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Abstract— In this paper, we prove the genericity of the
differential observability for discrete-time systems with
more outputs than inputs.
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I. INTRODUCTION

In this paper, we study the genericity of the differen-
tial observability for discrete-time controlled nonlinear
systems such that:

xk+1 = f (xk,uk)
yk = h(xk,uk)

xk ∈ X , uk ∈U, yk ∈ Rp

(1)

where:
1) X and U are C∞ compact connected second-

countable manifold with dimensions n and m
respectively;

2) f : X×U→ X is a parametrized diffeomorphism:
that is to say, for every u∈U , the mapping f (·,u)
is a C∞ diffeomorphism; we denote by DiffU(X)
the set of all parametrized diffeomorphisms;

3) h : X×U → Rp is a C∞ mapping.
To be more specific, we shall introduce some no-

tations; given f ∈ DiffU(X) and h ∈ C∞(X ×U,Rp),
we denote by uN the finite sequence (u0, . . . ,uN−1) of
elements of U , and we define recursively f k(x,uk) by

f 1(x,u1) = f (x,u0)

f k+1(x,uk+1) = f ( f k(x,uk),uk) for k ≥ 1

Let us recall the notion of observability investigated
in this paper. begindefinition Two initial conditions
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x0 and x̄0 and an input u (i.e. a sequence (uk)k≥0 of
elements of U) being given, xk and x̄k denote the points
xk = f k(x0,uk) and x̄k = f k(x̄0,uk).

System (1) is said observable for input u if for
any initial conditions x0 6= x̄0, there exists an index k
(possibly depending on the initial conditions) such that
xk 6= x̄k.

System (1) is said observable if it is observable for
each input. enddefinition

Below, we are introducing a stronger notion of
observability. We consider the mapping Θ

f ,h
2n+1 from

X×U2n+1 to R(2n+1)p×U2n+1 defined by

Θ
f ,h
2n+1(x,u2n+1) =

(h(x,u0),h( f 1(x,u1),u1), . . . ,h( f 2n(x,u2n),u2n),u2n+1)

Notice that this mapping is the discrete-time analogous
of the mapping SΦΣ

k defined in [5].
Definition 1: We shall say that system (1) is strongly

observable if the related mapping Θ
f ,h
2n+1 defined above

is one-to-one.
In article [4], we proved that system (1) is generi-

cally strongly observable as long as p > dimU ; more
precisely, we proved that the set of pairs ( f ,h) which
make the mapping Θ

f ,h
2n+1 one-to-one is a residual.

In this article, we deal with a stronger notion of
observability:

Definition 2: We shall say that system (1) is strongly
differentially observable if, for every fixed sequence
u2n+1, the mapping Θ̄

f ,h
2n+1 from X to R(2n+1)p defined

by

Θ̄
f ,h
2n+1(x) = (h(x,u0),h( f 1(x,u1),u1), . . . ,

h( f 2n(x,u2n),u2n))

is an embedding.
In the continuation of [4], the goal of this paper

is to prove that system (1) is strongly differentially
observable as long as p > dimU .

On this subject, one has to mention first the important
work from J.-P. Gauthier and I. Kupka. In a first
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paper, with also H. Hammouri [6], the authors inves-
tigated the genericity of observability for uncontrolled
continuous-time systems. This work was generalized
by J.-P. Gauthier and I. Kupka in [7], [5] the authors
proved the genericity of differential observability for
systems with more outputs than inputs. To be more
precise, in their paper, the authors show that if a bound
on the derivatives of the control is given, the set of
systems Σ such that the mapping SΦN

Σ
(analogous, for

continuous systems, to mapping Θ
f ,h
2n+1)is an embed-

ding, is an open and dense set. When this condition is
not assumed, the authors prove that this set is residual
(and therefore dense) but the openness property remain
an open problem. In our case, we assume that the
controls belong to a compact manifold, so this difficulty
disappears. Also, we don’t have to consider the case
of nonsmooth controls. Nevertheless there are some
other difficulties, for example we have to pay a special
attention to periodic points of fu. As far as we are
concerned by discrete-time systems, we have to cite
several papers on the subject of the genericity of the
observability : first, a paper written by Aeyels [2] in
which the author considers uncontrolled continuous-
time systems and the discrete-time systems obtained
by discretizing the continuous ones. In this paper, the
author introduced the notion of P-observability. The
system {

ẋ = f (x)
y = h(x) (2)

is said P-observable if, given a time T > 0 and a
finite subset P of [0,T ], for every pair (x,y) of dis-
tinct elements in X2, there exists a ti ∈ P such that
h ◦Φti(x) 6= h ◦Φti(y) where Φ denotes the flow of f .
One of the results in this paper is the proof of the
existence of an open and dense set of vector fields
such that, a vector field f in this set being fixed, the
subset of functions h belonging to Cr(X ,R) such that
the system ( f ,h) is P-observable is open and dense in
Cr(X ,R). This is true for almost any finite subset P of
(2dimX +1) points in [0,T ].

To an uncontrolled discrete-time systems such that
xk+1 = f (xk)

yk = h(xk)
xk ∈M, compact manifold, yk ∈ R

(3)

is attached a map analogous to the map Θ
f ,h
2n+1 defined

above: consider

Φ : M −→ R2n+1

x 7−→ (h(x),h◦ f (x), . . . ,h◦ f 2n(x))

where n is the dimension of manifold M. In [11], the
proof that, generically, Φ is an embedding is sketched
while in [9] and [12], the same result is proved in
greater detail (see also the concluding remarks of [2]).

In the case of controlled discrete-time systems, in
article [10], the authors investigate controlled discrete-
time systems and obtain some results which are similar
(but not identical) to the one presented here; namely
they present a result of genericity of the observability
but it is not a result about observability for every input.
As in the present paper, the tools used in the work of
these authors belong to the transversality theory.

Before going straight to the point, we want to add
some words about the fact that the observation function
h depends on u. This situation is not common in
automatic control theory, but the opposite assumption
leads to clumsy statements. Nevertheless, as explained
in the conclusion of [4], the result of genericity can be
proved also for systems where h does not depend on u.
The paper is organized as follows: in the next section,
some facts from transversality theory are recalled, in
§ III, the main result is stated together with some
definitions and lemmas; in § IV, our result is proved
through the demonstrations of five lemmas.

II. SOME FACTS FROM TRANSVERSALITY THEORY

In this section we recall some theorems from differ-
ential topology which will be intensively used in the
proof of the main result of this paper. For details on
the C∞ Whitney topology, the reader is referred to the
book “Stable Mappings and their Singularities” [8].

If X and Y are two smooth manifolds, Jk(X ,Y ) will
denote, as usual, the set of k-jets from X to Y , α :
Jk(X ,Y )→ X is the source map and β : Jk(X ,Y )→ Y
the target map; moreover we denote by Cr(X ,Y ) (1≤
r ≤ +∞) the set of Cr maps from X to Y . If f is in
C∞(X ,Y ) jk f denotes the k-jet of f . Recall that the
set C∞(X ,Y ) endowed with the Whitney topology is a
Baire space and so every residual set of C∞(X ,Y ) (ie
every countable intersection of open dense subsets) is
dense.

The notion of transversality is of paramount impor-
tance for our purpose and we recall below its definition.

begindefinition Let f be a smooth mapping between
two smooth manifolds X and Y , W a submanifold of
Y and x a point in X . We shall say that f intersects W
transversely at x if either

1) f (x) 6∈W , or
2) f (x) ∈W and Tf (x)Y = Tf (x)W +d fx(TxX),
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TxX denoting the tangent space to X at x and d fx the
Jacobian of f at x. We shall say that f intersects W
transversely if it intersects W transversely at x for all
x in W . We shall use of the symbol t to denote the
transversality. enddefinition

The following theorem states a result of genericity
[8].

Theorem 3 (Thom Transversality Theorem): Let X
and Y be smooth manifold and W a submanifold of
Jk(X ,Y ) and let

TW = { f ∈ C∞(X ,Y ) | jk f t W}

Then TW is a residual subset of C∞(X ,Y ) in the C∞

topology. Moreover, if W is closed, then TW is open.
The following result generalizes the above theorem

to multijet spaces. We first define the set X (s) =
{(x1, . . . ,xs) ∈ X s | xi 6= x j for 1≤ i < j ≤ s} and the
mapping

αs :
(
Jk(X ,Y )

)s −→ X s

(σ1, . . . ,σs) 7−→
(
α(σ1), . . . ,α(σs)

)
and we let Jk

s (X ,Y ) = (αs)−1(X (s)), Jk
s (X ,Y ) is a sub-

manifold of
(

Jk(X ,Y )
)s

.
For f ∈C∞(X ,Y ), we can define

jk
s f : X (s) −→ Jk

s (X ,Y )
(x1, . . . ,xs) 7−→

(
jk f (x1), . . . , jk f (xs)

)
Theorem 4 (Multijet Transversality Theorem): Let

W be a submanifold of Jk
s (X ,Y ) and let

TW = { f ∈C∞(X ,Y ) | jk
s f t W}.

Then TW is a residual subset of C∞(X ,Y ) in the C∞

topology. Moreover, if W is compact, then TW is open.
We shall use also a transversality theorem due to

Abraham [1]. Let A ,X and Y be Cr manifolds and ρ

a map from A to Cr(X ,Y ).
For a ∈A , we write ρa, the Cr map:

ρa : X −→ Y
x 7−→ ρa(x) = ρ(a)(x)

and we say that ρ is a Cr representation if the evaluation
map:

evρ : A ×X −→ Y
(a,x) 7−→ ρa(x) = ρ(a)(x)

is a Cr map from A ×X to Y .
Theorem 5 (Abraham Transversal Density Theorem):

Let A ,X ,Y be Cr manifolds, ρ : A → Cr(X ,Y ) a Cr

representation, W ⊂ Y a submanifold (not necessarily

closed), and evρ : A × X → Y the evaluation map.
Define AW ⊂A by:

AW = {a ∈A | ρa t W}

Assume that:
1) X has a finite dimension n and W has a finite

codimension q in Y ;
2) A and X are second countable;
3) r > max(0,n−q);
4) evρ t W .

Then AW is residual in A .
Notice that manifold A is not necessarily finite

dimensional; it may be a Banach space or an open
subset of a Banach space.

Finally, we shall need the following theorem that can
also be found in [1].

Theorem 6 (Openness of transversal intersection):
Let A , X and Y be Cr manifolds with X finite
dimensional, W ⊂ Y a closed Cr submanifold, K a
compact subset of X , and ρ : A → Cr(X ,Y ) a Cr

representation. Then the subset AKW ⊂A defined by

AKW = {a ∈A | ρa tx W for x ∈ K }

is open.

III. MAIN RESULT

We state here our main result and some lemmas used
in the proof of our theorem. Our framework is the set
DiffU(X)×C∞(X ×U,Rp) equipped with the Whitney
topology; obviously DiffU(X) is open in C∞(X×U,X)
for this topology. In the theorem below, we assume that
dimU < p.

Theorem 7: The set of mappings ( f ,h)∈DiffU(X)×
C∞(X ×U,Rp) such that the mapping Θ̄

f ,h
2n+1 is an

embedding, is open and dense in DiffU(X)×C∞(X ×
U,Rp) equipped with the Whitney topology.

We begin by proving the easiest part of this result:
the openness of the set of mappings ( f ,h) such that
Θ

f ,h
2n+1 is an embedding.

Proof: Consider the mapping Φ from X ×U2n+1

to C∞(X×U2n+1,(Rp)2n+1×U2n+1) defined by

Φ( f ,u2n+1) = (Θ f ,h
2n+1,u2n+1)

which is obviously continuous for the Whitney topol-
ogy. Clearly Φ( f ,u2n+1) is an embedding iff the map-
ping Θ

f ,h
2n+1(·,u2n+1) is an embedding for every finite

sequence u2n+1 ∈U2n+1. Now, since X and U are com-
pact manifolds, the set of embeddings from X×U2n+1

to (Rp)2n+1×U2n+1 is open for the Whitney topology,
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so, due to the continuity of Φ, the set set of mappings
Θ

f ,h
2n+1(·,u2n+1) which are embeddings for every u2n+1

is open.
We shall prove now the density part of the theorem.

Notice that in the continuous-time case, the set of pairs
( f ,h) (with f a parametrized vector field) is a Banach
space for the Cr topology (r < +∞) but this is not the
case for the set of pairs ( f ,h) where f is a parametrized
diffeomorphism. So, it is not possible to copy directly
the reasoning of [7]. The proof of this theorem will
be somewhat awkward and will be based on several
technical lemmas. Before stating these lemmas, we
describe below our global strategy.

Suppose that P1( f ,h) and P2( f ,h) are two prop-
erties depending on ( f ,h) ∈DiffU(X)×C∞(X×U,Rp)
whose conjunction is equivalent to the fact that Θ̄

f ,h
2n+1

is an immersion. In Prop. 11, we shall prove that, for a
given f ∈DiffU(X), a given integer r≥ 1, and for every
integer l, there exists a subset U r

l ( f ) of C∞(X×U,Rp),
open and dense for the Cr topology, such that if h
belongs to the intersection

⋂
l≥0U r

l ( f ), the pair ( f ,h)
satisfies property P1. Moreover, we shall prove that,
for every integer l, the set

U r
l =

⋃
f∈DU

{ f}×U r
l ( f )

(DU open dense set of DiffU) is open dense in
DiffU(X)×C∞(X×U,Rp) equipped with the Cr topol-
ogy. In Prop. 12, we shall prove that the set

E = {( f ,h)∈DiffU(X)×C∞(X×U,Rp) |P2( f ,h) is true}

contains a residual set of DiffU(X)×C∞(X ×U,Rp).
Hence, clearly, the set E∩ (

⋂
k≥0
r≥1

U r
k ) contains a resid-

ual set for the C∞ topology and a pair ( f ,h) belonging
to this set satisfies both properties P1 and P2.

We shall give the definition of periodic points before
stating our propositions.

Definition 8: Let f ∈DiffU(X), we shall say that the
point (x,u2n+1) ∈ X ×U2n+1 is periodic for f if there
exist two different integers s′ < s in {0, . . . ,2n} such
that f s′(x,us′) = f s(x,us). If (x,u2n+1) is a periodic
point, its period is the smallest integer s such that the
above equality is satisfied.

Notations We denote by P f the set of all periodic
points of f ; obviously, P f is a closed subset of X ×
U2n+1. We denote also by Pc

f the set complement of
P f : Pc

f = X×U2n+1 rP f .
First, we want to state a lemma about a property of

continuity of the sets of periodic points; before that, we

recall the definition of the Hausdorff distance between
sets.

Definition 9: Let (E,d) be a metric space, if A and
B are subsets of E, the Hausdorf’s distance between A
and B is defined by

δ (A,B) = sup
x∈A

d(x,B)+ sup
y∈B

d(y,A)

We suppose that X and U are equipped with distances
which are compatible with their topologies, so we can
speak of Hausdorf’s distance on X×U2n+1 and we state
the following lemma.

Lemma 10: There exists an open and dense set in
DiffU(X), denoted by DU, such that for each f ∈DU:

1) if P f = ∅, then Pg = ∅ for every g in some
neighborhood of f ;

2) if P f 6= ∅, then δ (P f ,Pg) tends to 0 as g tends
to f for the C∞ topology.

Property P1( f ,h) is related to the periodic points of
f and is the object of the following proposition.

Proposition 11: Let f ∈DU be given, for each r > 0,
there exists a sequence (U r

l ( f ))l≥1 of open and dense
sets for the Cr topology included in C∞(X×U,Rp) such
that for every mapping h in ∩l≥1U r

l ( f ), the mapping
Θ̄

f ,h
2n+1 is an immersion at each point of Pc

f .
Moreover, for every nonzero integer l, the set

U r
l =

⋃
f∈DU

{ f}×U r
l ( f )

is open and dense in DiffU(X)×C∞(X×U,Rp) for the
Cr topology.

The second proposition is concerned with property
P2( f ,h), before stating it, we introduce some sets of
covectors. We denote by π the canonical projection
from T ∗X , the cotangent bundle of X , to X and, given
a integer k > n, we define the set (T ∗X)⊗k by

(T ∗X)⊗k =

{(p1, . . . , pk) ∈ (T ∗X)k | π(p1) = · · ·= π(pk)}

and the set V (k,T ∗X) by

V (k,T ∗X) =

{(p1, . . . , pk) ∈ (T ∗X)⊗k | rank(p1, . . . , pk) < n}.

Clearly, (T ∗X)⊗k is a submanifold of (T ∗X)k and
V (k,T ∗X) is a finite union of submanifolds of (T ∗X)⊗k

whose codimension (the codimension of the highest
dimensional submanifold of the union) is equal to
k−n+1 (see [6]).

We state now our second proposition.
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Proposition 12: The set of pairs ( f ,h)∈DiffU(X)×
C∞(X ×U,Rp) such that the mapping Θ̄

f ,h
2n+1 is an

immersion at each point of P f is residual.
Notation If p is a point of a manifold M, hereafter

we shall denote by TpM the tangent space to M at p.

IV. PROOF OF THE MAIN RESULT

In this section, we give a sketch of the proof of our
main result.

A. Proof of Lemma 10

For the proof of this result, we need the following
lemma which can be proven by using the multijet
transversality theorem.

Lemma 13: There exists a residual subset, denoted
by R, of DiffU(X) such that if f is in this subset, P f
is either the empty set or a finite union of submanifolds
of X×U2n+1 of codimension greatest or equal to n.
For the existence of DU, we shall prove that in fact the
set R of the above lemma is open. If f ∈R is such
that P f is empty, one can prove easily that there exists
a neighborhood of f such that for every parametrized
diffeomorphism g in this neighborhood, Pg is also
empty. If P f 6= ∅, by reasoning by contradiction, we
prove that the existence of the open and dense set DU
such that if f is in DU, P f is either empty or a finite
union of submanifolds of codimension at least n If
we take f in DU, we prove easily that there exists a
neighborhood V of f such that if g ∈ V and v ∈Pg,
the distance d(v,P f ) can be made arbitrarily small,
provided that V is chosen small enough. The converse,
i.e. given w ∈P f , the distance d(w,Pg) can be made
arbitrarily small is harder to prove. If (x0,u0

2n+1) is a

periodic point of f such that f s(x0,u0
s ) = f s′(x0,u0

s′), we
prove first that there exist mappings ui, locally defined,
and such that the mapping f s′,s defined as

f s′,s(x) = f ( f . . .( f (x,us′(x)),us′+1(x)), . . . ,us−1(x))

has a fixed point at f s(x0,u0
s ) and is transverse to the

diagonal ∆X = {(x,x) | x ∈ X }. Again, we carry out
this task by using transversality arguments.

Now if g is closed to f , gs′,s (this mapping is
built on the same ui’s than f s′,s) is closed to f s′,s.
So we have the following situation: the n-dimensional
submanifold Vf constituted by the points (x, f s′,s(x))
intersects transversally the diagonal∆X , if g is closed to
f , Vg = {(x,gs′,s(x))} is closed to Vf and as dimVg = n,
Vg intersects also ∆X and as point belonging to the
intersection Vg ∩∆X is a periodic point for g, we are
done.

B. Proof of proposition 11

A parametrized diffeomorphism f ∈DU being given,
we first prove, thanks to the Abraham transversal
density theorem, that there exists a residual set R( f )⊂
C∞(X×U,Rp) such that if h is in R( f ), the mapping
Θ̄

f ,h
2n+1 is an immersion at each point of Pc

f . Then, for
every integer l and f ∈DU, we define the compact set
Kl( f ) as

Kl( f ) =


X×U2n+1

if P f is empty
{v ∈ X×U2n+1 | d(v,P f )≥ 1/l }

if P f 6= ∅

and U r
l ( f ) denotes the set of mappings h ∈ C∞(X ×

U,Rp) such that Θ̄
f ,h
2n+1 is an immersion at each point

of Pc
f . By using the theorem of the openness of

transversal intersection, it is easily seen that U r
l ( f ) is

open and since R( f )⊂U r
l ( f ), U r

l ( f ) is dense.
It remains to prove that U r

l =
⋃

f∈DU
{ f}×U r

l ( f ) is
open. First, reasoning by contradiction, we prove that,
given ε > 0, and f0 ∈DU, there exists a neighborhhod
V f0 of f0 such that if f ∈ V f0 , for all v ∈ Kl( f ), we
have d(w,Kl( f0)) < ε . Now let f0,h0) ∈ U r

l , take a
neighborhood V f0 of f0 such that if f ∈V f0 , the distance
d(v,Kl( f0)) is less than ε . If ε is chosen small enough,
there exists a neighborhood Wh0 of h0 such that if ( f ,h)
belongs to V f0 ×Wh0 , Θ̄

f ,h
2n+1 is an immersion at each

point of Kl( f ).

C. Proof of proposition 12

The proof of Proposition 12 is based on the fol-
lowing three lemmas. The proofs of these lemmas,
which rely on the transversality results stated in the
introduction, are omitted. Let x0 be a periodic point
of order s ≤ 2n, that is to say there exists s′ < s such
that f s′(x0,us′) = f s(x0,us) and f i(x0,ui) 6= f j(x0,u j) if
i, j < s; we denote by xi the iterated of x0 by f , to be
more precise, xi = f i(x0,ui), we put also zi,= f (xi,ui)
and yi = h(xi,ui). We consider the list L

(x0,u0,z0,y0), . . . ,(x2n,u2n,z2n,y2n)

and we say that two elements (xi,ui,zi,yi) and
(x j,u j,z j,y j) are equivalent if and only if (xi,ui) =
(x j,u j). In each equivalence class, we retain the term of
least index and we obtain the following list L′ extracted
from L:

(xi0 ,ui0 ,zi0 ,yi0), . . . ,(xir ,uir ,zir ,yir)
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with i0 < i1 < · · · < ir (necessarily i0 = 0), we claim
that

Lemma 14: In the list L′ above, we can find r + 1
equalities between the terms xi and zi.

The two next lemmas are concerned with the deriva-
tives of the components of Θ

f ,h
2n+1.

Lemma 15: Let r be a given nonnegative integer
and (i0, . . . , in−1) be a given sequence of indices
in {0, . . . ,r}. Given r + 1 matrices (A0, . . . ,Ar) in
GL(n,R), we consider the related sequence of matrices
(Ã0, . . . , Ãn−1) where

1) Ã0 = A0;
2) for j ≥ 1, Ã j = Ai j Ã j−1.

Let 1 ≤ k ≤ n − 1 and consider the subset Wk of
GL(n,R)r+1 × Pn−1 (Pn−1 is the projective space
of dimension n − 1) constituted by the elements
(A0, . . . ,Ar, l) such that, (Ã0, . . . , Ãn−1) being the se-
quence related to (A0, . . . ,Ar),

1) the family (l, Ã0l, . . . , Ãk−2l) is linearly indepen-
dent (this family reduces to (l) if k = 1);

2) the family (l, Ã0l, . . . , Ãk−1l) is linearly depen-
dent.

The set Wk is a submanifold of GL(n,R)r+1×Pn−1
f

with codimension equal to n− k.
For each r from 0 to 2n, we consider a countable

family F of charts covering (X×U)r+1 and we apply
the Thom transversality theorem to each chart of F .
If ( f ,h) ∈ DiffU(X)×C∞(X ,Rp), and (x0,u2n+1) is a
periodic point of f with period no greater than 2n,
starting from x0, we consider the list L′ as in Lemma 14,
the element (x0,u0, . . . ,xir ,uir) constituting L′ belongs
to one of the charts of the family F and, together
with the zi’s satisfy r + 1 equalities as explained in
Lemma 14. Moreover, the above reasoning shows that,
the set of pairs ( f ,h) such that Θ

f ,h
2n+1 is an immersion

at each periodic point of f lying in one of the charts
of family F is residual, by considering the (countable)
intersection of all the residual sets related to the charts
of F , Proposition 12 is proven.

V. CONCLUSION

As explained in section 3, the conjunction of Prop. 11
and Prop. 12 proves that the set of pairs ( f ,h) ∈
DiffU(X)×C∞(X×U,Rp) such that the mapping Θ

f ,h
2n+1

is an immersion is residual. In [4], we proved that the
set of pairs ( f ,h) such that Θ

f ,h
2n+1 is one to one is also

residual, so, X and U being compact, we can conclude
that the set of pairs ( f ,h) ∈DiffU(X)×C∞(X×U,Rp)
such that Θ

f ,h
2n+1 is an embedding is residual.

Ths work has been previously published in [3].
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