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Abstract— This paper addresses the asymptotic stability of
switched time delay systems with heterogenous time invariant
time delays. Piecewise Lyapunov-Razumikhin functions are
introduced for the switching candidate systems to investigate
the stability in the presence of infinite number of switchings.
We provide sufficient conditions in terms of the minimum dwell
time to guarantee asymptotic stability under the assumptions
that each switching candidate is delay-independently or delay-
dependently stable. Conservatism analysis is also provided by
comparing with the dwell time conditions for switched delay
free systems.

I. INTRODUCTION

Switching control offers a new look into the design of

complex control systems (e.g. nonlinear systems, parameter

varying systems and uncertain systems) [1], [8], [9], [19],

[17], [21], [28]. Unlike the conventional adaptive control

techniques that rely on continuous tuning, the switching

control method updates the controller parameters in a discrete

fashion based on the switching logic. The resulting closed-

loop systems have hybrid behaviors (e.g. continuous dynam-

ics, discrete time dynamics and jump phenomena, etc.). One

of the most challenging issues in the area of hybrid systems

is the stability analysis in the presence of control switching.

We refer to [9] for a general review on switching control

methods.

In particular, we are interested in the stability analysis of

switched time delay systems. In fact, time delay systems

are ubiquitous in chemical processes, aerodynamics, and

communication networks [3], [14]. To further complicate

the situation, the time delays are usually time varying and

uncertain [24], [25]. It has been shown that robust H∞ con-

trollers can be designed for such infinite dimensional plants,

where robustness can be guaranteed within some uncertainty

bounds [4]. In order to incorporate larger operating range

or better robustness, controller switching can be introduced,

which results in switched closed-loop systems with time

delays. For delay free systems, stability analysis and design

methodology have been investigated recently in the frame-

work of hybrid dynamical systems [1], [2], [8], [11], [19],

[21], [26]. In particular, [21] provided sufficient conditions

on the stability of the switching control systems based on

Filippov solutions to discontinuous differential equations and

Lyapunov functionals; [19] proposed a dwell-time based

switching control, where a sufficiently large dwell-time can
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guarantee the system stability. A more flexible result was

obtained in [10], where the average dwell-time was intro-

duced for switching control. In [26] the results of [10] were

extended to LPV systems. LaSalle’s invariance principle was

extended to a class of switched linear systems for stability

analysis [8]. Despite the variety and significance of the many

results on hybrid system stability, stability of switched time

delay systems hasn’t been adequately addressed due to the

general difficulty of infinite dimensional systems [7].

Two important approaches in the stability analysis of

time delay systems are (1) Lyapunov-Krasovskii method,

and (2) Lyapunov-Razumikhin method [6], [20]. Various

sufficient conditions with respect to the stability of time

delay systems have been given using Riccati-type inequalities

or LMIs [3], [12], [14], [24]. In the meanwhile, stability

analysis in the presence of switching has been discussed

in some recent works [16], [18], [22]. In [18] stability and

stabilizability were discussed for discrete time switched time

delay systems; [16] considered similar stability problem in

continuous time domain. Note that [18] and [16] are trajec-

tory dependent results without taking admissible switching

signals into considerations.

The main contribution of this paper is a collection of

results on the trajectory independent stability of continuous

time switched time delay systems using piecewise Lyapunov-

Razumikhin functions. The dwell time of the switching

signals is constructively given, which guarantees asymptotic

stability for the delay independent case and the delay de-

pendent case, respectively. Note that the asymptotic stability

of finite dimensional linear systems indicates exponential

stability, whereas this is not the case for infinite dimensional

systems, [7], [15]. This poses the key challenge in the

analysis of switched time delay systems.

The paper is organized as follows. The problem is defined

in Section II. In Section III, the main results on the stability

of switched time delay systems are presented in terms of the

dwell time of the switching signals. Conservatism analysis

is provided by comparing with the dwell time conditions

for switching delay free systems in Section IV, followed by

concluding remarks in Section V.

II. PROBLEM DEFINITION

For convenience, we would like to employ the following

notation. The general Retarded Functional Differential Equa-

tions (RFDE) with time delay r can be described as

ẋ(t) = f(t, xt) (1)

with initial condition φ(·) ∈ C([−r, 0],Rn), where xt

denotes the state defined by xt(θ) = x(t+ θ), −r ≤ θ ≤ 0.
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We use ‖ ·‖ to denote the Euclidean norm of a vector in R
n,

and |f |[t−r,t] for the ∞-norm of f , i.e.

|f |[t−r,t] := sup
t−r≤θ≤t

‖f(θ)‖,

where f is an element of the Banach space C([t− r, t],Rn).
Consider the following switched time delay systems:

Σt :

{

ẋ(t) = Aq(t)x(t) + Āq(t)x(t− τq(t)), t ≥ 0
x0(θ) = φ(θ), ∀θ ∈ [−τmax, 0]

(2)

where x(t) ∈ R
n and q(t) is a piecewise switching signal

taking values on the set F := {1, 2, ..., l}, i.e. q(t) = kj ,

kj ∈ F , for ∀t ∈ [tj , tj+1), where tj , j ∈ Z
+ ∪ {0}, is the

jth switching time instant. It is clear that the trajectory of

Σt in any arbitrary switching interval t ∈ [tj , tj+1) obeys:

Σkj
:

{

ẋ(t) = Akj
x(t) + Ākj

x(t− τkj
), t ∈ [tj , tj+1)

xtj
(θ) = φj(θ), ∀θ ∈ [−τkj

, 0],
(3)

where φj(θ) is defined as:

φj(θ) =

{

x(tj + θ) −τkj
≤ θ < 0

limh→0− x(tj + h), θ = 0
(4)

We introduce the triplet Σi := (Ai, Āi, τi) ∈ R
n×n ×

R
n×n × R

+ to describe the ith candidate system of (2).

Thus for ∀t ≥ 0, we have Σt ∈ A := {Σi : i ∈ F},

where A is the family of candidate systems of (2). In (2),

φ(·) : [−τmax, 0] → R
n is a continuous and bounded vector-

valued function, where τmax = maxi∈F{τi} is the maximal

time delay of the candidate systems in A.

Similar to [8], we say that the switched time-delay system

Σt described by (2) is stable if there exists a function ᾱ of

class K 1 such that

‖x(t)‖ ≤ ᾱ(|x|[t0−τmax,t0]), ∀t ≥ t0 ≥ 0, (5)

along the trajectory of (2). Furthermore, Σt is asymptotically

stable when Σt is stable and limt→+∞ x(t) = 0.

Lemma 2.1: ([3], [14]) Suppose for a given triplet Σi ∈
A, i ∈ F , there exists symmetric and positive-definite Pi ∈
R

n×n, such that the following LMI with respect to Pi is

satisfied for some pi > 1 and αi > 0:
[

PiAi +AT
i Pi + piαiPi PiĀi

ĀT
i Pi −αiPi

]

< 0. (6)

Then Σi is asymptotically stable independent of delay.

If all candidate systems of (2), Σi ∈ A, are delay-

independently asymptotically stable satisfying (6), we denote

A by Ã.

Lemma 2.2: ([3], [14]) Suppose for a given triplet Σi ∈
A, i ∈ F , there exists symmetric and positive-definite Pi ∈
R

n×n, and a scalar pi > 1, such that
[

τ−1
i Ωi PiĀiMi

MT
i Ā

T
i Pi −Ri

]

< 0 (7)

1A continuous function ᾱ(·) : R
+ → R

+ is a class K function if it is
strictly increasing and ᾱ(0) = 0.

where

Ωi = (Ai + Āi)
TPi + Pi(Ai + Āi) + τipi(αi + βi)Pi,

Mi = [Ai Āi],

Ri = diag(αiPi, βiPi),

and αi > 0, βi > 0 are scalars. Then Σi is asymptotically

stable dependent of delay.

Similarly we denote A by Ãd if all candidate systems of (2)

are delay-dependently asymptotically stable satisfying (7).

In what follows, we will establish sufficient conditions

to guarantee stability of switched system (2) for the delay

independent case and the delay dependent case. Therefore,

we will assume that A = Ã and A = Ãd respectively

in the corresponding sections in this paper. An important

method in stability analysis of switched systems is based on

the construction of the common Lyapunov function (CLF),

which allows for arbitrary switching. However, this method

is too conservative from the perspective of controller de-

sign because it is usually difficult to find the CLF for all

the candidate systems, particularly for time delay systems

whose stability criteria are only sufficient in most of the

circumstances. A recent paper [29] explored the CLF method

for switched time delays systems with three very strong as-

sumptions: (i) each candidate system has the same time delay

τ ; (ii) each candidate is assumed to be delay independently

stable; (iii) The A-matrix is always symmetric and the Ā-

matrix is always in the form of δI . In the present paper, we

consider an alternative method using piecewise Lyapunov-

Razumikhin functions for a general class of systems (2)

and obtain stability conditions in terms of the dwell time

of the switching signal. This method can be used for the

case with delay independent criterion (6) and the case with

delay dependent criterion (7).

III. MAIN RESULTS ON DWELL TIME BASED SWITCHING

For a given positive constant τD, the switching signal set

based on the dwell time τD is denoted by S[τD], where

for any switching signal q(t) ∈ S[τD], the distance between

any consecutive discontinuities of q(t), tj+1 − tj , j ∈ Z
+ ∪

{0}, is larger than τD [10], [19]. Sufficient condition on the

minimum dwell time to guarantee the stable switching will be

given using piecewise Lyapunov-Razumikhin functions. Note

that the dwell time based switching is trajectory-independent

[8].

Before presenting the main result of this paper, we recall

the following lemma [7] for general Retarded Functional

Differential Equations (1).

Lemma 3.1: [7] Suppose u, v, w, p : R
+ → R

+ are

continuous,nondecreasing functions, u(0) = v(0) = 0,

u(s), v(s), w(s), p(s) positive for s > 0, p(s) > s, and

v(s) strictly increasing. If there is a continuous function

V : R × R
n → R such that

u(‖x(t)‖) ≤ V (t, x) ≤ v(‖x(t)‖), t ∈ R, x ∈ R
n, (8)

and

V̇ (t, x(t)) ≤ −w(‖x(t)‖), (9)
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if

V (t+ θ, x(t+ θ)) < p(V (t, x(t))) ∀θ ∈ [−r, 0], (10)

then the solution x = 0 of the RFDE is uniformly asymp-

totically stable.

A particular case of (1) is a linear time delay system

Σi, i ∈ F , where we can construct the corresponding

Lyapunov-Razumikhin function in the quadratic form

Vi(t, x) = xT (t)Pix(t), Pi = PT
i > 0. (11)

Apparently Vi can be bounded by

ui(‖x(t)‖) ≤ Vi(t, x) ≤ vi(‖x(t)‖), ∀x ∈ R
n, (12)

where

ui(s) := κis
2, vi(s) := κ̄is

2, (13)

in which κi := σmin[Pi] > 0 denotes the smallest singular

value of Pi and κ̄i := σmax[Pi] > 0 the largest singular

value of Pi.

Proposition 3.2: For each time delay systems Σi with

Lyapunov-Razumikhin function defined by (11) assume (9)

and (10) are satisfied for some wi(s). Then we have

|x|[tm−τi,tm] ≤
(

κ̄i

κi

)1/2

|x|[tn−τi,tn], ∀tm ≥ tn ≥ 0. (14)

Proof. Define

V̄i(t, x) := sup
−τi≤θ≤0

Vi(t+ θ, x(t+ θ)) (15)

for t ≥ 0, we have

κi(|x|[t−τi,t])
2 ≤ V̄i(t, x) ≤ κ̄i(|x|[t−τi,t])

2, t ≥ 0 (16)

The definition of V̄i(t, x) implies ∃θ0 ∈ [−τi, 0], such that

V̄i(t, x) = V (t + θ0, x(t + θ0)). Introduce the upper right-

hand derivative of V̄i(t, x) as

˙̄V +
i = lim sup

h→0+

1

h
[V̄i(t+ h, x(t+ h)) − V̄i(t, x(t))],

we have

(i). If θ0 = 0, i.e. Vi(t + θ, x(t + θ)) ≤ Vi(t, x(t)) <
p(Vi(t, x(t))), we have V̇i(t, x) < 0 by (9). Therefore
˙̄V +
i ≤ 0.

(ii). If −τi < θ0 < 0, we have V̄i(t+h, x(t+h)) = V̄i(t, x)

for h > 0 sufficiently small, which results in ˙̄V +
i = 0.

(iii). If θ0 = −τi, the continuity of Vi(t, x) implies ˙̄V +
i ≤ 0.

The above analysis shows that

V̄i(tm) ≤ V̄i(tn), ∀tm ≥ tn ≥ 0. (17)

Recall (16), we have

κi(|x|[tm−τi,tm])
2 ≤ V̄i(tm) ≤ V̄i(tn) ≤ κ̄i(|x|[tn−τi,tn])

2,
(18)

for any tm ≥ tn ≥ 0. This implies (14) and proves the result.

Suppose all of the conditions of Lemma 3.1 are satisfied

for general RFDE (1), we also have the following result.

Lemma 3.3: [7] Suppose |φ|[t0−r,t0] ≤ δ̄1, δ̄1 > 0, and

δ̄2 > 0 such that v(δ̄1) = u(δ̄2). For all η satisfying 0 <
η ≤ δ̄2, we have

V (t, x) ≤ u(η), ∀ t ≥ t0 + T. (19)

Here

T =
Nv(δ̄1)

γ
(20)

is defined by γ = infv−1(u(η))≤s≤δ̄2
w(s) and N = ⌈(v(δ̄1)−

u(η))/a⌉, where ⌈·⌉ is the ceiling integer function and a > 0
satisfies p(s) − s > a for u(η) ≤ s ≤ v(δ̄1).

A. The Case with Delay Independent Criterion

Consider the switched time delay systems Σt defined

by (2) and assume each candidate system Σi, i ∈ F
delay-independently asymptotically stable satisfying (6) (i.e.

A = Ã). A sufficient condition on the minimum dwell

time to guarantee the asymptotic stability can be derived

using multiple piecewise Lyapunov-Razumikhin functions.

In order to state the main result we make some preliminary

definitions.

For the switched delay systems (2), first assume τD >
τmax. Consider an arbitrary switching interval [tj , tj+1) of

the piecewise switching signal q(t) ∈ S[τD], where q(t) =
kj , kj ∈ F for ∀t ∈ [tj , tj+1) and tj is the jth switching time

instant for j ∈ Z
+∪{0} and t0 = 0. The state variable xj(t)

defined on this interval obeys (3). For the convenience of

using “sup”, we define xj(tj+1) = limh→0− xj(tj+1 + h) =
xj+1(tj+1) based on the fact that x(t) is continuous for

t ≥ 0. Therefore xj(t) is now defined on a compact set

[tj , tj+1]. Recall (4), the initial condition φj(t) of Σkj
is

φj(t) = x(t) = xj−1(t), t ∈ [tj − τkj
, tj ] for j ∈ Z

+, which

is true because τD > τmax.

Construct the Lyapunov-Razumikhin function

Vkj
(xj , t) = xT

j (t)Pkj
xj(t), t ∈ [tj , tj+1] (21)

for (3), then we have

κkj
‖xj(t)‖2 ≤ Vkj

(t, xj) ≤ κ̄kj
‖xj(t)‖2, ∀xj ∈ R

n. (22)

A straightforward calculation gives the time derivative of

Vkj
(t, xj(t)) along the trajectory of (3)

V̇kj
(t, xj) = xT

j (AT
kj
Pkj

+ Pkj
Akj

)xj

+2xT
j (t)Pkj

Ākj
xj(t− τkj

), (23)

where

2xT
j (t)Pkj

Ākj
xj(t− τkj

)

≤ αkj
xT

j (t− τkj
)Pkj

xj(t− τkj
)

+α−1
kj
xT

j (t)Pkj
Ākj

P−1
kj
ĀT

kj
Pkj

xj(t), ∀αkj
> 0.

Applying Razumikhin condition with p(s) = pkj
s, pkj

> 1,

we obtain

xT
j (t− τkj

)Pkj
xj(t− τkj

) ≤ pkj
xT

j (t)Pkj
xj(t) (24)

for

Vkj
(t+ θ, xj(t+ θ)) < pkj

Vkj
(t, xj(t)) ∀θ ∈ [−τkj

, 0].
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Let

Skj
:= −(AT

kj
Pkj

+ Pkj
Akj

+ pkj
αkj

Pkj

+α−1
kj
Pkj

Ākj
P−1

kj
ĀT

kj
Pkj

) (25)

we have

V̇kj
(t, xj) ≤ −xT

j (t)Skj
xj(t). (26)

Because Σt ∈ Ã, we have Skj
> 0 from Lemma 2.1.

Furthermore we can select w(s) = wkj
s2 in Lemma 3.1,

such that (9) is satisfied, where wkj
:= σmin[Skj

] > 0.

Define

λ := max
i∈F

κ̄i

κi
, (27)

and

µ := max
i∈F

κ̄i

wi
. (28)

Now we are ready to state the main result.

Theorem 3.4: Let the dwell time be defined by τD :=
T ∗ + τmax, where

T ∗ := λµ⌊λ− 1

p̄− 1
+ 1⌋, (29)

with p̄ := mini∈F{pi} > 1, and ⌊·⌋ being the floor integer

function. Then the system (2) with Σt ∈ Ã is asymptotically

stable for any switching rule q(t) ∈ S[τD].
Proof. First we claim that for all τ > τD , there exist

0 < β < 1 and 0 < α < 1, such that τ ≥ T̄ + τmax, where

T̄ :=
λµ

α2
⌈ λ− α2

α2β(p̄− 1)
⌉. (30)

For a given τ , to find such α and β define T̃ + τmax := τ >
τD = T ∗ + τmax, and consider two cases below.

1) If ⌊(λ− 1)/(p̄− 1)⌋ =: k < (λ − 1)/(p̄− 1) < k + 1,

then can find ∆1 > 0 and ∆2 > 0 small enough, such

that

⌈ λ− α2
1

α2
1β(p̄− 1)

⌉ = ⌈λ− 1

p̄− 1
⌉ = k + 1 = ⌊λ− 1

p̄− 1
+ 1⌋

with α1 = (1 + ∆1)
− 1

2 < 1 and β = (1 + ∆2)
− 1

2 < 1.

Let T̃ = T ∗ + ǫ, ǫ > 0. It is easy to check that

λµ

α2
2

⌈ λ− α2
1

α2
1β(p̄− 1)

⌉ =
λµ

α2
2

(k + 1) ≤ (k + 1)λµ+ ǫ = T̃ ,

(31)

where 0 < α2 = (1 + ∆3)
− 1

2 < 1 with 0 < ∆3 ≤
ǫ

(k+1)λµ . Now choosing 0 < α = max{α1, α2} < 1,

we have T̄ ≤ T̃ , which is straightforward from (30)

and (31).

2) If (λ − 1)/(p̄ − 1) = k > 0 is an integer. We can

similarly find 0 < α1 < 1 and 0 < β < 1 such that

⌈ λ− α2
1

α2
1β(p̄− 1)

⌉ = ⌈λ− 1

p̄− 1
+ 1⌉ = k + 1 = ⌊λ− 1

p̄− 1
+ 1⌋

In the same fashion as 1), we can constructively have

0 < α < 1 and 0 < β < 1 such that T̄ ≤ T̃ .

This proves the first claim.

The second claim we make is that ‖xj(t)‖ ≤ αδj
for any t ≥ tj + T̄ , t ∈ [tj , tj+1], where we assume

|φj(t)|[tj−τkj
,tj ] ≤ δj . To show this fact, we can choose

δ̄1 = δj , δ̄2 = δ̄1
√

κ̄kj
/κkj

≥ δ̄1, and select η = αδ̄1 in

Lemma 3.3. It is straightforward that 0 < η < δ̄1 ≤ δ̄2.

Recall (19) and (20), we have

Vkj
(t, xj) ≤ κkj

η2, for t ≥ tj + T, (32)

where

T =
Nv(δ̄1)

γ

⌈(v(δ̄1) − u(η))/a⌉v(δ̄1)
infv−1(u(η))≤s≤δ̄2

w(s)

=
κ̄2

kj
⌈(v(δ̄1) − u(η))/a⌉
α2wkj

κkj

(33)

Combining (22) and (32) yields

‖xj(t)‖ ≤ αδj , for t ≥ tj + T. (34)

Now choosing a = β(pkj
− 1)κkj

η2, we have

T =
κ̄2

kj
⌈

κ̄kj

κkj

−α2

α2β(pkj
−1)⌉

α2wkj
κkj

≤ T̄ (35)

Therefore from (34) and (35) we have

|xj |[tj+T̄ ,tj+1] ≤ αδj , (36)

as claimed.

Now recall that tj+1 − tj > τD. Therefore tj+1 − tj ≥
T̄ +τmax ≥ T̄ +τkj+1

. Also notice that φj+1(t) = xj(t), t ∈
[tj+1 − τkj+1

, tj+1]. We have

|φj+1|[tj+1−τkj+1
,tj+1] = |xj |[tj+1−τkj+1

,tj+1]

≤ |xj |[tj+T̄ ,tj+1] ≤ αδj := δj+1 (37)

and δ0 is defined as δ0 := |φ|[−τmax,0] ≥ |φ|[−τk0
,0]. There-

fore we obtain a convergent sequence {δi}, i = 0, 1, 2, . . . ,
where δi = αiδ0.

Meanwhile, (14) implies

|xj |[t−τkj
,t] ≤

√

κ̄kj

κkj

|xj |[tj−τkj
,tj ], ∀t ∈ [tj , tj+1]. (38)

Hence

sup
t∈[tj,tj+1]

‖xj(t)‖

≤ sup
t∈[tj,tj+1]

|xj |[t−τkj
,t] ≤

√
λ|xj |[tj−τkj

,tj ]

≤
√
λδj = αj

√
λδ0, (39)

which implies the asymptotic stability of the switched time

delay system Σt with the switching signal q(t) ∈ S[τD].

B. The Case with Delay Dependent Criterion

In a similar fashion, we can investigate the stability of the

switched time delay system Σt of (2) under the assumption

that Σt ∈ Ād. Hence each candidate system Σi, i ∈ F is

delay-dependently asymptotically stable satisfying (7). We

assume τd
D > 2τmax in this scenario. Similar to the proof

of Theorem 3.4, we consider an arbitrary switching interval

[tj , tj+1) of the piecewise switching signal q(t) ∈ S[τd
D] ,
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where the state variable xj(t) defined on this interval obeys

(3). The first order model transformation [7] of (3) results in

ẋj(t)= (Akj
+ Ākj

)xj(t)

−Ākj

∫ 0

−τkj

[Akj
xj(t+ θ) + Ākj

x(t+ θ − τkj
)]dθ(40)

where the initial condition ψj(t) is defined as ψj(t) =
xj−1(t), t ∈ [tj −2τkj

, tj ] for j ∈ Z
+, and ψ0(t) defined by

ψ0(t) =

{

φ(t), t ∈ [−τmax, 0]
φ(−τmax), t ∈ [−2τmax,−τmax)

By using the Lyapunov-Razumikhin function (21), we obtain

the time derivative of Vkj
(t, xj(t)) along the trajectory of

(40)

V̇kj
(t, xj) =xT

j (t)[Pkj
(Akj

+ Ākj
) + (Akj

+ Ākj
)TPkj

]xj(t)

−
∫ 0

−τkj

[2xT
j (t)Pkj

Ākj
(Akj

xj(t+ θ)

+Ākj
xj(t+ θ − τkj

)]dθ.

Assume Vkj
(t + θ, xj(t + θ)) < p(Vkj

(t, xj(t))) for ∀θ ∈
[−2τkj

, 0], where p(s) = pkj
s, pkj

> 1, we have [3], [14]

V̇kj
(t, xj) ≤ −xT

j (t)Sd
kj
xj(t), (41)

where

Sd
kj

:= − {Pkj
(Akj

+ Ākj
) + (Akj

+ Ākj
)TPkj

+ τkj
[α−1

kj
Pkj

Ākj
Akj

P−1
kj
ĀT

kj
AT

kj
Pkj

+ β−1
i Pkj

(Ākj
)2P−1

kj
(ĀT

kj
)2Pkj

+ pkj
(αkj

+ βkj
)Pkj

]}. (42)

Because Σt ∈ Ãd, we have Sd
kj

> 0 from Lemma 2.2.

Therefore we can select w(s) = wd
kj
s2 in Lemma 3.1, such

that (9) holds, where wd
kj

:= σmin[Sd
kj

] > 0.

Theorem 3.5: Let the dwell time be τd
D := T ∗

d + 2τmax,

where

T ∗
d := λµd⌊

λ− 1

p̄− 1
+ 1⌋, (43)

with

µd := max
i∈F

κ̄i

wd
i

(44)

and the other parameters are the same as those defined

in Theorem 3.4. Then, the system (2) with Σt ∈ Ãd is

asymptotically stable for any switching rule q(t) ∈ S[τd
D].

Proof. We can apply similar arguments used in the proof

of Theorem 3.4 to obtain the following inequality:

sup
t∈[tj ,tj+1]

‖xj(t)‖ ≤
√
λδd

j , (45)

where |ψj(t)|[tj−2τkj
,tj ] ≤ δd

j , and δd
j+1 = αδd

j . Note that

δd
0 can be selected as

δd
0 := |ψ|[−2τmax,0] = |φ|[−τmax,0] = δ0.

It is clear that |ψ|[−2τk0
,0] ≤ δd

0 , which further implies δd
j =

δj , j ∈ Z
+ ∪ {0}. The upper bound of the state variable

x(t) of the switched time delay systems Σt is bounded by

a decreasing sequence {δi}, i = 0, 1, 2, . . . converging to

zero, which implies the asymptotic stability and proves this

theorem.

The dwell time based stability analysis proposed in this

paper is general in the sense that it can be used for other

stability results based on Razumikhin theorems as long as

the correspondingly Lyapunov functions are in quadratic

forms. Particularly, Theorem 3.5 can be extended easily

to the case where Σt has time-varying time delays and

parameter uncertainties, which has important applications

such as TCP (Transmission Control Protocol) congestion

control of computer networks [13], [25].

IV. CONSERVATISM ANALYSIS

The dwell time based stability results had been obtained

for switched linear systems free of delays [10], [19]. It

is interesting to compare the conservatism of the results

presented in this paper with those for delay free systems.

In fact, one extreme case of the switched system Σt is

τi = 0 and Āi = 0 for i ∈ A, which corresponds to the

delay free scenario. For each candidate system ẋ = Aix, a

sufficient and necessary condition to guarantee asymptotic

stability is ∃Pi = PT
i > 0, such that Qi := −(AT

i Pi +
PiAi) > 0. Correspondingly a dwell time based stability for

such switched delay free system is q(t) ∈ S[τ̃D], where

τ̃D = µ̃ lnλ, (46)

where λ is defined by (27) and

µ̃ := max
i∈F

κ̄i

w̃i
, (47)

where w̃i := σmin[Qi] > 0.

On the other hand in our case, for τi = 0 and Āi = 0, we

observe that

lim
αi→0+

Si = lim
αi,βi→0+

Sd
i = Qi, i ∈ F (48)

from (25) and (42), which indicates µ = µd = µ̃ by (28),

(44), and (47). Accordingly we can select pi > 1, i ∈ F
sufficiently large such that ⌊λ−1

p̄−1 + 1⌋ = 1 in (29) and (43),

and obtain

τD = T ∗ = λµ = λµd = T ∗
d = τd

D. (49)

Therefore

τD = τd
D = λµ̃ > µ̃ lnλ = τ̃D. (50)

The dwell times derived for switched time delay systems

are proportional to λ, as opposite to the logarithm of λ
for switched delay free systems. This gap is due to the

fact that asymptotic stability for linear delay free systems

implies exponential stability. However, for time delay sys-

tems, the sufficient stability conditions based on Lyapunov-

Razumikhin theorem do not guarantee exponential stability.

As a matter of fact, the exponential estimates for time delay

systems require additional assumptions besides asymptotic

stability [15].

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB07.5

2744



It is noticeable that stability conditions for switched time

delay systems are also considered in [22], [23], where the

authors give a sufficient condition to guarantee uniform

stability (see Theorem 6.1 of [22] for the notation and

details): ΓeL(Λ+h) ≤ 1. Apparently, this condition does not

hold for the switched system (2) because in our case Γ = 1,

and hence

ΓeL(Λ+h) = eL(Λ+h) > 1, ∀ Λ > 0, L > 0, h > 0.

The reader is referred to the journal version of this paper,

[27], for numerical examples where the calculated dwell

times for switched delay systems are also compared to that

of delay free systems.

V. CONCLUDING REMARKS

We provided stability analysis for switched linear systems

with time delays, where each candidate system is assumed to

be delay-independently or delay-dependently asymptotically

stable. We showed the existence of a dwell time of the

switching signal, such that the switched time delay system

is asymptotically stable independent of the trajectory. The

dwell time values for both scenarios are constructively given.

The results are compared with the dwell time conditions for

switched delay free systems. Optimization of the minimum

dwell times we have derived, in terms of the free parameters

appearing in the LMI conditions, is an interesting open

problem.
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