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Abstract— We consider a multi-stock market model. The
stock price process satisfies a stochastic differential equation
where both the drift and the volatility are driven by a discrete-
time Markov chain of finite states. Not only the underlying
Brownian motion but also the Markov chain in the stochastic
differential equation are assumed to be unobservable. Investors
can observe the stock price process only. The main result of
this paper is that we derive the approximation of the optimal
trading strategy and the corresponding optimal expected utility
function from terminal wealth.

I. INTRODUCTION

We consider an incomplete market model in which stocks

are driven by an m-dimensional Geometric Brownian motion

the same as in the Black-Scholes model. However, the drift

and the diffusion coefficients of this process depend on a

discrete time Markov chain. Such a model is called a scheme-

switching model since when the Markov changes from one

state to another, the market is considered to change from one

scheme to another. Investors observe the stock price only.

They only have ‘partial information’ since we assume the

state of the Markov chain is not observable. The objective is

to optimize trading strategy by maximizing a utility function

from terminal wealth.

There are quite a few papers devoted to studies of the

problem of maximizing the expected utility function from

terminal wealth under partial information. Pham and Quenez

[15] considered a stochastic volatility model. They solved the

portfolio optimization problem under partial information by

stochastic filtering techniques and adapting martingale dual-

ity methods. For more literature on partial information and

stochastic volatility problems, we refer to Lakner [12],[13],

Frey [8], Runggaldier [16] and Frey and Runggaldier [9].

Sass and Haussman [18] considered a multi-stock market

model in continuous time. The drift is a continuous time,

finite state Markov chain, and the volatility matrix is constant

and nonsingular. They used Malliavin calculus and Hidden

Markov Chain theory to derive an explicit expression for

the optimal portfolio selection. However, their method can

not be extended to the case in which the volatility is driven

by a Markov chain, because the EM algorithm they used

to estimate the drift does not work for the volatility due to

the fact that the measures involved in their method are not

equivalent if the volatility is driven by a Markov chain.
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In this paper, we consider a discrete time multi-stock

market model where both the drift and the volatility are

driven by a Markov chain. In our paper, we use the method

of estimating volatility studied by Elliott[4], Elliott, et al.

[5], developed for the discrete time setting. The algorithm

enables us to estimate the states of the Markov chain and

its transition matrix. We solve the problem of optimizing the

expected utility from terminal wealth, and using dynamic

programming we construct the optimal strategy in terms of

the filter of the price process. The proofs of the results given

and further analysis can be found in Taksar and Zeng[20].

II. MODELS AND PRELIMINARY RESULTS

A. Regime Switching Model: Continuous-Time

Consider an m-dimensional stock price process whose dy-

namics is given by a geometric Brownian motion equations:

dS(t) = diag(St)(µ(Y (t))dt + σ̂(Y (t))dW (t)), 0 ≤ t ≤ T.
(1)

Here St = (S
(1)
t , S

(2)
t , ..., S

(m)
t )′, the column vector Wt

is a m-dimensional standard Brownian motion. Y (t) is a

finite state, homogeneous Markov chain with a generator

Q = (qij)d×d, independent of W (t). The distribution of

Y (0) is known. Y (t) has a state space M = {e1, ..., ed},

where ei, i = 1, 2, ..., d is the unit vector in Rd.

Y (t) ∈ M := {e1, ..., ed}.
There are different values for the drift and different matri-

ces for the volatility corresponding to states of the Markov

chain Y (t). Thus µ(·)(resp. σ(·)) is a mapping of M (resp.

N := {B := (bi,j)1≤i,j≤m is invertible |bi,j ∈ R+}. )into

Rm (resp. into Rm×m).

Assume the short interest rate r is constant for simplicity.

Then (1) may be written as follows.

d log(e−rtS(t)) =
(µ(Y (t)) − r1m − diag(σ̂n−1σ̂

′
n−1))dt + σ̂(Y (t))dW (t),

(2)

where 0 ≤ t ≤ T, 1m = (1, 1, ..., 1)′ ∈ Rm×1,where we use

the following convention:

log((x1, x2, ..., xn)′) = (log(x1), ..., log(xn))′.

B. Regime Switching Model: Discrete-Time

In this paper, we will consider a discrete approximation

to the continuous time model (2).

Let ∆t = T
N , Yn = Y (n∆t),

µn = µ(Y (n∆t)), σ̂n = σ̂(Y (n∆t)), Sn = S(n∆t),
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where n=0,1,...,N. Then the equation (2.2) becomes

yn := log(Sne−r∆t) − log(Sn−1)
= (µn−1 − r1m − diag(σ̂n−1σ̂

′
n−1)/2)∆t

+σ̂n−1(Wn − Wn−1),
(3)

for n=1,2,3,...,N.

Let






gn : = (µn − r1m − diag(σ̂nσ̂′
n)/2)∆t

= (µ(Yn) − r − diag(σ̂(Yn)σ̂(Yn)′)/2)∆t,

σn : = σ̂n

√
∆t = σ̂(Yn)

√
∆t

(4)

Then

yn = gn−1 + σn−1Zn, n = 1, 2, ..., N, (5)

where Zn = (Wn − Wn−1)/
√

∆t, n = 1, 2, ..., N is a

sequence of standard normal i.i.d. random variables.

Note that gn and σn are functions of Yn and can be written

as G(Yn) and H(Yn) respectively which obviously satisfy

G(ei)
∆t = µ(ei) − r1m − diag(σ̂(ei)σ̂(ei)

′)/2,
H(ei)√

∆t
= σ̂(ei)

(6)

In this paper, we assume only the price of stock Sn or yn

can be observed. Denote the filtration generated by Sn by

{Fn}. We will study an optimization of the utility function

from terminal wealth in the discrete time model (5).

C. Preliminary Results

We present some preliminary results which will be used

in the proofs in the subsequent. By the definition of yn (3),

we know that for each i=1,2,...,m,

S(i)
n = S

(i)
n−1e

y(i)
n er∆t.

For k = 1, 2, ..., d, denote

bk := G(ek) ∈ Rm×1, fk := H(ek) ∈ Rm×m.

Let bk(i) stands for the ith component of bk, let fk(i)
stands for the ith row of fk. Then we have

Pr(y
(i)
n ≤ t|Fn−1)

=
∑d

k=1 Pr(Yn−1 = ek|Fn−1)
∫ t−bk(i)

−∞ φik(x)dx,
(7)

where φik(x) = 1√
2π(fk(i)·fk(i)′)

e
− x2

2fk(i)·fk(i)′ , i=1,2,...,m.

Proof: of (7) Pr(y
(i)
n ≤ t|Fn−1) = Pr(g

(i)
n−1 +

σ
(i)
n−1Zn ≤ t|Fn−1)

=
∑d

k=1 Pr(bk(i) + fk(i)Zn ≤ t, Yn−1 = ek|Fn−1)

=
∑d

k=1 Pr(bk(i) + fk(i)Zn ≤ t)Pr(Yn−1 = ek|Fn−1)

=
∑d

k=1 Pr(Yn−1 = ek|Fn−1)
∫ t−bk(i)

−∞ φik(x)dx.

Similarly, for the multi-dimensional case, x ∈ Rm×1, we

have

Pr(yn ≤ x|Fn−1)

=
∑d

k=1 Pr(Yn−1 = ek|Fn−1)

·
∫ x1−bk(1)

−∞ ...
∫ xm−bk(m)

−∞ φk(z)dz,

(8)

where φk(x) = (2π|fkf ′
k|)

−1
2 e−x′(fkf ′

k)−1x/2, x ∈ Rm×1

And we have a recursive filter :

Pr(Yn = ek|Fn)

=

∑

d

i=1
Pr(Yn−1=ei|Fn−1)φi(yn−bi)pki

∑

d

i=1
Pr(Yn−1=ei|Fn−1)φi(yn−bi)

,
(9)

where pki is the (k,i) entry of the transition matrix P.

In the sequel, we will use the notation: En[ζ] := E[ζ|Fn].
Let α < 1. For i = 1, 2, ...m, we have

(i) |En−1[e
y(i)

n − 1]| = O(∆t),

(ii) |En−1[(e
y(i)

n − 1)2]| = O(∆t),

(iii) |En−1[(e
y(i)

n − 1)3]| = O(∆t)2,

(iv) |En−1[(1 − e−y(i)
n )3]| = O(∆t)2,

(v)|En−1[e
αy(i)

n (1 − e−y(i)
n )3]| = O(∆t)2.

III. DEFINITION AND OPTIMIZATION PROBLEM

A. Wealth Process and Admissible Strategies

In this section we describe a discrete time optimization

model which approximates the original continuous time

model (2).

Definition hn−1 ∈ Fn−1, n = 1, ..., N are column vectors

∈ Rm×1. A wealth process {Xhn−1
n }n=1,2,...,N , X0 = x0 is

defined as

Xhn−1
n = X

hn−2

n−1 er∆t(1−
m

∑

i=1

h
(i)
n−1)+X

hn−2

n−1

m
∑

i=1

h
(i)
n−1

S
(i)
n

S
(i)
n−1

,

where h
(i)
n−1 or S

(i)
n−1 denotes the ith component of the

vector hn−1 or Sn−1. Using the notations defined in Section

II, the wealth process has a simpler expression:

Xhn−1
n = X

hn−2

n−1 er∆t(1 + hn−1 · (eyn − 1)),

where ”·” stands for the vectors or matrices multiplication.

Generally, we have

Xhn−1
n = X0e

rn∆t(1+h0 ·(ey1 −1))...(1+hn−1 ·(eyn −1)),

where n=1,...,N.

Definition A vector sequence h = {hi}N−1
i=0 is an admissi-

ble strategy if Pr(X
hn−1
n > 0, for all n=1,2...,N)=1.

We use H to denote the set of all admissible strategies.

One can check that if h is admissible, then

‖hn−1‖1 ≤ 1, 1 ≥ h
(i)
n−1 ≥ 0, (10)

for each i ∈ {1, 2, ...m}.

The inequalities above imply no stock shorting as

well as no money borrowing in our model. Rogers also
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mentioned such a restriction on the portfolio in his h-

investor model([17]).

B. HARA Utility Functions

Definition A function u : (xu,∞) → R, xu ∈ R ∪ {−∞},

is called a utility function, if u is strictly increasing, strictly

concave, twice continuously differentiable on (xu,∞), sat-

isfies limx→∞u′(x) = 0 and limx→x+
u
u′(x) = ∞.

Next we define the coefficient of absolute risk aversion ,

Ra(x) = −u′′(x)

u′(x)
.

Definition If R−1
a (x) is a linear function, i.e. R−1

a (x) =
a + bx, then we say that u(x) is of the hyperbolic absolute

risk aversion (HARA) class.

The most popular HARA utility functions are Constant

Relative Risk Aversion (CRRA): u(x) = xβ/β, where β <
1.

Constant Absolute Risk Aversion (CARA):

u(x) = −e−βx/β, where β > 0.

C. Optimization Problem

Let u(x) be a utility function, and {Xh
n} be the wealth

process. The objective is to calculate

V ∗ = sup
h∈H

{E[u(Xh
N )]} (11)

and to find an admissible trading strategy h∗ s.t.

E[u(Xh∗

N )] = V ∗.

IV. DYNAMIC PROGRAMMING

Define

Un(x) = sup
h∈H

E[u(Xh
N )|Fn], n = 0, 1, ..., N. (12)

From this definition U0 = V ∗ as defined in the opti-

mization problem of Section III. The dynamic programming

equation for the sequence u0, u1, ..., uN is






Un(x)
= suphn

E[Un+1(xer∆t + xer∆thn · (eyn+1 − 1))|Fn],
UN (x) = u(x).

(13)

In what follows we derive a numerical scheme for the

solution of these dynamic programming equations and ap-

proximations for the optimal strategies for the original opti-

mization problem.

For each ηn ∈ Fn, n = 0, 1, ...N − 1,define

An−1,ηn
= En−1[ηn(eyn − 1) · (eyn − 1)′].

Proposition 4.1: Let u(x) = xα/α, 0 6= α < 1. Let

λN := 1, ηn := En[
∏N

k=n λk],
λn−1 := (1 + 1

1−α (eyn − 1)′A−1
n−1,ηn

En−1[(e
yn − 1)ηn])α,

n=1,..,N. Then

(i) ηn ∈ Fn is bounded,

(ii)An−1,ηn
is invertible and there exists a constant C, such

that ∆t‖A−1
n−1,ηn

‖ < C for all n=1,2,...N.

(iii)‖En−1[ηn(eyn − 1)]‖ = o(
√

∆t).

The proof of this proposition follows from Taksar and

Zeng[20] Theorem D.1 (iii), (ii) and Theorem D.2 in

Appendix D.

For each ηn ∈ Fn, n = 0, 1, ...N − 1, define

Wn(xn, hn) := E[ηn+1u(xhn
n )|Fn]

= E[ηn+1u(xner∆t + xner∆thn · (eyn+1 − 1))|Fn],
Vn(xn, hn)
:= E[ηn+1(u(xner∆t) + u′(xner∆t)xner∆thn · (eyn+1 − 1)
+ 1

2u′′(xner∆t)(xner∆thn · (eyn+1 − 1))2)|Fn],
(14)

Assume for any xn−1 ≥ 0, there exists h∗
n−1, h

∗∗
n−1 ∈

[0, 1]m ⊂ Rm, s.t.

Wn−1(xn−1, h
∗
n−1) = sup

hn−1

Wn−1(xn−1, hn−1), (15)

and

Vn−1(xn−1, h
∗∗
n−1) = sup

hn−1

Vn−1(xn−1, hn−1). (16)

As is seen from (14), Vn is obtained from Wn by taking

a Taylor expansion up to the second term. Thus the function

Vn approximates Wn when ∆t is small(and as a result yn is

close to 0).

Lemma 4.2: Let u(x) = xα/α, 0 6= α < 1. Let ηn be

defined as in Prop. 4.1. Then

|Wn−1(xn−1, h
∗∗
n−1) − Wn−1(xn−1, h

∗
n−1)| = xαo(∆t),

(17)

where

h∗∗
n−1 =

1

1 − α
A−1

n−1,ηn
· En−1[ηn(eyn − 1)]. (18)

Using the same route we can prove that Lemma 4.2 holds

for any ηn satisfying the three conditions in Proposition 1.

The motivation to define Wn and Vn can be seen as follows.

Let n = N − 1. Then in (13) we have

UN−1(x)
= suphN−1

E[u(xer∆t + xer∆thN−1 · (eyN − 1))|FN−1].

Clearly, UN−1(xN−1) coincides with

WN−1(xN−1, h
∗
N−1) defined in (15) with ηN = 1.

Below, we write En−1(xn−1) := Wn−1(xn−1, h
∗
n−1) −

Wn−1(xn−1, h
∗∗
n−1) for convenience.

In other words,

UN−1(xN−1) = WN−1(xN−1, h
∗
N−1)

= WN−1(xN−1, h
∗∗
N−1) + EN−1

≈ WN−1(xN−1, h
∗∗
N−1)

= EN−1[u(xN−1e
r∆t(1 + h∗∗

N−1 · (eyN − 1)))]

(19)

since EN−1 is small by Lemma 4.2.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA09.1

259



As a result, one can find an approximation for the optimal

strategy in a recursive way. Moreover the expected utility of

the terminal wealth associated with h∗∗ = {h∗∗
k }N−1

k=0 is an

approximation for the value function V ∗ in the optimization

problem. The next two theorems show that in a limit as ∆t
tends to zero the value of V ∗∗ converges to that of V ∗. Thus

h∗∗
n can serve as an approximation for the optimal strategy.

Hence Lemma 4.2 shows that the difference between

the wealth associated with optimal portfolio h∗ and the

portfolio h∗∗ is small when ∆t is small.

Theorem 4.3: Let u(x) = xα

α , 0 6= α < 1. Define

λN := 1, ηN = 1,
h∗∗

n−1 = 1
1−αA−1

n−1,ηn
· En−1[(e

yn − 1)ηn],

λn−1 := er∆tα(1 + 1
1−αh∗∗

n−1 · (eyn − 1))α,

ηn := En[
∏N

i=n λi], 1 ≤ n ≤ N.

(20)

Then

|U∗∗
n (xn) − Un(xn)| = u(xn)o(1),

where

U∗∗
n (xn) := En[u(x∗∗

n,N )], and

x∗∗
n,k := xne(k−n)r∆t · ∏k−1

i=n (1 + h∗∗
i · (eyi+1 − 1)).

The case of a logarithmic utility function can be treated as

the same way as the power utility function. The same results

hold, although with a higher rate of convergence.

Lemma 4.4: Let u(x) = log(x), choose ηn = 1, n =
1, 2, ..., N. Then we have

|Wn−1(xn−1, h
∗∗
n−1) − Wn−1(xn−1, h

∗
n−1)| = O(∆t)2,

where

h∗∗
n−1 = A−1

n−1,1 · En−1[e
yn − 1].

The proof is the same as that of Lemma 4.2. Moreover when

we repeat the proof, we see that the resulting convergence

rate is O(∆t)2, which is higher that O(∆t) obtained in the

case of the power utility function.

Theorem 4.5: Let u(x) = log(x), choose ηn = 1, n =
1, 2, ..., N.. Then

|Un(xn) − U∗∗
n (xn)| = O(∆t),

where

U∗∗
n (xn) := En[u(x∗∗

n,N )],

x∗∗
n,k := xne(k−n)r∆t · ∏k−1

i=n (1 + h∗∗
i · (eyi+1 − 1)),

and h∗∗
i is defined in Lemma 4.4.

Remark There are particular cases depending on the struc-

ture of the transition matrix P, when we have the convergence

rate O(∆t) as above even for the power utility function. One

of those cases is when the transition matrix has identical

columns. We also have another case in [20] Appendix D,

Theorem D.3 (ii) when the convergence rate is of a higher

rate of O(∆t).

Remark Let u(x) = 1
γ e−xγ . Define

ηN := 1,

ηn−1 := e−γh∗∗

n−1(e
yn−1),

h∗∗
n−1 := A−1

n−1,ηn
· En−1[(e

yn − 1)ηn]( 1
γxn−1

e−r(N−n)∆t),

U∗∗
n−1

:= u(xn−1e
r(N−n+1)∆t

∏N−1
k=n−1(1 + h∗∗

i · (eyi+1 − 1))),

where n=N,...,1. Then

|U0(x0) − U∗∗
0 (x0)| = o(1).

Remark From the definition (20) of ηn, we can see that

ηn is the expected utility under strategy h∗∗, given Fn, and

given xn = 1. That is

ηn = E[u(Xh∗∗

N )|Fn, xn = 1].

V. SIMULATIONS

Generally, as a result it is not easy to compute the

approximate optimal strategy {h∗∗
n }N−1

n=0 in (18) in the case

of power utility function. However we can get an estimation

using a simplified strategy:

h̄∗∗
n := − 1

1 − α
A−1

n−1,1 ·En−1[(e
yn −1)], n = 0, 1, ..., N−1,

From the definition of V ∗, we see that the expected utility

E[u(xh̄∗∗

N )] associated with h̄∗∗ is a lower bound for V ∗.

There are cases, however, where (18) is relatively easy

to evaluate. For example, if the transition matrix has iden-

tical columns, then the conditional probability Pr(Yn =
ek|Fn), n ≥ 1, would be a constant regardless of n, k. Thus

ηn is a constant, and it can be excluded from the expression

for h∗∗
n−1 (18). Therefore the strategy h∗∗ is the same as h̄∗∗.

We apply the results of Section IV to obtain an applicable

representation of the strategy for the case of m = 1,

h̄∗∗
n−1 =

∑d
k=1 Pr(Yn−1 = ek|Fn−1)(µ(ek) − r)

(1 − α)
∑d

k=1 Pr(Yn−1 = ek|Fn−1)σ̂(ek)2
+O(∆t),

(21)

where n=1,2,...N. The simulations in this section deal with

(21). We use (9) to calculate Pr(Yn = ek|Fn) recursively.

Comparing the strategies (21) with Merton strategies, we

can see that in our case the constant drift or the constant

volatility in the expression for Merton strategies are replaced

by linear combinations of the drifts or of the volatilities

corresponding to different states of the Markov chain. The

weights of the linear combinations are probabilities that the

Markov chain is in those states. We divide the time interval

[0,T] into N parts, and assume the transition of the Markov

chain occurs only at those points of time. Hence we have

the Merton model on each interval. The consequence is that

we might obtain a solution directly like (21) in the case of

the logarithmic utility function. However, it is not true for

the power or the exponential utility functions.

To illustrate this point, let us assume that the transition

matrix does not have identical columns. Then in (18) we

can not choose ηn = 1 as in the case of logarithmic utility

function, nor can we simplify the expression by cancelling

ηn as in the case, when all the columns of the transition
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matrix are identical. A representation as simple as (21)

can not be obtained. We have to employ the Monte Carlo

method to calculate the portfolio (18). However, we may

use (21) to get a lower bound for V ∗.

In our simulations, W0 stands for the initial wealth. The

default value of W0 is 1. P denotes the transition matrix. The

interest rate r is equal to 0.06. The time horizon T is 1, and

it is divided in N = 1000 parts, i.e. ∆t = 10−3.

We compare our optimal strategy with the Merton strategy.

Since the Markov chain has several states, we use the Merton

strategy replacing the drift and the volatility in it with

those obtained from taking average of the drift and volatility

respectively over different states of the Markov chain. The

resulting Merton’s strategy is

hn−1 =
µ̄ − r

(1 − α)σ̄2
, n = 1, ..., N, (22)

where µ̄ =
∑

i µ(ei)/d, σ̄ =
∑

i σ̂(ei)/d. One may think of

using
∑

i σ(ei)
2/d instead of σ̄2 in the formula. However,

our simulation shows that it dose not provide a better result.

We also compare our optimal strategy with the buy-and-

hold strategy which is denoted as “b/h”. The buy-and-hold

strategy means to buy the stock using all cash available at

the beginning , then hold the stock until the end. We generate

the wealth process 1000 times and calculate the average of

the utilities from the terminal wealth.

Table 1 lists the result for a Makov chain which has a

transition matrix with identical columns. For the power utility

function, we can obtain that our optimal strategy is a constant

0.1133 while the Merton strategy is also a constant 0.3636

different from ours as seen from (21). Table I &II show that

our optimal strategy on average gives better utilities with

smaller standard deviations for both the logarithm and the

power law utility functions. The last lines of Table I&II show

the number of simulations in which our optimal strategy

generates a better utility than the Merton strategy or the

”b/h” strategy. Note that in the case of the power utility

function, even though our optimal strategy only generates

487 better than the Merton strategy among 1000 simulations,

the average (-0.2748) is still significantly higher than the one

(-0.2974) generated by the Merton strategy, and the standard

deviation (0.0380) is also significantly less than 0.1348.

In Table III&IV, we use the same parameters except the

transition matrix is replaced by a matrix with non-identical

columns. In this case for the power utility function, the

Merton strategy is still a constant (h=0.3636). However, our

optimal strategies h∗∗ varies from 0.1294 to 0.3324 with a

mean 0.1450 while it is a constant 0.1133 in the previous

case. The result are similar to those of Table I& II though.

The average utility may vary slightly if more wealth

processes are generated in the simulation. However, we

always find our optimal strategy generates on average the

best utilities. The results in Table V&VI for 5000 and 10000

simulations show that although the utilities vary slightly, our

optimal strategy still has the best performance among three

strategies.

TABLE I

µ = [0.1, 0.9]′, σ̂ = [0.4, 0.7]′, P = [0.95, 0.95; 0.05, 0.05], ∆t =

10−3.1000 simulations.

u(x) log(x)

strategy opt Merton b/h
av. u(x) 0.0772 0.0041 0.0498
med u(x) 0.0781 0.0084 0.0535
std u(x) 0.1871 0.5592 0.4039
opt better 574 548

TABLE II

µ = [0.1, 0.9]′, σ̂ = [0.4, 0.7]′, P = [0.95, 0.95; 0.05, 0.05], ∆t =

10−3.1000 simulations.

u(x) −x−3/3

strategy opt Merton b/h
av. u(x) −0.2748 − 0.2974 − 0.6352
med u(x) −0.2719 − 0.2687 − 0.2839
std u(x) 0.0380 0.1348 0.9696
opt better 487 515

For one more example, we choose the same parameters

as in the example 1 of Sass and Haussmann [18]. The

results for this example are listed in Table VII&VIII. Table

IX&X are copies of Table 2 of Sass and Haussmann [18].

One can see that our optimal strategy generates the average

utilities(0.3969 for the logarithm, -0.1128 for the power) very

close to theirs(0.399 for the logarithm, -0.121 for the power).

It is not surprising because our model can be viewed as an

extension of theirs in an approximate sense. Therefore similar

results are expected when the same parameters are employed.

Finally, we provide standard deviations in Table I&II

and Table III&IV. One can see that the standard deviation

associated with the optimal strategy is always the smallest

one.

TABLE III

µ = [0.1, 0.9]′, σ̂ = [0.4, 0.7]′, P = [0.95, 0.5; 0.05, 0.5], ∆t =

10−3.1000 simulations.

u(x) log(x)

Strategy opt Merton b/h
av. u(x) 0.0946 0.0360 0.0760

med u(x) 0.0930 0.0177 0.0644

std u(x) 0.2703 0.6012 0.4441

opt better 565 552

TABLE IV

µ = [0.1, 0.9]′, σ̂ = [0.4, 0.7]′, P = [0.95, 0.5; 0.05, 0.5], ∆t =

10−3.1000 simulations.

u(x) −x−3/3

Strategy opt Merton b/h
av. u(x) −0.2715 − 0.2877 − 0.6236
med u(x) −0.2664 − 0.2587 − 0.2747
std u(x) 0.0557 0.1450 1.1093

opt better 470 512
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TABLE V

5000, 10000 SIMULATIONS

u(x) log(x)

Strategy opt Merton b/h
5000 sim. 0.0923 0.0338 0.0743
10000 sim. 0.0966 0.0422 0.0805

TABLE VI

5000, 10000 SIMULATIONS

u(x) −x−3/3

Strategy opt Merton b/h
5000 sim. −0.2719 − 0.2883 − 0.6541
10000 sim. −0.2709 − 0.2857 − 0.6284
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