(·) in the factorization (27) is Lipschitz the conditions of

Theorem 1 reduce to a single and easily verifiable inequality.

Without loss of generality, we assume that the state x(t)
of system Sa satisfies the following equation

‖x(t)‖A ≤‖x(t0)‖A · βt(t − t0)+

c · ‖h(z(τ, z0))‖∞,[t0,t],
(29)

where βt(0) is greater or equal to one. Given that βt(t) is

strictly decreasing and continuous, there is a (continuous)

mapping β−1
t : [0, βt(0)] 7→ R+:

β−1
t ◦ βt(t) = t, ∀ t > 0 (30)

The small-gain criterion for interconnection (12) in which

the dynamics of Sa is governed by (29) is provided below:

Corollary 1 (Non-Uniform Small-gain Theorem 2):

Consider interconnection (12) where the system Sa

satisfies inequality (29) and the function γ0(·) is Lipschitz:

1If βt(·) is not strictly monotone, it can always be majorized by a strictly
decreasing function
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|γ0(s)| ≤ Dγ,0 · |s|. Then there exists a set Ωγ of initial

conditions corresponding to the trajectories converging to

Ωa if the following condition is satisfied

Dγ,0 · c · G < 1, (31)

where

G = β−1
t

(

d

κ

)

k

k − 1

(

βt(0)

(

1 +
κ

1 − d

)

+ 1

)

for some d ∈ (0, 1), κ ∈ (1,∞). In particular, Ωγ contains

the following domain

‖x(t0)‖A ≤
h(z(t0))

βt(0)

[

1

Dγ,0

(

β−1
t

(

d

κ

))−1
k − 1

k

−c

(

βt(0)

(

1 +
κ

1 − d

)

+ 1

)]

.

In case the function h(z) in (12) is continuous, the volume

of the set Ωγ is nonzero in R
n ⊕ R

m.

Proof of the corollary is provided in [16].

V. DISCUSSION AND CONCLUSION

Let us now briefly outline domains of potential appli-

cations of the presented analysis framework (non-uniform

small-gain theorems). First of all, it is worth mentioning

that the results, as well as other technical statements from

[16], apply to problems covered in Examples 1, and 2 in

Section I. In addition, the novel framework has recently

been shown successful for solving problems of state and

parameter reconstruction for systems in non-canonical adap-

tive observer form. In [20], [21] we showed that trading

Lyapunov stability for convergence enables solving problems

of state and parameter reconstruction for these important

classes of systems. Dynamics of such observers satisfy

ẋ = A(t)x + b(t, x, λ′) − b(t, x, λ), λ′ ∈ R

λ̇ = γ‖cT x‖, γ ∈ R>0, c ∈ R
n

(32)

with ẋ = A(t)x being uniformly asymptotically stable

and b(t, x, λ) being globally Lipschitz in λ respectively.

Equations (32) can be directly translated into (12) to which

Theorem 1 and Corollary 1 apply. Examples of how these

results can be used to tackle the problem of adaptive reg-

ulation for systems with general yet Lipschitz nonlinear

parameterization are discussed in [16].

More recent developments demonstrate that the non-

uniform small-gain approaches can serve as the machinery

for solving long-standing ill-posed problems such as prov-

ing adaptive capabilities of recurrent neural networks with

fixed weights in the problems of adaptive classification of

uncertain temporal signals [22].

Presented framework of analysis is not limited to systems

in Examples 1, and 2. It can be extended to more general

settings, as in Example 3, where interconnection of an input-

to-state stable system with a system of which the dynamics is

critically stable or in a vicinity of the critical regime. Details

of such generalization are available in [17].

An interesting question however remains: whether a sim-

ilar technique can in principle be derived to deal with

interconnections of systems with finite escape time, such as

ẋ1 = −x1 +x2
1, λ̇ = −γx2

1. Finding answer to this and other

related questions is the topic for future studies.
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