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Abstract— We consider the Max-Plus Finite Element Method
for Solving Deterministic Optimal Control Problems, which
is a max-plus analogue of the Petrov–Galerkin finite element
method. This method, that we introduced in a previous work,
relies on a max-plus variational formulation. The error in
the sup-norm can be bounded from the difference between
the value function and its projections on max-plus and min-
plus semimodules when the max-plus analogue of the stiffness
matrix is exactly known. We derive here a convergence result in
arbitrary dimension for approximations of the stiffness matrix
relying on the Hamiltonian, and for arbitrary discretization
grid. We show that for a class of problems, the error estimate is

of order δ+∆x(δ)−1 or
√

δ+∆x(δ)−1, depending on the choice
of the approximation, where δ and ∆x are, respectively, the time
and space discretization steps. We give numerical examples in
dimension 2.

I. INTRODUCTION

We consider the following optimal control problem:

maximize

∫ T

0

ℓ(x(s),u(s)) ds+ φ(x(T )) (1a)

over the set of trajectories (x(·),u(·)) satisfying

ẋ(s) = f(x(s),u(s)), x(s) ∈ X, u(s) ∈ U (1b)

for all 0 ≤ s ≤ T and

x(0) = x. (1c)

Here the state space X is a subset of R
n, the set of control

values U is a subset of R
m, the horizon T > 0 and the initial

condition x ∈ X are given, and we assume that the map u(·)
is measurable and that the map x(·) is absolutely continuous.

We also assume that the instantaneous reward or Lagrangian

ℓ : X × U → R and the dynamics f : X × U → R
n are

sufficiently regular maps and that the terminal reward φ is a

map X → R ∪ {−∞}.

We are interested in the numerical computation of the

value function v which associates with any (x, t) ∈ X×[0, T ]
the supremum v(x, t) of

∫ t

0
ℓ(x(s),u(s)) ds+φ(x(t)), under

the constraints (1b), for 0 ≤ s ≤ t and (1c). It is known
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that, under certain regularity assumptions, v is solution of

the Hamilton–Jacobi equation

−∂v
∂t

+H

(

x,
∂v

∂x

)

= 0, (x, t) ∈ X × (0, T ], (2)

with initial condition v(x, 0) = φ(x), x ∈ X , where

H(x, p) = supu∈U ℓ(x, u) + p · f(x, u) is the Hamiltonian

of the problem (see, for instance, [1], [2]).

Several techniques have been proposed in the literature

to solve this problem. We mention, for example, finite

difference schemes and the method of the vanishing viscosity

[3], the antidiffusive schemes for advection [4], the so-called

discrete dynamic programming method or semi-Lagrangian

method [5], [6], [7], [8]. Recently, max-plus methods have

been proposed to solve first-order Hamilton–Jacobi equations

[9], [10], [11], [12].

Recall that the max-plus semiring, Rmax, is the set R ∪
{−∞}, equipped with the addition a⊕b = max(a, b) and the

multiplication a⊗b = a+b. In what follows, let St denote the

evolution semigroup of (2), or Lax–Oleinik semigroup, which

associates with any map φ the function vt := v(·, t), where

v is the value function of the optimal control problem (1).

Maslov [13] observed that the semigroup St is max-plus

linear, meaning that for all maps f, g from X to Rmax, and

for all λ ∈ Rmax, we have

St(f ⊕ g) = Stf ⊕ Stg, St(λf) = λStf,

where f ⊕ g denotes the map x 7→ f(x) ⊕ g(x), and λf

denotes the map x 7→ λ⊗ f(x).
In [14], [15], we introduced a max-plus analogue of the

finite element method, the “MFEM,” to solve the determin-

istic optimal control problem (1). This method approximates

the evolution semigroup St by means of a nonlinear discrete

semigroup, which can be interpreted as the dynamic pro-

gramming operator of a deterministic zero-sum two players

game, with finite action and state spaces (unlike the method

of Fleming and McEneaney which leads to a discrete optimal

control problem). One interest of the MFEM is to provide,

as in the case of the classical finite element method, a

systematic way to compute error estimates, which can be

interpreted geometrically as “projection” errors. When the

value function is nonsmooth, the space of test functions

must be different from the space in which the solution

is represented, so that our discretization is indeed a max-

plus analogue of the Petrov–Galerkin finite element method.

A convenient choice of finite elements and test functions

includes quadratic functions (also considered by Fleming and

McEneaney [10]) and norm-like functions; see section IV.
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In the MFEM, we need to compute the value of the max-

plus scalar product 〈z | Sδw〉 for each finite element w and

each test function z. In some special cases, 〈z | Sδw〉 can be

computed analytically. In general, we need to approximate

this scalar product. Here we consider the approximation

Sδw(x) = w(x) + δH(x,∇w(x)), for x ∈ X , which is also

used in [9]. Our main result, Theorem 13, provides for the

resulting discretization of the value function an error estimate

of order δ+∆x(δ)−1, where ∆x is the “space discretization

step,” under classical assumptions on the control problem

and the additional assumption that the value function vt

is semiconvex for all t ∈ [0, T ]. This is comparable with

the order obtained in the simplest discretization methods;

see [16], [6], [17]. To avoid solving a difficult (nonconvex)

optimization problem, we propose a further approximation

of the max-plus scalar product 〈z | Sδw〉, for which we

obtain an error estimate of order
√
δ + ∆x(δ)−1, which is

yet comparable to the order of the existing discretization

methods. Here, unlike in [14], the discretization grid need

not be regular: in Theorem 13, ∆x is defined for an arbitrary

grid in terms of Voronoi tessellations.

Improved (quadratic) errors estimates are obtained in [18]

under strongly regularity asumptions.

The present paper is an abridged version of [15] where

proofs can be found.

II. PRELIMINARIES ON RESIDUATION AND PROJECTIONS

OVER SEMIMODULES

In this section we recall some classical residuation results

(see, for example, [19], [20], [21], [22]) and their application

to linear maps on idempotent semimodules (see [23], [24]).

We also review some results of [25], [24] concerning pro-

jectors over semimodules. Other results on projectors over

semimodules appeared in [26], [27].

A. Residuation, semimodules, and linear maps

If (S,≤) and (T,≤) are (partially) ordered sets, we say

that a map f : S → T is monotone if s ≤ s′ =⇒ f(s) ≤
f(s′). We say that f is residuated if there exists a map f ♯ :
T → S such that

f(s) ≤ t ⇐⇒ s ≤ f ♯(t).

Then

f ♯(t) = max{s ∈ S | f(s) ≤ t} ∀t ∈ T.

We shall consider situations where S (or T ) is equipped

with an idempotent monoid law ⊕ (idempotent means that

a ⊕ a = a). Then the natural order on S is defined by

a ≤ b ⇐⇒ a ⊕ b = b. The supremum law for the natural

order, which is denoted by ∨, coincides with ⊕, and the

infimum law for the natural order, when it exists, will be

denoted by ∧. We say that S is complete as a naturally

ordered set if any subset of S has a least upper bound for

the natural order.

If K is an idempotent semiring, i.e., a semiring whose

addition is idempotent, we say that the semiring K is

complete if it is complete as a naturally ordered set and if

the left and right multiplications K → K, x 7→ ax, and

x 7→ xa are residuated. The max-plus semiring, Rmax =
(R∪{−∞},max,+), defined in the introduction, is an idem-

potent semiring. It is not complete, but it can be embedded

into the complete idempotent semiring Rmax obtained by

adjoining +∞ to Rmax, with the convention that −∞ is

absorbing for the multiplication.

Semimodules over semirings are defined like modules over

rings, mutatis mutandis; see [23], [24]. When K is a complete

idempotent semiring, we say that a (right) K-semimodule X
is complete if it is complete as an idempotent monoid and if,

for all u ∈ X and λ ∈ K, the right and left multiplications,

RX
λ : X → X , v 7→ vλ and LX

u : K → X , µ 7→ uµ, are

residuated (for the natural order). In a complete semimodule

X , we define, for all u, v ∈ X ,

u\v def
= (LX

u )♯(v) = max{λ ∈ K | uλ ≤ v}.
The semimodule of functions KX is defined naturally. In

particular, R
X

max is the set of functions from X to R∪{±∞},

equipped with the pointwise supremum and with the action

(λ, u) 7→ λ+u, where (λ+u)(x) = λ+u(x), for all x ∈ X ,

again with the convention that (−∞) + ∞ = −∞.

If X and Y are K-semimodules, we say that a map A :
X → Y is linear if for all u, v ∈ X and λ, µ ∈ K, A(uλ⊕
vµ) = A(u)λ⊕A(v)µ. Then, as in classical algebra, we use

the notation Au instead of A(u). When A is residuated and

v ∈ Y , we use the notation A\v or A♯v instead of A♯(v).
If X and Y are two sets, K is a complete idempotent

semiring, and a ∈ KX×Y , we construct the linear operator

A from KY to KX which associates with any u ∈ KY the

function Au ∈ KX such that Au(x) = ∨y∈Y a(x, y)u(y).
We say that A is the kernel operator with kernel or matrix

a. We shall often use the same notation A for the operator

and the kernel (so A(x, y) = a(x, y)). In particular, when

K = Rmax, we have

Au(x) = sup
y∈Y

(A(x, y) + u(y)). (3)

As is well known (see, for instance, [22]), the kernel operator

A is residuated, and

(A\v)(y) = ∧
x∈X

A(x, y)\v(x).

When K = Rmax, A\v is given by

(A\v)(y) = inf
x∈X

(−A(x, y) + v(x)) = [−A∗(−v)](y), (4)

where A∗ denotes the transposed operator KX → KY ,

which is associated with the kernel A∗(y, x) = A(x, y).
(In (4), we use the convention that +∞ is absorbing for

addition.)

B. Projectors on semimodules

Let K be a complete idempotent semiring and V denote a

complete subsemimodule of a complete semimodule X , i.e.,

a subset of X that is stable by arbitrary sups and by the

action of scalars. We call canonical projector on V the map

PV : X → X , u 7→ PV(u) = max{v ∈ V | v ≤ u}. (5)
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Let W denote a generating family of a complete subsemi-

module V , which means that any element v ∈ V can be

written as v = ∨{wλw | w ∈ W} for some λw ∈ K. It is

known that

PV(u) = ∨
w∈W

w(w\u)

(see, for instance, [24]). If B : U → X is a residuated linear

operator, then when U and X are complete semimodules over

K, the image imB of B is a complete subsemimodule of X ,

and

PimB = B ◦B♯. (6)

The max-plus finite element methods relies on the notion

of projection on an image, parallel to a kernel, which

was introduced by Cohen, Gaubert, and Quadrat in [25].

The following theorem, of which Corollary 2 below is an

immediate corollary, is a variation on the results of [25,

Section 6].

Theorem 1 (projection on an image parallel to a kernel):

Let U , X , and Y be complete semimodules over K. Let

B : U → X and C : X → Y be two residuated linear

operators over K. Let ΠC
B = B ◦ (C ◦ B)♯ ◦ C. We have

ΠC
B = ΠB ◦ ΠC , where ΠB = B ◦ B♯ and ΠC = C♯ ◦ C.

Moreover, ΠC
B is a projector, meaning that (ΠC

B)2 = ΠC
B ,

and for all x ∈ X

ΠC
B(x) = max{y ∈ imB | Cy ≤ Cx}.

When K = Rmax, and C : R
X

max → R
Y

max is a kernel

operator, ΠC = C♯ ◦ C has an interpretation similar to (6):

ΠC(v) = C♯ ◦ C(v) = −PimC∗(−v) = P−imC∗

(v),

where −imC∗ is thought of as a Rmin-subsemimodule of

R
X

min and PV denotes the projector on a Rmin-semimodule

V , so that

P−imC∗

(v) = min{w ∈ −imC∗ | w ≥ v},

where ≤ denotes here the usual order on R
X

. When B :

R
U

max → R
X

max is also a kernel operator, we have

ΠC
B = PimB ◦ P−imC∗

.

III. THE MAX-PLUS FINITE ELEMENT METHOD

A. Max-plus variational formulation

Let V be a complete semimodule of functions from X

to Rmax. Let St : V → V and vt be defined as in the

introduction. Using the semigroup property St+t
′

= St◦St′ ,
for t, t′ > 0, we get

vt+δ = Sδvt, t = 0, δ, . . . , T − δ, (7)

with v0 = φ and δ = T
N

for some positive integer N . Let

W ⊂ V be a complete Rmax-semimodule of functions from

X to Rmax such that for all t ≥ 0, vt ∈ W . We choose a

“dual” semimodule Z of “test functions” from X to Rmax.

Recall that the max-plus scalar product is defined by

〈u | v〉 = sup
x∈X

u(x) + v(x)

for all functions u, v : X → Rmax. We replace (7) by

〈z | vt+δ〉 = 〈z | Sδvt〉 ∀z ∈ Z (8)

for t = 0, δ, . . . , T − δ, with vδ, . . . , vT ∈ W . Equation (8)

can be seen as the analogue of a variational or weak

formulation. Kolokoltsov and Maslov used this formulation

in [28] and [29, Section 3.2] to define a notion of generalized

solution of Hamilton–Jacobi equations. We use it in the next

section to construct an approximation algorithm for the value

function, which is obtained by taking for W and Z finitely

generated semimodules.

B. Ideal max-plus finite element method

We consider a semimodule Wh ⊂ W generated by the

family {wi}1≤i≤p. We call finite elements the functions wi.

We approximate vt by vth ∈ Wh, that is,

vt ≃ vth = ∨
1≤i≤p

wiλ
t
i,

where λti ∈ Rmax. We also consider a semimodule Zh ⊂ Z
with generating family {zj}1≤j≤q . The functions z1, . . . , zq
will act as test functions. We replace (8) by

〈z | vt+δh 〉 = 〈z | Sδvth〉 ∀z ∈ Zh (9)

for t = 0, δ, . . . , T − δ, with vδh, . . . , v
T
h ∈ Wh. The function

v0
h is a given approximation of φ. Since Zh is generated by

z1, . . . , zq , (9) is equivalent to

〈zj | vt+δh 〉 = 〈zj | Sδvth〉 ∀1 ≤ j ≤ q (10)

for t = 0, δ, . . . , T − δ, with vth ∈ Wh, t = 0, δ, . . . , T .

Since (10) need not have a solution, we look for its

maximal subsolution, i.e., the maximal solution vt+δh ∈ Wh

of

〈zj | vt+δh 〉 ≤ 〈zj | Sδvth〉 ∀1 ≤ j ≤ q. (11a)

We also take for the approximate value function v0
h at time

0 the maximal solution v0
h ∈ Wh of

v0
h ≤ v0. (11b)

Let us denote by Wh the max-plus linear operator from

R
p

max to W with matrix Wh = col(wi)1≤i≤p and by

Z∗
h the max-plus linear operator from W to R

q

max whose

transposed matrix is Zh = col(zj)1≤j≤q. This means that

Whλ = ∨1≤i≤p wiλi for all λ = (λi)i=1,...,p ∈ R
p

max,

and (Z∗
hv)j = 〈zj | v〉 for all v ∈ W and j = 1, . . . , q.

Applying Theorem 1 to B = Wh and C = Z∗
h and noting

that Wh = imWh, we get the following corollary.

Corollary 2: The maximal solution vt+δh ∈ Wh of (11a)

is given by vt+δh = Sδh(v
t
h), where

Sδh = Π
Z∗

h

Wh
◦ Sδ.

Note that Π
Z∗

h

Wh
= PWh

◦P−Zh . The following proposition

provides a recursive equation verified by the vector of

coordinates of vth.

Proposition 3: Let vth ∈ Wh be the maximal solution

of (11) for t = 0, δ, . . . , T . Then, for every t = 0, δ, . . . , T ,
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there exists a maximal λt ∈ R
p
max such that vth = Whλ

t,

t = 0, δ, . . . , T , which can be determined recursively from

λt+δ = (Z∗
hWh)\(Z∗

hS
δWhλ

t) (12a)

for t = 0, . . . , T − δ with the initial condition

λ0 = Wh\φ. (12b)

For 1 ≤ i ≤ p and 1 ≤ j ≤ q, we define

(Mh)ji = 〈zj | wi〉, (13)

(Kh)ji = 〈zj | Sδwi〉, (14)

= 〈(S∗)δzj | wi〉, (15)

where S∗ is the transposed semigroup of S, which is the

evolution semigroup associated with the optimal control

problem (1) in which the sign of the dynamics is changed.

The matrices Mh and Kh, which represent, respectively,

the max-plus linear operators Z∗
hWh and Z∗

hS
δWh, may

be thought of as the max-plus analogues of the mass and

stiffness matrices, respectively.

The ideal max-plus finite element method (Algorithm 1) is

the algorithm derived from Proposition 3, assuming that the

“mass” and “stiffness” matrices Mh and Kh are computed

by oracles.

Algorithm 1 IDEAL MAX-PLUS FINITE ELEMENT METHOD

1: Choose the finite elements (wi)1≤i≤p and (zj)1≤j≤q.
Choose the time discretization step δ = T

N
.

2: Compute the matrix Mh and the matrix Kh defined

in (13), (14), or (15).

3: Compute λ0 = Wh\φ and v0
h = Whλ

0.

4: For t = δ, 2δ, . . . , T , compute λt = Mh\(Khλ
t−δ) and

vth = Whλ
t.

For the convenience of the reader, we rewrite the elements

of Algorithm 1 with the usual notation:

(Mh)ji = sup
x∈X

(

zj(x) + wi(x)
)

, (16)

(Kh)ji = sup
x∈X

(

zj(x) + Sδwi(x)
)

, (17)

= sup
x∈X

(

wi(x) + (S∗)δzj(x)
)

.

Equation (12a) may be written explicitly, using (3) and (4),

for 1 ≤ i ≤ p, as

λt+δi = min
1≤j≤q

(

− (Mh)ji + max
1≤k≤p

(

(Kh)jk + λtk
)

)

.

Finally, we have, for all x ∈ X and t = 0, δ, . . . , T − δ,

vt+δh = sup
1≤i≤p

(

wi(x) + λt+δi

)

.

C. Effective max-plus finite element method

In the ideal max-plus finite element method, we assume

that the matrices Mh and Kh are exactly known. We shall

see in section IV that for natural choices of finite elements

and test functions, computing every entry of the matrix Mh

is equivalent to solving a maximization problem in which the

objective function is concave and the feasible set is convex.

This problem can be approached by standard optimization

methods. When the domain X has a “simple” shape, for

instance when X is a hypercube, the entries of the matrix Mh

can even be computed analytically. Hence, the assumption

that Mh is accurately known is not a restrictive one. The

same is not true for Kh. Indeed, evaluating every scalar

product 〈z | Sδw〉 leads to a new optimal control problem

since

〈z | Sδw〉 = max z(x(0)) +

∫ δ

0

ℓ(x(s),u(s))ds+ w(x(δ)),

where the maximum is taken over the set of trajectories
(

x(·),u(·)
)

satisfying (1b). This problem is simpler to

approximate than problem (1), because the horizon δ is small,

and the functions z and w have a regularizing effect.

We call “the effective max-plus finite element method” the

method obtained by replacing in Algorithm 1 the matrix Kh

by an approximation.

We first discuss the approximation of Sδw for every

finite element w. The Hamilton–Jacobi equation (2) suggests

approximating Sδw by the function [Sδw]H such that

[Sδw]H(x) = w(x) + δH(x,∇w(x)) ∀x ∈ X. (18)

Let [SδWh]H denote the max-plus linear operator from R
p

max

to W with matrix [SδWh]H = col([Sδwi]H)1≤i≤p, which

means that

[SδWh]Hλ = ∨
1≤i≤p

[Sδwi]Hλi

for all λ = (λi)1≤i≤p ∈ R
p
max. The above approximation

of Sδw yields an approximation of the matrix Kh by the

matrix KH,h := Z∗
h[S

δWh]H , whose entries are given, for

1 ≤ i ≤ p and 1 ≤ j ≤ q, by

(KH,h)ji = sup
x∈X

(

zj(x) + wi(x) + δH(x,∇wi(x))
)

. (19)

Let Aji denote the set where the optimum of the function

x 7→ zj(x)+wi(x) is attained. Computing (KH,h)ji in (19)

requires solving an optimization problem, which is nothing

but a perturbation of the optimization problem associated

with the computation of (Mh)ji. We may exploit this ob-

servation by approximating KH,h by the matrix K̃H,h with

entries

(K̃H,h)ji = sup
x∈Aji

(

zj(x) + wi(x)
)

+ sup
x∈Aji

H(x,∇wi(x))

= 〈zj | wi〉 + δ sup
x∈Aji

H(x,∇wi(x)) (20)

for 1 ≤ i ≤ p and 1 ≤ j ≤ q. When Aji has only one

element, (20) yields a convenient approximation of Kh.
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IV. ERROR ANALYSIS

A. General error estimates

In what follows we denote by ‖v‖∞ = supi∈I |v(i)|
∈ R ∪ {+∞} the sup-norm of any function v : I → R.

We also use the same notation ‖v‖∞ = supi∈I |vi| for

a vector v = (vi)i∈I . For any two sets I and J , a map

Φ : R
I → R

J is said to be monotone and homogeneous if it

is monotone for the natural order and if for all u ∈ R
I and

λ ∈ R, Φ(u + λ) = Φ(u) + λ with (u + λ)(i) = u(i) + λ.

Monotone homogeneous maps are nonexpansive for the sup-

norm: ‖Φ(u)−Φ(v)‖∞ ≤ ‖u−v‖∞; see [30]. In particular,

max-plus or min-plus linear operators are nonexpansive for

the sup-norm. We denote τ̄δ = {0, δ, . . . , T}, τ+
δ = τ̄δ\{0},

and τ−δ = τ̄δ\{T} .

The following lemma shows that the error of the ideal

max-plus finite element method is controlled by the projec-

tion errors ‖ΠZ∗

h

Wh
(vt) − vt‖∞.

Lemma 4: For t ∈ τ̄δ , let vt be the value function at time

t and vth be its approximation given by the ideal max-plus

finite element method. We have

‖vTh −vT ‖∞ ≤ ‖ΠWh
(v0)−v0‖∞+

∑

t∈τ+

δ

‖ΠZ∗

h

Wh
(vt)−vt‖∞.

Corollary 5: For t ∈ τ̄δ, let vt be the value function at

time t and vth be its approximation given by the effective

max-plus finite element method, implemented with an ap-

proximation K̃h of Kh. We have

‖vTh − vT ‖∞ ≤
(

1 +
T

δ

)

(

sup
t∈τ̄δ

(‖ΠZ∗

hvt − vt‖∞

+‖ΠWh
vt − vt‖∞) + max

1≤i≤p
‖[Sδwi]H − Sδwi‖∞

+‖K̃h −KH,h‖∞
)

.

B. Projection errors

Recall that a function f is c-semiconvex if f(x) + c
2‖x‖2

2,

where ‖·‖2 is the standard euclidean norm of R
n, is convex.

A function f is c-semiconcave if −f is c-semiconvex.

Spaces of semiconvex functions were intensively used in

the max-plus based approximation method of Fleming and

McEneaney [10].

We shall use the following finite elements.

Definition 6 (P1 finite elements): We call the P1 finite

element or Lipschitz finite element centered at point x̂ ∈ X ,

with constant a > 0, the function w(x) = −a‖x − x̂‖1,

where ‖x‖1 =
∑n
i=1 |xi| is the l1-norm of R

n.

The family of Lipschitz finite elements of constant a gen-

erates, in the max-plus sense, the semimodule of Lipschitz

continuous functions from X to R̄ of Lipschitz constant a

with respect to ‖ · ‖1.

Definition 7 (P2 finite elements): We call the P2 finite

element or quadratic finite element centered at point x̂ ∈ X ,

with Hessian c > 0, the function w(x) = − c
2‖x− x̂‖2

2.

When X = R
n, the family of quadratic finite elements

with Hessian c generates, in the max-plus sense, the semi-

module of l.s.c. c-semiconvex functions with values in R̄.

p10

ρ
X (P )

VX(p9)

X

p5

p7

p8

p2

p1

p3
p4

p6

p9

Fig. 1. Voronoi tessellation.

When C is a nonempty convex subset of R
n and c > 0,

a function is said to be c-strongly convex on C if and only

if f − 1
2c‖ · ‖2

2 is convex on C. A function f is c-strongly

concave on C if −f is c-strongly convex on C.

Let P be a finite subset of R
n. The Voronoi cell of a point

p ∈ P is defined by

V (p) = {x ∈ R
n | ‖x− p‖2 ≤ ‖x− q‖2 ∀q ∈ P}.

The family {V (p)}p∈P constitutes a subdivision of R
n,

which is called a Voronoi tessellation (see [31] for an intro-

duction to Voronoi tessellations). We define the restriction of

V (p) to X to be VX(p) = V (p) ∩X. We define ρX(P ) to

be the maximal radius of the restriction to X of the Voronoi

cells of the points of P :

ρX(P ) := sup
p∈P

sup
x∈VX(p)

‖x− p‖2.

Observe that

ρX(P ) := sup
x∈X

inf
p∈P

‖x− p‖2.

The previous definitions are illustrated in Figure 1. The set

X is in light gray, P = {p1, . . . , p10}, VX(P9) is in dark

gray, and ρX(P ) is indicated by a bidirectional arrow.

The next two lemmas bound the projection error in term

of the radius of Voronoi cells.

Lemma 8 (primal projection error): Let X be a compact

convex subset of R
n. Let v : X → R be a c-semiconvex

and Lipschitz continuous function with Lipschitz constant

Lv with respect to the euclidean norm. Let vc(x) = v(x) +
c
2‖x‖2

2. Let X̂ = X + B2(0,
Lv

c
), let X̂h be a finite subset

of R
n, and let Wh denote the complete subsemimodule of

R
X
max generated by the family (wx̂h

)x̂h∈X̂h
, where wx̂h

(x) =
− c

2‖x− x̂h‖2
2. Then

‖v − PWh
v‖∞ ≤ cdiamXρX̂(X̂h).

Lemma 9 (dual projection error): Let X be a bounded

subset of R
n and Xh a finite subset of R

n. Let v : X → R be

a given Lipschitz continuous function with Lipschitz constant

Lv with respect to the euclidean norm. Let Zh denote the

complete semimodule of R
X

max generated by the P1 finite
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elements (zxh
)xh∈Xh

centered at the points of Xh with

constant a ≥ Lv . Then

‖v − P−Zhv‖∞ ≤ n(a+ Lv)ρX(Xh).

C. The approximation errors

To state an error estimate, we make the following standard

assumptions (see [2], for instance):

– (H1) f : X × U → R
n is bounded and Lipschitz

continuous with respect to x, meaning that there exist

Lf > 0 and Mf > 0 such that

‖f(x, u) − f(y, u)‖2 ≤ Lf‖x− y‖2 ∀x, y ∈ X,u ∈ U,

‖f(x, u)‖2 ≤Mf ∀x ∈ X,u ∈ U.

– (H2) ℓ : X × U → R is bounded and Lipschitz

continuous with respect to x, meaning that there exist

Lℓ > 0 and Mℓ > 0 such that

|ℓ(x, u) − ℓ(y, u)| ≤ Lℓ‖x− y‖2 ∀x, y ∈ X,u ∈ U,

|ℓ(x, u)| ≤Mℓ ∀x ∈ X,u ∈ U.

We shall also need the further assumptions:

– (H3) The domain X is invariant by the dynamics: for

all u : [0, T ] → U and for all x ∈ X , the solution xu,x

of ẋu,x(s) = f(xu,x(s), u(s)), s ≥ 0, and xu,x(0) = x

satisfies xu,x(s) ∈ X for all s ≥ 0.

– (H4) The domain X is invariant by the discretized

dynamics in time δ > 0: for all u ∈ U and for all

x ∈ X , x+ δf(x, u) ∈ X .

In the main results, the domain will be also assumed to be

convex. Then assumption (H4) implies (H3).

Lemma 10 (Approximation of Sδw): Let X be a convex

subset of R
n. We make assumptions (H1), (H2), (H3), and

(H4). Let w : x→ R be such that w is C1 on a neighborhood

of X , Lipschitz continuous with Lipschitz constant Lw
with respect to the euclidean norm, c1-semiconvex, and c2-

semiconcave. Then there exists K1 > 0 such that ‖[Sδw]H−
Sδw‖∞ ≤ K1δ

2, for δ > 0, where [Sδw]H is given by (18).

Proposition 11: Let X be a compact convex subset of R
n.

We consider an u.s.c. and strongly concave function ϕ : X →
R with modulus c > 0 and a Lipschitz continuous function

ψ : X → R with Lipschitz constant Lψ with respect to the

euclidean norm. Then the maximum of ϕ on X is attained

at a unique point x0 ∈ X , i.e., arg maxX ϕ = {x0} and

∣

∣

∣

∣

sup
x∈X

(

ϕ(x) + δψ(x)
)

−
(

ϕ(x0) + δψ(x0)
)

∣

∣

∣

∣

≤ Lψδ

√

2δM

c
,

where M = supx∈X ψ(x) − infx∈X ψ(x).
Remark 12 (Approximation of Kh by K̃H ): To have an

error estimate of the approximation of the matrix KH,h by

the matrix K̃H,h, we apply Corollary 11 in the case where

ϕ(x) = wi(x) + zj(x) and ψ(x) = H(x,∇wi(x))

for a suitable choice of the finite elements wi and test

functions zj . Using assumptions (H1) and (H2), we have

that, for all x ∈ X , |ψ(x)| ≤ Mf‖∇w‖∞ + Mℓ, where

‖∇w‖∞ = ‖‖∇w‖2‖∞ and ∇w = (∇wi)1≤i≤p. We deduce

that

supψ − inf ψ ≤ 2
(

Mf‖∇w‖∞ +Mℓ

)

.

Moreover, H(·, p) and H(x, ·) are Lipschitz continuous with

Lipschitz constants Lf‖p‖2 + Lℓ and Mf , respectively.

Hence, ψ is Lipschitz continuous with Lipschitz constant

Lψ = Lf‖∇w‖∞ + Lℓ +Mf‖D2wi‖∞.

D. Final estimation of the error of the MFEM

We now state our main convergence result, which holds

for quadratic finite elements and Lipschitz test functions.

Theorem 13: Let X be a compact convex subset of R
n

with nonempty interior and X̂ = X + B2(0,
L
c
), where L >

0, c > 0. Choose any finite sets of discretization points Xh ⊂
R
n and X̂h ⊂ R

n. Let

∆x = max(ρX(Xh), ρX̂(X̂h)).

We make assumptions (H1), (H2), (H3), and (H4) and

assume that the value function at time t, vt, is c-semiconvex

and Lipschitz continuous with constant L with respect to the

euclidean norm for all t ≥ 0. Let us choose quadratic finite

elements wx̂h
of Hessian c, centered at the points x̂h of X̂h.

Let us choose, as test functions, the Lipschitz finite elements

zxh
with constant a ≥ L, centered at the points xh of Xh.

For t = 0, δ, . . . , T , let vth be the approximation of vt given

by the max-plus finite element method implemented with the

approximation KH,h of Kh given by (19). Then there exists

a constant C1 > 0 such that

‖vTh − vT ‖∞ ≤ C1

(

δ +
∆x

δ

)

.

When the approximation KH,h is replaced by K̃H,h, given

by (20), this inequality becomes

‖vTh − vT ‖∞ ≤ C2

(√
δ +

∆x

δ

)

for some constant C2 > 0.

V. NUMERICAL RESULTS

We implemented the MFEM described in section III using

the max-plus toolbox of Scilab [32] (in dimension 1) and

specific programs written in C (in dimension 2). We used the

approximation K̃H,h of the matrix Kh. The matrix Mh can

always be computed analytically. We present here numerical

experiments for optimal control problems in dimension 2.

Dimension 1 examples were shown in [14], [15]. In all the

examples below, the Hamiltonian H , and thus the stiffness

matrix K̃H,h, have been computed analytically. We avoided

storing the (full) matrices Mh and K̃H,h when the number

of discretization points was large.

Example 14 (linear quadratic problem): We consider the

case where U = R
2, X = R

2, φ ≡ 0,

ℓ(x, u) = −x
2
1 + x2

2

2
− u2

1 + u2
2

2
, and f(x, u) = u.
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Fig. 2. Max-plus approximation of a linear quadratic control problem
(Example 14).

For x ∈ X , the value functions at time t is

v(x, t) = −1

2
tanh(t)(x2

1 + x2
2).

The domain X is unbounded; therefore ℓ and f do not satisfy

assumptions (H1) and (H2). We will restrict the domain to

the set [−5; 5]2. We choose quadratic finite elements wi and

zj of Hessian c centered at the points of the regular grid
(

(Z∆x) ∩ [−6, 6]
)2

. We represent in Figure 2 the solution

given by our algorithm in the case where T = 5, δ = 0.5,

∆x = 0.1, and c = 1. The L∞-error is 9 · 10−5.

Example 15 (distance problem): We consider the case

where T = 1, φ ≡ 0, X = [−1, 1]2, U = [−1, 1]2,

ℓ(x, u) = −1 if x ∈ intX , and ℓ(x, u) = 0 if x ∈ ∂X ,

f(x, u) = 7u if x ∈ intX , and f(x, u) = 0 if x ∈ ∂X . For

x ∈ X , the value function at time t is

v(x, t) = max
(

− t,max(|x1|, |x2|) − 1
)

.

We choose quadratic finite elements wi of Hessian c centered

at the points of the regular grid
(

(Z∆x) ∩ [−3, 3]
)2

and

Lipschitz finite elements zj with constant a centered at the

points of the regular grid
(

(Z∆x)∩ [−1, 1]
)2

. We represent

in Figure 3 the solution given by our algorithm in the case

where T = 1, δ = 0.05, ∆x = 0.025, a = 3, and c = 1.

The L∞-error is of order 0.05.

Example 16 (rotating problem): We consider here the

Mayer problem where T = 1, X = B2(0, 1), U = {0},

φ(x) = − 1
2x

2
1 − 3

2x
2
2, ℓ(x, u) = 0, and f(x, u) = (−x2, x1).

For x ∈ X , the value function at time t is

v(x, t) = −1

2
(−x2sin(t)+x1cos(t))2−3

2
(x2cos(t)+x1sin(t))2.

We choose quadratic finite elements wi and zj of Hessians cw
and cz , respectively, centered at the points of the regular grid
(

(Z∆x) ∩ [−2, 2]
)2

. We represent in Figure 4 the solution

given by our algorithm in the case where δ = ∆x = 0.05,

cw = 4, and cz = 3. The L∞-error is 0.046.
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Fig. 3. Max-plus approximation of the distance problem (Example 15).
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−1

Fig. 4. Max-plus approximation of the rotating problem (Example 16).

Example 17: We consider the case where U = R, X =
R

2, φ(x) = −x2
1 − 2x2

2,

ℓ(x, u) = −x2
1 −

u2

2
, and f(x, u) = (x2, u)

T .

We choose quadratic finite elements wi and zj of Hessian

cw and cz , respectively, centered at the points of the grids
(

(Z∆x)∩ [−2, 2]
)2

and
(

(Z∆x)∩ [−11, 11]
)2

, respectively.

We represent in Figure 5 the solution given by our algorithm

in the case where T = 1, δ = 0.05, ∆x = 0.025, cw = 10,

and cz = 1. The L∞-error is 0.11. (We compared the max-

plus approximation with the solution of the problem given

by the Riccati equation.)

We have tested our method on examples that fulfill the

assumptions of Theorem 13 (see Example 16) but also on

problems that do not fulfill these assumptions. The method is

efficient even in the second case. The only difficulty comes

from the full character of the matrices Mh and Kh, which

limits the number of discretization points. To treat higher

dimensional examples, we need higher-order approximations

(when the value function is regular enough). This is the

object of a subsequent work.
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Fig. 5. Max-plus approximation of the solution of the control problem of
Example 17.
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