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Abstract—This paper addresses the problem of parameter es-

timation of noisy input-output models, where the measurements

of both the input and the output of the system are corrupted

by noise. Motivated by the fact that the Koopmans-Levin

method and the maximum likelihood estimation type methods

assume the known ratio of the variances of the input noise

and the output noise, some key equations are derived by using

correlation analysis and the knowledge of the noise variance

ratio. An objective function is introduced for the purpose of

solely finding the input noise variance. An estimate of the system

parameters can then be easily obtained without involving any

iteration procedure. This leads to the establishment of an ef-

ficient identification algorithm. Performance comparisons with

other existing identification methods are made via computer

simulations.

I. INTRODUCTION

Noisy input-output models are a type of mathematical

models that are normally used to describe dynamic systems

in which the input signal and the output signal are both

subjected to noise. Such models have found widespread

applications in many areas of engineering [5], [7], [11].

Two recent edited volumes [17] and [18] have documented

an ample number of engineering applications, ranging from

control engineering to signal processing and to commu-

nications. Noisy input-output models are also known as

(dynamic) errors-in-variables (EIV) models in statistics and

econometrics.

Compared to the conventional system identification prob-

lem in which the system input signal is always available

noise-free, the problem of identifying noisy input-output

models turns out to be a much formidable task. A well-

known fact is that the standard least-squares (LS) method

and other related methods fail to produce unbiased param-

eter estimates when applied to noisy input-output models.

Research on this important topic can be traced back to about

thirty years ago. The continued efforts by many researchers

have resulted in a considerable number of different consistent

identification algorithms, for instance, the joint-output (JO)

method [12], the Koopmans-Levin (KL) method [4], the

Frisch scheme method [1], [2], the logarithmic least-squares

frequency-domain (LLS-FD) method [6], the combined in-

strumental variable and weighted subspace fitting (IV-WSF)

method [16], and the bias-eliminated least-squares (BELS)

methods [19], [20], to just mention a few. Each method may

exhibit a mix of advantages and disadvantages, depending

upon the system model under investigation and the require-

ments on the identification task.

Recent years have witnessed a resurgent, strong research

interest in identification of noisy input-output models. For

example, a direct approach for identifying continuous-time

linear systems from noisy input-output measurements is pro-

posed in [9]. The accuracy of the BELS methods in dynamic

EIV modeling is analyzed in [8]. A new maximum likeli-

hood (ML) method for identification of linear dynamic EIV

systems is introduced in [3]. A frequency domain Gaussian
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ML algorithm for noisy input-output system identification is

developed in [10]. Two recent survey papers [15] and [13]

have provided a timely, comprehensive summary of various

aspects of dynamic EIV system identification as well as

important advances in this area.

This paper is concerned with estimating parameters of

linear systems in the presence of white input noise and

white output noise. The work is motivated by the inter-

esting observation that several EIV identification methods

mentioned above are developed based on the assumption

that the ratio of the variances of the input noise and the

output noise is known. For example, the KL method is

workable only with the known noise variance ratio, while

the ML method requires the known noise variance ratio

assumption for ensuring estimation consistency in the case of

unknown deterministic inputs [3]. As explained in [4], such

an assumption is not a very restrictive condition since other

estimation techniques, such as Kalman filtering, also need

to know this ratio. Further, it is pointed out in [3] that the

application of the ML method in various practical situations

[17], [18] is not hindered by this ratio assumption.

With this motivation, the objective of the paper is to

follow the idea presented in [14] to develop an efficient

parameter estimation method for noisy input-output models.

Correlation analysis and the knowledge of the noise variance

ratio will be utilized to arrive at some key equations such

that estimation of the input noise variance will be cast

as a minimization problem. The formulated minimization

problem will be solved in a straightforward way for a desired

estimate of the input noise variance, followed by making

the bias correction to get the system parameter estimates. In

addition to the algorithmic feature of no need for iterative

estimation, the developed method also has an improved

performance over the previous BELS type methods in terms

of computational complexity.

II. NOISY INPUT-OUTPUT MODEL

Assume that the transfer function of the underlying linear

system is given by

G(q−1) =
B(q−1)

A(q−1)
=

b0 + b1q
−1 + ... + bmq−m

1 − a1q−1 − ... − anq−n
. (1)

The system is excited by the input signal r(t), so that the

output signal x(t) is described by the following input-output

dynamic equation

x(t) = G(q−1)r(t). (2)

In practical situations, both the true input signal r(t) and

the true output signal x(t) are often measured in additive

noise as

u(t) = r(t) + v(t), y(t) = x(t) + w(t) (3)

where v(t) and w(t) represent additive measurement noises

at the system input and output terminals, respectively.

Since the model given by (1)-(3) takes into account the

input noise v(t) and the output noise w(t) to describe

the underlying dynamic system, it is known as the noisy

input-output model or the dynamic errors-in-variables model.

Figure 1 depicts the linear noisy input-output model under

investigation.

The following assumptions that are commonly used in

dynamic EIV modeling are adopted.

A1. The transfer function G(q−1) is exponentially stable,

i.e., all the zeros of the denominator polynomial A(q−1)

lie strictly inside the unit circle.

A2. The polynomials A(q−1) and B(q−1) are co-prime.

A3. The orders n and m of the identified model are given.

A4. The driving input signal r(t) is a persistently excitation

signal of proper order.

A5. The input noise v(t) and the output noise w(t) are white

noises with unknown variances σ2
v and σ2

w , respectively.

A6. r(t), v(t), w(t) are independent of each other statisti-

cally.
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Fig. 1. Linear noisy input-output model.

A7. The ratio α2 of the output noise variance σ2
w to the input

noise variance σ2
v is known, where α2 is defined by

α2 =
σ2
w

σ2
v

. (4)

A brief discussion of the above assumptions is in order.

Assumptions A1 and A2 are self-explanatory. This paper

focuses on parameter estimation, so Assumption A3 is

justifiable. Assumption A4 is quite general, and essentially

no a priori knowledge of the noiseless input signal r(t) is

required. This means that the noiseless input signal r(t)

can be either a stationary random sequence modeled by

an autoregressive moving average (ARMA) process or an

unknown deterministic sequence (e.g., a binary sequence).

Since the input noise and the output noise are often measure-

ment errors or sensor noises, Assumption A5 is reasonable.

Moreover, the measuring instrumentation noise is usually

independent of the signals, and the noise in one instrument

is usually independent of that in another, so Assumption A6

is likely to be met in engineering problems. Assumption A7

is the assumption of the known ratio of the noise variances,

upon which the KL method and the ML method are built.

The problem of parameter estimation of noisy input-output

models is formulated as the one of using noisy input and

output measurements {u(t), y(t), 1 ≤ t ≤ N} to obtain an

unbiased estimate of the system parameter vector

θ⊤ = [a⊤; b⊤] = [a1 ... an; b0 b1 ... bm] (5)

as well as the noise variances σ2
v and σ2

w, where N denotes

the number of noisy data points.

III. A NON-ITERATIVE ESTIMATION METHOD

In this section, like the assumption adopted by the KL

method and the ML method, we will make use of the noise

variance ratio α2 to develop an identification algorithm for

the noisy input-output system.

Introduce the data regressor vector

ψ⊤

t = [y⊤

t ; u⊤

t ]

= [y(t − 1) · · · y(t − n); u(t) · · · u(t − m)]. (6)

The noisy input-output model described by (1)-(3) is recast

in a linear regression model

y(t) = ψ
⊤

t θ + ε(t) (7)

where the equation error ε(t) is given by

ε(t) = w(t) − ε⊤t θ (8)

and

ε⊤t = [w⊤

t ; v⊤

t ]

= [w(t − 1) · · · w(t − n); v(t) · · · v(t − m)]. (9)

The standard LS estimate of the system parameter vector

θ is given by

θ̂LS = R−1

ψψRψy (10)

where

Rψψ = E[ψtψ
⊤

t ] (11)

Rψy = E[ψty(t)]. (12)

Following Assumptions A1-A6, it can be shown that θ̂LS

has the following asymptotic expression

θ̂LS = θ − R−1

ψψDθ (13)

where

D =

[

σ2
wIn 0

0 σ2
vIm+1

]

(14)

(see [19], [20] for details). It is clear from (13) and (14) that

the bias in the standard LS estimate θ̂LS is determined by

the two noise variances σ2
v and σ2

w.
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Now applying Assumption A7 to (14) yields

D =

[

α2σ2
vIn 0

0 σ2
vIm+1

]

= σ2
v

[

α2In 0

0 Im+1

]

= σ2
vDα (15)

where

Dα =

[

α2In 0

0 Im+1

]

. (16)

Then substituting (15) into (13) gives

θ̂LS = θ − σ2
vR

−1

ψψDαθ (17)

This clearly shows that the standard LS method is biased, and

the estimation bias is determined by the input noise variance

σ2
v .

Next we examine the autocovariance function

ryy(j) = E[y(t)y(t − j)] (18)

at j = 0. It follows from (7) and (12) and the imposed

assumptions that

ryy(0) = E[y(t)y(t)] = R⊤

ψyθ + σ2
w (19)

which, using (4), may be expressed as

ryy(0) = R⊤

ψyθ + α2σ2
v . (20)

Combining (17) and (20) together and making some rear-

rangements yields

α2σ2
v + σ2

v θ̂
⊤

LSDαθ = ryy(0) − R⊤

ψyθ̂LS. (21)

Hence, we have derived two key equations (17) and (20).

Using (10), expression (17) can be rearranged as

(Rψψ − σ2
vDα)θ = Rψy. (22)

Then an unbiased BELS estimate of the system parameter

vector θ can be obtained from (22) as

θ̂BELS = (Rψψ − σ2
vDα)−1Rψy (23)

provided that the input noise variance σ2
v is known or an

estimate of it is available. Furthermore, replacing θ in (20)

by θ̂BELS given in (23) yields

α2σ2
v + R⊤

ψy(Rψψ − σ2
vDα)−1Rψy = ryy(0). (24)

It is important to note that in the above equation (24), all the

variables are given or computable except for σ2
v that remains

as the only unknown variable.

Introduce a function of the independent variable s as

follows:

f(s) = sα2 + R⊤

ψy(Rψψ − sDα)−1Rψy − ryy(0). (25)

Apparently, f(s) is a known function of s. Since f(σ2
v) = 0,

the estimate σ̂2
v of the input noise variance σ2

v should be a

zero of the function f(s). In order to get an insight into the

function f(s), we write the inverse matrix (Rψψ − sDα)−1

as

(Rψψ − sDα)−1 =
adj(Rψψ − sDα)

det(Rψψ − sDα)
(26)

where det(·) and adj(·) denote the determinant and the

adjoint of a square matrix, respectively. Substituting (26) into

(25) produces

f(s) = sα2 +
R⊤

ψyadj(Rψψ − sDα)Rψy

det(Rψψ − sDα)
− ryy(0). (27)

The above equation clearly indicates that f(s) is a rational

function of s.

On the basis of the above analysis, in order to obtain an

estimate of the input noise variance σ2
v , it is now proposed

to minimize the nonnegative function f2(s) with respect to

s, i.e.

min
s

f2(s). (28)

Then the positive minimum point of the objective function

f2(s) may be taken as the desired estimate σ̂2
v .

Once σ̂2
v is obtained, we will be able to use (23) and (4)

to compute θ̂BELS and σ̂2
w, respectively. The proposed non-

iterative version of the BELS method with the variance ratio

is called BELSR-NI for short.

As can be seen, the major algorithmic difference between

the BELS methods in [19] and [20] and the new BELSR-

NI method is that the former need to conduct iterative

estimation between the noise variances σ2
v and σ2

w and the

system parameter vector θ, whereas the latter provides a
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closed-form solution without alternating iterations. Thus,

the developed BELSR-NI method has a much simpler and

more compact structure. It is conceivable that the BELSR-NI

method requires fewer computations than the BELS methods

in [19] and [20]. On the other hand, it is noted that in adaptive

estimation the BELS methods in [19] and [20] are superior to

the BELSR-NI method as they can be readily implemented

via a recursive scheme.

IV. SIMULATION RESULTS AND CONCLUDING REMARKS

To examine the performance of the BELSR-NI method

for short sample lengths and unknown deterministic inputs,

we consider estimating a second-order linear EIV system

described by (1)-(3) and with the following transfer function

G(q−1) =
2 − 1.2q−1 − 0.6q−2

1 − 0.5q−1 + 0.3q−2
. (29)

The noiseless input r(t) is now a piecewise constant binary

sequence with unit variance. The variances of the white

measurement noises v(t) and w(t) are given by

σ2
v = 0.1, σ2

w = 0.25 (30)

which yields that the signal-to-noise ratios (SNR) at the input

(SNRI) and the output (SNRO) are approximately 10dB, that

is,

SNRI = 10 log10

E[r(t)2]

E[v(t)2
≈ 10dB, (31a)

SNRO = 10 log10

E[x(t)2]

E[w(t)2
≈ 10dB. (31b)

Noisy input-output measurements with a short sample length

N = 250 are used in identification over M = 100

Monte-Carlo runs. Note that this example was studied in

[3]. The BELSR-NI method is applied to this noisy input-

output model. The corresponding sample means and standard

deviations of the estimates of the system parameters and the

noise variances are displayed in Table 1. The results by the

KL method and the ML method as shown in [3] are also

included in Table 1 for convenience of comparison. Note

that in Table 1 the RE is the abbreviation of the relative

error which is defined by

RE =
‖m(θ̂) − θ‖

‖θ‖
, (32)

where m(θ̂) denotes the sample mean of an estimator θ̂.

As can be seen from Table 1, in the case of short sample

lengths and unknown deterministic inputs, the BELSR-NI

method can work very satisfactorily and their performances

are also very comparable to those of the ML method [3]. The

attractiveness of the BELSR-NI method lies in that they can

be more easily implemented at a lower computational cost

than the ML method since the latter usually involves dealing

with some highly non-convex optimization problem.

Hence, when a partial information of the input noise

and the output noise (such as their variance ratio) becomes

available in realistic situations, the use of the developed

BELSR-NI method can be very appealing.
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