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Abstract— This paper is concerned with the characterization
of the maximal admissible uncertainty under which a nonlinear
discrete-time dynamic system can be stabilized in the neighbor-
hood of the origin by a Receding Horizon (RH) state-feedback
control scheme. This topic is of great interest in both analysis
and design of robust RH controllers for constrained discrete-
time nonlinear systems. In particular, under mild assumptions
on the nominal transition map, the robustness of the overall RH
control scheme is shown to depend on the invariance properties
of the terminal set constraint, which is a design parameter for
the controller. In this framework, resorting to set invariance
theoretic arguments, a numerical procedure is proposed which
allows to evaluate the robust invariance properties of the
terminal set constraint. An application example is provided
to show the effectiveness of the proposed approach.

I. INTRODUCTION

The design of reliable Receding Horizon (RH) controllers
for nonlinear discrete-time systems subjected to state and

control constraints is a very active area of research. In this

framework, invariant set theory [6] has been exploited to pro-
vide nominal feasibility and stability conditions [10]. Chang-

ing the control objective from nominal to robust stabilization,

this paper is mainly focused on the use of invariant set theory
for the synthesis of robustly stabilizing RH controllers for un-

certain nonlinear system. In particular, considering the class

of additive transition uncertainty, the problem of evaluating
an upper norm bound on admissible perturbations is of great

practical interests for the synthesis of reliable controllers.

For the class of RH algorithms which impose as stabilizing
condition a fixed terminal constraint set, Xf , at the end of

the horizon, the robustness of the overall c-l system has been
shown to depend on the invariance properties of Xf , [12].

An estimate of the uncertainty bound can be obtained by

computing the controllability set to Xf , denoted as C1(Xf )
(i.e., the set of state vectors which can be steered in Xf by

an admissible control action). In general, it is very difficult

to express C1(Xf ) analytically, therefore the conception of
algorithms for its numerical approximation is needed. It must

be remarked that the numerical approximation of C1(Xf ),
for a generic nonlinear system, is a very computational
demanding problem, although the underlying theory is well

established and a large number of results have been proposed

since the seminal paper [4]. Several algorithms exist for
different classes of systems. Linear systems have been ap-

proached, among many, by [5], [11] and [17]. Procedures for

the computation of approximations of the maximal invariant
set for nonlinear systems have been discussed in [7]. On
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the other side, the problem of characterizing the maximal
admissible uncertainty for robust set invariance has been

approached only recently, in the framework of constrained

linear systems, [16]. Significant recent advances on this
subject can be found in the works of Artstein, Rakovic and

co-workers [2], [15]. In this framework, the contribution of

the present paper is twofold.

i) First, a novel iterative procedure is presented to evaluate,

with arbitrary numerical accuracy, the robust invariance
properties of Xf under a nonlinear constrained map

parametrized in the control, f̂(x, u), x∈X, u∈U , without
requiring the exact computation of C1(Xf ) ;

ii) Moreover, resorting to the notion of finite-time controlla-

bility to a target set, the robust stability properties of RH
control policies based on constraints tightening and termi-

nal set constraint are analyzed, showing that the developed

algorithm can be used to evaluate less conservative bounds
on admissible uncertainties with respect to those provided

by current literature.

II. MAIN NOTATIONS

Let R, R≥0, Z, and Z≥0 denote the real, the non-negative
real, the integer, and the non-negative integer sets of num-

bers, respectively. The Euclidean norm is denoted as | · |.
Given a compact set A ⊆ R

n, let ∂A denote the boundary
of A. Given a vector x∈R

n, d(x, A) , inf {|ξ−x| , ξ∈A}
is the point-to-set distance from x ∈ R

n to A, while
Φ(x, A) , { d(x, ∂A) if x ∈ A, −d(x, ∂A) if x /∈ A }
denotes the signed distance function. Given two sets A⊆R

n,

B ⊆ R
n, dist(A, B) , inf {d(ζ, A), ζ∈B} is the minimal

set-to-set distance. The difference between two given sets

A ⊆ R
n and B ⊆ R

n, with B ⊆ A, is denoted as A\B ,

{x : x ∈A, x/∈B}. Given two sets A ∈ R
n, B ∈ R

n, then

the Pontryagin difference set C is defined as C =A ∽B ,

{x∈ R
n : x+ξ∈A, ∀ξ∈ B}, while the Minkowski sum set

is defined as S = A⊕B , {x∈R
n : x=ξ+η, ξ∈A, η∈B}.

Given a vector η ∈ R
n and a positive scalar ρ ∈ R>0,

the closed ball centered in η and of radius ρ is denoted

as B(η, ρ) , {ξ∈R
n : |ξ−η|≤ρ}. The shorthand B(ρ) is

used when the ball is centered in the origin. A function
α : R≥0→R≥0 belongs to class K if it is continuous, zero

at zero, and strictly increasing.

III. PRELIMINARIES

Consider the nonlinear discrete-time dynamic system

xt+1 = f(xt, ut, υt), t ∈ Z>0, x0 = x̄ (1)

where xt ∈ R
n denotes the state vector, ut ∈ R

m the control
vector and υt ∈ Υ is an uncertain exogenous input vector,
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with Υ ⊂ R
r compact with 0 ∈ Υ. Assume that state and

control variables are subject to the following constraints

xt ∈ X, t ∈ Z≥0 , (2)

ut ∈ U, t ∈ Z≥0 , (3)

where X and U are compact subsets of R
n and R

m,
respectively, containing the origin as an interior point. Given

the system (1), let f̂(xt, ut) , with f̂(0, 0) = 0, denote the

nominal model used for control design purposes.

Assumption 1: The nominal map f̂(x, u) is Lipschitz with

respect to x in X , with L. constant Lfx
∈R>0. �

Now, given (1) and a generic state feedback control law

κ(xt), let us define the map g(xt, υt) , f(xt, κ(xt), υt).
Then the c-l dynamics under the action of the exogenous

input υt is described by the system

xt+1 = g(xt, υt), t ∈ Z≥0, x0 = x̄ (4)

with xt∈X and υt∈Υ. Moreover, let x̂t+i|t, i∈Z>0, denote

the state generated by means of the nominal model on the

basis of the state information at time t, xt, and of a sequence
of inputs ut,t+1−1,col[ut, . . . , ut+i−1], such that

x̂t+i|t = f̂(x̂t+i−1|t, ut+i−1), x̂t|t = xt, i ∈ Z>0. (5)

Defining the additive transition uncertainty vector dt ,

f(xt, ut, υt) − f̂(xt, ut), we have

xt+1 = f̂(xt, ut) + dt . (6)

In the sequel, given an initial state vector x0, the prediction

at time t obtained by (5) will be denoted as x̂(x0,u0,i−1, t),
with t ∈ {1, . . . , i}. In this way, the dependency of the

solution on a particular sequence of controls u0,i−1 ,

col[u0, . . . , ui−1] is pointed out, while the true system trajec-

tory due to a specified realization of uncertainties d0,i−1 ,

col[d0, . . . , di−1] will be denoted as x(x0,u0,i−1,d0,i−1, t).
Moreover, for the sake of clarity, the subscript t will be

neglected when not strictly required, in particular when the

transition map describing the nominal dynamics serves as a

nonlinear map f̂(x, u) parametrized in the control u.

IV. PROBLEM FORMULATION

The control objective consists in designing a state-

feedback control law capable to robustly stabilize the system
(1), guaranteeing the c-l invariance of a compact set contain

the origin as interior point, in presence of the class of
uncertainty assumed in the following.

Assumption 2 (Uncertainty): The additive transition un-

certainty vector dt belongs to the compact ball D ,B(d̄),
with d̄,sup υ∈Υµ(|υ|), where µ is aK-function. �

In order to meet the control specifications, the class of
robust RH controllers based on the constraint tightening

technique is employed. In this regard, our main focus consists

in providing a less conservative estimate, with respect to
current literature, of the bound on the uncertainty, d̄, for

which the system can be robustly stabilized by the RH policy

to be described in the following.
First, we describe how the RH state-feedback control law

is obtained by solving, at each time instant t, a Finite Horizon
Optimal Control Problem (FHOCP).

Definition 4.1 (FHOCP): Given a positive integer Nc ∈
Z≥0, at any time t ∈ Z≥0, let ut,t+Nc−1|t , col[ut|t, ut+1|t,
. . . , ut+Nc−1|t] denote a sequence of input variables over

the control horizon Nc. Then, given a stage–cost function h,

the constraint sets Xt+i|t ⊆ X, i ∈ {1, . . . , Nc}, a terminal

cost function hf and a terminal set Xf , the Finite Horizon

Optimal Control Problem (FHOCP) consists in minimizing,

with respect to ut,t+Nc−1|t, the following cost function

JFH(xt,ut,t+Nc−1|t, Nc),
t+Nc−1
∑

l=t

h(x̂
l|t, ul|t)+hf (x̂t+Nc|t

)

subject to the

i) nominal dynamics (5) ;

ii) constraints ut+i−1|t∈U, x̂t+i|t∈Xt+i|t, i∈{1, . . . , Nc};

iii) terminal state constraint x̂t+Nc|t ∈ Xf . �

The usual RH control paradigm can now be stated as

follows: given a time instant t ∈ Z≥0, let x̂t|t = xt, and
find the optimal control sequence u

◦
t,t+Nc−1|t by solving the

FHOCP. Then, according to the RH strategy, apply

ut = κRH(xt) , (7)

where κRH(xt) , u◦
t,t and u◦

t,t is the first element of the

optimal sequence u
◦
t,t+Nc−1|t (implicitly dependent on xt).

Let us now introduce the following further

Assumption 3 (κf , hf , Xf ): Assume that there exist an

auxiliary control law κf (x) : X → U , a function hf (x) :
R

n → R≥0, a positive constant Lhf
∈ R>0, a level set of

hf , Xf ⊂ X and a positive constant ν∈R>0 such that the

following properties hold:

i) Xf ⊂ X , Xf closed, {0} ∈ Xf ;

ii) κf (x) ∈ U, ∀x ∈ Xf ;

iii) hf (x) Lipschitz in Xf , with L. constant Lhf
∈ R>0;

iv) hf (f̂(x, κf (x)))−hf (x)<−h(x, κf (x)), ∀x∈Xf \{0};

v) hf (f̂ (x, κf (x)))−hf (x)≤−ν, ν ∈R>0, ∀x ∈ ∂Xf . �

Let us denote as XRH the region in which the FHOCP is
feasible. If XRH is RPI (see Def. 5.2) for all the possible

realizations of uncertainty, then it possible to show that,

by accurately choosing the stage cost h, the constraint sets
Xt+j|t, j∈{1, . . . , Nc}, the terminal cost function hf , and

by imposing a terminal constraintXf at the end of the control
horizon such that Assumption 3 holds, the c-l system is

Regional Input to State Stable in XRH w.r.t. norm-bounded

uncertainties [14]. In this connection, we are going to derive
a bound on the uncertainty for which the invariance XRH is

guaranteed.

V. INVARIANT SETS AND FEASIBILITY OF RH CONTROL

In this section, the interplay between invariant sets and
robust RH control will be addressed. This will allow us

to properly design the parameters of the FHOCP and to
characterize the robustness of the c-l system under the RH

control law. The following definitions aim to introduce the

basic ingredients of invariant set theory that will be needed.

Definition 5.1 (RCI): A set Ξ ⊆ X is a Robust Controlled

Invariant (RCI) set for system (6) if ∃u ∈ U such that

f̂(x, u) + d ∈ Ξ, ∀x ∈ Ξ and ∀d ∈ D. �

Definition 5.2 (RPI): A set Ξ ⊂ X is a Robust Positively

Invariant (RPI) under the map ĝ(x, d) if ĝ(x, d) ∈ Ξ, ∀x ∈
Ξ and ∀d ∈ D. �

Definition 5.3 (Ci(X, Ξ)): Given a set Ξ ⊆ X , the i-step

Controllability Set to Ξ, Ci(X, Ξ), is the set of states which
can be steered to Ξ by an admissible control sequence of
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length i, u0,i−1, under the nominal map f̂(x, u), subject to

constraints (2) and (3), i.e.

Ci(X, Ξ) ,

{

x0∈X : ∃u0,i−1∈U i such that

x̂(x0,u0,i−1, t)∈X, ∀t ∈ {1, . . . , i − 1},

x̂(x0,u0,i−1, i)∈Ξ

}

.
�

In the sequel, the shorthand Ci(Ξ) will be used in place
of Ci(R

n, Ξ). Moreover, according to the literature, the set

C1(Xf ) will be addressed as predecessor set of Xf .

The following Lemma (proven in the Appendix) intro-

duces a method to compute the constraint sets of the FHOCP.

Lemma 5.1 (State Constraints Tightening): Under

Assumptions 1 and 2, suppose 1, without loss of generality,
Lfx

6= 1. If the state constraints at the j−th prediction step

of the FHOCP Xt+j|t, are computed as

Xt+j|t , X ∽B

(

Li
fx

− 1

Lfx
− 1

d̄

)

, ∀i ∈ {1, . . . , Nc} (8)

then each input sequence which is feasible for the FHOCP

guarantees that the true state will satisfy xt+j ∈ X, ∀j ∈
{1, . . . , Nc}, ∀xt ∈ XRH , ∀υ ∈ MΥ. �

Resorting to feasibility arguments, the main stability result
for the described robust RH controller is asserted by the

following Theorem (see Appendix II for the proof).

Theorem 5.1 (Robust Positive Invariance of XRH ): Let ī
be the largest i ∈ Z>0 such that

∑i
j=1 j ≤ Nc. Under

Assumptions 1-3, the set XRH is RPI under the c-l dynamics

w.r.t. additive uncertainties d∈B(d̄), where

d̄,min

{

max
i∈{1,...,̄i}

{d̄i},
Lfx

− 1

LNc

fx
− 1

dist (Rn\X, Xf)

}

,

with

d̄i,Li−Nc

fx

(

i
∏

k=1

Lfx
−1

Lfx

k−1

)

dist(Rn\Ci(Xf ),Xf ) . (9)

�

The result stated by Theorem 5.1 motivates us in formu-
lating an affordable method to compute the euclidean metric

dist(Rn\Ci(Xf ), Xf ), i∈{1, . . . , Nc − 1}.

VI. APPROXIMATION OF dist(Rn\Ci(Xf ), Xf )

At a first glance, the exact evaluation of

dist(Rn\Ci(Xf ), Xf ) can be carried out by directly
computing Ci(Xf ). However, in most situations, only an

inner approximation Ĉi(Xf ) can be obtained numerically.
In this respect, an iterative procedure will be described to

compute a lower approximation of dist(Rn\Ci(Xf ), Xf ).
The algorithm is based on the following recursion

{

Ĉi(Ξ)1 = Xf ,

Ĉi(Ξ)j+1 = ϑ(Ĉi(Ξ)j , Xf ), j ∈ Z≥1,
(10)

where ϑ is a suitable set-valued function and Ĉi(Ξ)j is

the convex inner approximation of Ci(Xf ) computed at the

j-th iteration. Referring to a numerical example reported
in Section VIII, Figure 1 shows a graphical representation

of two sequences of sets generated by such a recursion to

approximate C1(Xf ) and C8(Xf ).

1The very special case Lfx
= 1 can be trivially addressed by a few

suitable modifications to the proof of Lemma 5.1.

The main objective of the following analysis consists

in designing the above set-valued operator ϑ, such as to

guarantee the convergence the algorithm toward the desired
euclidean metric dist(Rn\Ci(Xf ), Xf ). In order to deter-

mine a function ϑ capable to satisfy the above requirements,
we need to address the issue of numerical computability of

set-valued operators, which poses indeed some constraints

on the structure of the approximation algorithm. A detailed
analysis of computability of set-valued operators for non-

linear discrete-time autonomous and controlled systems is

given in [2] and [9]. In order to present a key result on the
computability of controllability sets, some notions of set-

valued analysis [3] must be introduced.

Definition 6.1 (F̂ (x)): Given the nominal transition

function f̂(x, u), the set-valued map F̂ : X 7→Y, Y ⊆R
n is

defined as F̂ (x) ,
⋃

u∈U

f̂(x, u). (11)
�

Definition 6.2 (LSC): A set-valued map F̂ : X 7→ Y is

called Lower Semi-Continuous (LSC) in X if ∀x
′

∈X , given

ǫ∈R>0, ∃δ∈R>0 such that inequality |x
′

−x
′′

|<δ implies

F̂ (x
′

) ⊆ F̂ (x
′′

) ⊕ B(ǫ). �

Noting that the predecessor operator generates the natural

weak set-valued preimage [8] of a given set Ξ ⊆ Y under

F̂ , C1(Ξ)=F̂−1(Ξ),{x∈X : F̂ (x)∩Ξ 6=∅}, a computability

result for F̂−1(Ξ) would imply the computability of C1(Ξ).
To this end, let us introduce the notion of robust robust

controllability set, which plays a key role in the computabil-
ity theory for set-valued operators, since it represents the best

computable approximation of the true predecessor set [9].

Definition 6.3 (RCi(X, Ξ)): Given a set Ξ ⊆ X and the

nominal map f̂(x, u), the i-step Robust Controllability set to

Ξ is defined as RCi(X, Ξ),Ci(X, int(Ξ)). �

In the following, the shorthand RCi(Ξ) will be used to

denote RCi(R
n, Ξ).

The possibility to obtain an arbitrary accurate numerical

approximation of the robust predecessor set is guaranteed by
the following approximate computability result.

Theorem 6.1 ([9]): Given a set Ξ⊆X , if the map F̂ (x)
is LSC in x, ∀x∈X , then C1(Ξ) is open whenever Ξ is
open. Hence, the operator Ξ 7→ RC1(Ξ) is always lower

semicomputable, i.e., it can be approximated arbitrarily well

by a sequence of compact sets {Ĉ1(Ξ)j}, j ∈ Z≥1, with

Ĉ1(Ξ)j ⊃ Ĉ1(Ξ)j−1, given an initial lower approximation

Ĉ1(Ξ)1⊂RP(Ξ)⊆C1(Ξ). �

Noting that a map defined as in (11) is LSC under

Assumption 1, Theorem 6.1 can be readily extended to char-
acterize the computability of the i-step robust controllability

set RCi(Ξ). In this regard, let us introduce the following

problem.

Problem 6.1: Given a finite integer i∈Z>0 and a compact

set Xf such that Assumption 3 holds, we look for a nu-
merical set-iterative procedure, in the form of (10), capable

to generate a sequence {Ĉi(Xf )j , j∈Z≥1} of compact sets

lower approximating RCi(Xf ), such that

i)Ĉ(Xf )j ⊂ Ci(Xf ), ∀j ∈ Z>0;

ii)if dist(Rn\Ĉi(Xf )j , Xf ) < dist(Rn\RCi(Xf ), Xf ) ⇒
dist(Rn\Ĉi(Xf )j+1,Xf)>dist(Rn\Ĉi(Xf)j ,Xf),∀j∈Z>0;

iii)dist(Rn\RCi(Xf ),Xf ) ≤ limj→∞dist(Rn\Ĉi(Xf )j ,Xf )
≤ dist(Rn\Ci(Xf ),Xf ).
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Ĉ8( Xf ) 4
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Ĉ1( Xf ) 4
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Fig. 1. Sequence of sets generated by the iterative procedure (10) for the numerical example reported in Section VIII.

�

Now, we are going to introduce a numerical framework
to address the issues raised by Problem 6.1. In particular, it

will be shown that the function ϑ in (10) can be designed

such that all requirements are satisfied.
To this end, let us introduce the Finite Horizon Distance

Optimal Control Problem (FHDOCP).

Problem 6.2 (FHDOCP): Given system (6), a set Xf

for which Assumption 3 holds and a compact set X ∈
RCi(Xf ), consider a vector x0 ∈ ∂Ξ. The (i-steps) Finite

Horizon Distance Optimal Control Problem (FHDOCP) con-

sists in finding the sequence of control moves u0,i−1 =
col[u0, . . . , ui−1], subject to (3), such that the following

value function, JFHD(x0,u0,i−1, Xf ), is maximized:

J◦
FHD(x0,u

◦
0,i−1(x0),Xf )= max

u0,i−1∈Ui

{Φ (x̂(x0,u0,i−1, i),Xf )}.
�

An effective optimization-based algorithm, which satisfies
the requirements raised by Problem 6.1, is now presented (for

the sake of notational simplicity, the dependency of J◦
FHD

on Xf will be omitted).

Theorem 6.2 (Ĉi(Xf )): Given a positive integer i∈ Z>0

and a compact set Xf set such that Assumption 3 holds,
consider the recursion (10) with ϑ defined as follows

ϑ(Ĉi(Xf )j ,Xf )

,Ĉi(Xf)j⊕B

(

L−i
fx

min
x∈∂Ĉi(Xf )j

{

J◦
FHD(x,u◦

0,i)
}

)

.
(12)

Then the sequence of sets {Ĉi(Xf )j , j∈Z≥1} satisfies Points

i)-iii) of Problem 6.1. �

The proof of Theorem 6.2 is given in Appendix III.

Remark 6.1: Notice that Theorem 6.2 assumes that the

optimal value J◦
FHD(x,u◦

0,i) for each x ∈ ∂Ĉi(Xf)j as well

as the global minimum minx∈∂Ĉi(Xf )j

{

J◦
FHD(x,u◦

0,i)
}

can

be actually obtained. For a generic nonlinear system this
is not always the case, therefore a numerical method to

approximate the set-valued function ϑ is described. Notably,
in this case the constraints imposed by Points i)-iii) of

Problem 6.1 cannot be strictly fulfilled, but can be violated

with an arbitrarily small tolerance specified by the designer,
as described in the following section. �

VII. NUMERICAL IMPLEMENTATION OF THE

SET-ITERATIVE SCHEME

In order to derive a numerically affordable implementation

of the set iterations (10)-(12), some properties of the optimal
value function J◦

FHD(x0,u
◦
0,i(x0)) are going to be analyzed.

Lemma 7.1: Under Assumptions 1-3, given a vector x
′

0 ∈
∂Ĉi(Xf )j , the optimal cost J◦

FHD(x
′

0,u
◦
0,i(x

′

0)), the optimal

control sequence u
◦
0,i(x

′

0), and the optimal state prediction

x̂(x
′

0,u
◦
0,i(x

′

0), i), then the optimal value of the function

J◦
FHD(x

′′

0 ,u◦
0,i(x

′′

0 )) is lower bounded by

J◦
FHD(x

′′

0 ,u◦
0,i(x

′′

0 ))≥J◦
FHD(x

′

0,u
◦
0,i(x

′

0))−αLf
i
x

(13)

for any vector x
′′

0 ∈ R
n : |x

′

0 − x
′′

0 | ≤ α, with α ∈ R>0. �

Proof: In view of Assumption 1, it follows that

|x̂(x
′

0,u
◦
0,i(x

′

0), i) − x̂(x
′′

0 ,u◦
0,i(x

′

0), i)| ≤ Lf
i
x
α. (14)

Let η ∈ R>0 be such that α = ηL−i
fx

J◦
FHD(x

′

0,u
◦
0,i(x

′

0)),

then it follows that the state vector x̂(x
′′

0 ,u◦
0,i(x

′

0), i) ∈

B
(

x̂(x
′

0,u
◦
0,i(x

′

0), i), ηJ◦
FHD(x

′

0,u
◦
0,i(x

′

0))
)

. Considering

that J◦
FHD(x

′′

0 ,u◦
0,i(x

′′

0 )) ≥ J◦
FHD(x

′′

0 ,u◦
0,i(x

′

0)) , then

J◦
FHD(x

′′

0 ,u◦
0,i(x

′′

0 ))≥(1 − η)J◦
FHD(x

′

0,u
◦
0,i(x

′

0)).

Finally, substituting the expression for η, the statement of

the lemma trivially follows.

In the sequel, an algorithm for numerically approximating

the set-valued function ϑ in (12) is discussed.

Procedure 7.1 (Numerical recipe for ϑ(Ĉi(Xf )j , Xf )):
First, notice that, given a lower bound

Jj ≤ min
x∈∂Ĉi(xf )j

{J◦
FHD(x, ū◦

0,i)}, Jj∈R>0

then the following inequality holds

Ci(xf )j⊆
(

Ĉi(xf )j⊕(L−1
fx

Jj)
)

⊆ϑ(Ĉi(Xf )j , Xf )

Thanks to Lemma 7.1, Jj can be obtained by performing a
series of FHDOCP’s in suitably chosen vectors belonging to

∂Ĉi(Xf )j . In order to ensure the termination of the procedure

in a finite number of steps, let us fix an arbitrary tolerance
δ ∈ R>0, whose significance will be cleared later on. At
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′′

0
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′′

0
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′

0
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F HD
(x

′
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(x

′
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)).

this point, let us consider a grid-like subset XH⊂∂Ĉi(Xf )j

such that d(x, XH) ≤ δ, ∀x ∈ ∂Ĉi(Xf )j and ∃ǫ ∈ R>0 :
d(x, XH\{x})≥ǫ, ∀x∈XH . Being Ĉi(Xf )j compact, XH is

numerable. Then, performing a finite number of FHDOCP’s
on all the vectors of XH , we can compute

Jj=(1− 0.5Lfx
δ) min

x∈XH

{J◦
FHD(x)}

If Jj < 0, the recursion is terminated. Notice that δ can

be reduced to allow for a finer gridding, which permits

to compute a possibly tighter bound, at the cost of an
increase in the computational load. Conversely, if Jj > 0,

the set Ĉi(Xf )j+1=Ĉi(xf )j ⊕(L−1
fx

Jj) is computed and the

recursion is continued.

For implementation purposes, it is convenient that Xf is

given as a polytope [1], such that the sets Ĉi(Xf )j+1, j ∈
{1, . . . , Nc} can be obtained by performing the Minkowski

addition between polytopes, having previously inner approx-
imated the ball addendum in (12) by a parallelotope. �

VIII. APPLICATION EXAMPLE

Consider the following discrete-time model of an un-
damped nonlinear oscillator
{

x(1)t+1
=x(1)t

+0.05
[

−x(2)t
+ 0.5

(

1+ x(1)t

)

ut

]

x(2)t+1
=x(2)t

+0.05
[

x(1)t
+ 0.5

(

1− 4x(1)t

)

ut

]

,
(15)

where the subscript (i) denotes the i-th component of the

vector xt. System (15) is subject to the constraints (2) and
(3). The set X is given by {x∈R

n : x=[x(1) x(2)]
T , |x(1)|≤

0.2, |x(2)|≤0.2}, while U ,{u∈R : |u|≤2}. Given X and

U , the Lipschitz constant of the system is Lfx
= 1.1390.

A linear state feedback control law ut=κf (xt)=kTxt, with

k∈R
2, stabilizing (15) in a neighborhood of the origin, can be

designed as described in [13]. Choosing k=[0.74 1.80]T , the
following ellipsoidal set, Xf∈X , is RPI under the nominal

dynamics (15) in c-l with κf(xt)

Xf ,

{

xt∈R
n : xT

t

[

309.21 −162.53
−162.53 602.72

]

xt ≤ 1

}

.

In Xf , the auxiliary control law satisfies Assumption 3.

Assuming that the system is controlled by a constraint
tightening RH scheme having Xf as terminal set and Nc=9,

in order to obtain the upper norm bound on admissible un-
certainties, the set-iterative procedure (10) has been applied

to Xf , obtaining a sequence of sets Ĉi(Xf )j , j ∈ Z≥1, i ∈
{1, . . . , 8}, as depicted in Figure 1. The following bounds
can be inferred from the computed sets by using (9)

d̄1 = 4.02 · 10−4 d̄2 = 4.92 · 10−4 d̄3 = 3.31 · 10−4

Finally, the upper norm bound on admissible uncertainty

is d̄=4.92·10−4, which is larger than d̄1, that coincides with

the upper limit computable by the tools provided in [14].

CONCLUSIONS

This paper has presented a novel method, based on set-

invariance theoretic arguments, to evaluate the maximal

admissible uncertainty under which a nonlinear discrete-time
system can be stabilized by a constrained Receding Horizon

(RH) state-feedback control scheme. Remarkably, the norm
bound on the admissible uncertainties has been shown to

depend on the robust invariance properties of the terminal

set Xf , which is a free design parameter of the FHOCP.

Finally, a set-iterative procedure has been proposed to

approximate by numerical computations, with arbitrary ac-
curacy, the bound on admissible uncertainty.

APPENDIX I

Proof: [Lemma 5.1] According to [12], given the
state vector xt at time t, and a feasible control sequence

ū
t,t+Nc−1|t, the prediction error êt+i|t , xt+i − x̂t+i|t, with

i ∈ {1, . . . , Nc}, and xt+i obtained applying ūt,t+Nc−1|t in

open loop to the uncertain system (1), is upper bounded by

|êt+i|t| ≤
Li

fx
− 1

Lfx
− 1

d̄, ∀i ∈ {1, . . . , Nc}

where d̄ is defined as in Assumption 2. Then it follows that
xt+i=x̂t+i|t + êt+i|t∈X, ∀i∈{1, . . . , Nc}.

APPENDIX II

Proof: [Theorem 5.1] The proof consists in showing

that if the FHOCP is feasible at time t for some xt ( i.e
xt ∈ XRH ), then, applying the state feedback control law

ut=κRH(xt), t∈Z>0, the FHOCP admits a feasible solution
for all xt+i, with i∈Z>0, subject to the c-l dynamics xt+1=
f̂(xt, κRH(xt)) + dt, with dt ∈ B(d̄). Let us define δ̄i ,

(Lfx
− 1)/(Li

fx
− 1)dist(Rn\Ci(Xf ), Xf ).

The proof will be carried out in four steps.

i) x0 ∈ Ci(Xf )⇒∃u∗
0,i−1|0 ∈U i|x(x0,u

∗
0,i−1|0,d0,i−1, i)∈

Ci(Xf ), ∀d0,i−1∈B(δ̄i)
i: Given x0∈Ci(Xf ), let us denote

as u
∗
0,i−1|0 a feasible control sequence (implicitly function

of x0) such that x̂i|0 = x̂(x0,u
∗
0,i−1|0, i) ∈ Xf . It is

straightforward to prove that the norm difference between
the prediction x̂i|0 and xi=x(x0,u

∗
0,i−1|0,d0,i−1, i), with

d0,i−1∈B(δ̄i)
i, can be upper bounded by

|x̂i|0−xi|≤
Li

fx
−1

Lfx
−1

δ̄i (16)

Substituting the value of δ̄i in (16), it is trivial to show
that, since x̂i|0∈Xf , then xi∈Ci(Xf ).

ii) Uncertainty bound d̄: First, let us consider i=2. Thanks

to Point i), ∀x
′

∈ C1(Xf ) ⊕ B(δ̄2) ∃u
′

: f̂(x
′

, u
′

) ∈
C2(Xf ) ∽B(δ̄2); then it follows that

(C1(Xf )⊕B(δ̄2))∪C2(Xf )
⊆C1

(

C2(Xf )∽B(δ̄2)
)

∪C1 (C1(Xf ))

=C1

(

C1(Xf )∪
(

C2(Xf )∽B(δ̄2)
)

)

⊆C1

(

[

(C1(Xf )⊕B(δ̄2))∪C2(Xf )
]

∽B(δ̄2)
)

.

(17)
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By noting that C1(Xf )∪
(

C2(Xf )∽B(δ̄2)
)

⊆ C2(Xf ) ⊆
(C1(Xf )⊕B(δ̄2))∪C2(Xf ), then from (17) it follows that

dist(Rn\C3(Xf ), C2(Xf )) ≥ L−1
fx

δ̄2.

With similar arguments as above, it is possible to prove
that dist(Rn\Ci+i−1(Xf ), Ci(Xf )) ≥ L1−i

fx
δ̄i, ∀i ≥ 2.

Hence, one can apply recursively this result to obtain

dist(Rn\C(
P

i
j=1

j)(Xf ), C(−1+
P

i
j=1

j)(Xf )) ≥

L
i−(

P

i
j=1

j)

fx
(
∏i

k=1(Lfx
−1)/(Lk

fx
−1))dist(Rn\Ci(Xf ),(Xf )).

Therefore, since Nc ≥
∑i

j=1 j, the statement of the

theorem trivially follows.

iii) x̂t+j|t∈Xt+j|t ⇒ x̂t+j|t+1∈Xt+j|t+1, ∀j∈{1, . . . , Nc}:
Consider the predictions x̂t+j|t and x̂t+j|t+1, initialized

by xt and xt+1, and obtained respectively using the input

sequences u
◦
t,t+Nc−1|t and a feasible ūt+1,t+Nc−1|t+1,

chosen equal to the subvector u
◦
t+1,t+Nc−1|t. Assuming

that x̂t+j|t∈X ∽B( (Lj
fx
−1)/(Lfx

−1)d̄ ), let us introduce

η∈B( (Lj−1
fx

−1)/(Lfx
−1)d̄ ). Let ξ,x̂t+j|t+1−x̂t+j|t+η,

then, in view of Assumption 1 and thanks to (16), it

follows that

|ξ| ≤ |x̂t+j|t+1 − x̂t+j|t| + |η| ≤
Lj

fx
− 1

Lfx
− 1

d̄, (18)

and hence, ξ∈B( (Lj
fx

−1)/(Lfx
−1)d̄ ). Since x̂t+j|t ∈

Xt+j|t, it follows that x̂t+j|t +ξ= x̂t+j|t+1 +η∈X , ∀η∈

B( (Lj−1
fx

−1)/(Lfx
−1)d̄ ), yielding to x̂t+j|t+1∈Xt+j|t+1.

iv) x̂t+Nc|t ∈Xf ⇒ x̂t+Nc+1|t+1 ∈Xt+Nc+1|t+1: Since d̄ is

assumed to fulfill the following inequality

d̄≤
Lfx

− 1

LNc

fx
− 1

dist(Rn\X, Xf),

then, in view of (8), Xt+Nc|t = Xt+Nc+1|t+1 ⊇ Xf . In

this regard, Point ii) ensures that xt+1∈XRH , and hence
x̂t+Nc+1|t+1 ∈ Xf ⊆ Xt+Nc+1|t+1.

Finally, in view of Points i)–iv), it follows that XRH is RPI

for bounded additive uncertainties d ∈ B(d̄), with d̄ defined
as in the statement of the theorem.

APPENDIX III

First, let us introduce the following

Theorem 3.1 (Geometric Condition for Invariance,[6]):

A set Ξ ∈ R
n is a control/positively invariant set if and

only if Ξ ⊆ C1(Ξ). �

In a numerical framework, the geometric condition for set

invariance stated in Theorem 3.1 must be replaced by its
robust counterpart, i.e. Ξ ⊆ RC1(Ξ).

Now, it is possible to prove Theorem 6.2

Proof: [Theorem 6.2] Points i), ii) and iii) of Problem

6.1 are addressed separately in the following.

i) Ĉi(Xf )j ⊂ Ci(Xf ) ⇒ Ĉi(Xf )j+1 ⊂ Ci(Xf ), ∀j ∈ Z≥1:

Given a vector x
′

∈ Ĉi(Xf )j⊕ B(L−i
fx

Jj), with Jj ,

min
x∈∂Ĉi(Xf )j

J◦
FHD(x,u◦

0,i), then ∃x
′′

∈ ∂Ĉi(Xf )j (⊂

Ci(Xf )) such that |x
′

− x
′′

|≤L−i
fx

Jj . Hence, there exists
a feasible sequence of controls ū0,i−1 which yields to

x̂(x
′′

, ū0,i−1, i) ∈ Xf ∽B(Jj), with Jj ∈ R≥0. Then,

under Assumption 1, the inequality |x̂(x
′

, ū0,i−1, i) −
x̂(x

′′

, ū0,i−1, i)|≤Li
fx
|x

′

−x
′′

|, yields to x̂(x
′

,u0,i−1, i)∈

Xf , and hence x
′

∈Ci(Xf ). These arguments also prove

the second inequality at Point iii) of Problem 6.1.

ii) dist(Rn\Ĉi(Xf )j+1, Xf ) < dist(Rn\RCi(Xf ), Xf ) ⇒
Ĉi(Xf )j+1 ⊃ Ĉi(Xf )j (⊃ Xf ), ∀j ∈ Z≥1: Under the

stated assumption, being Jj ∈ R>0, the subsequent inclu-
sion follows from the properties of Minkowski addition.

If Jj=0 for some j∈Z≥1, then Ĉi(Xf )j+1=Ĉi(Xf )j , ∀j∈
Z≥ j, and hence the limit is finitely determined.

iii) dist(Rn\RCi(Xf ),Xf)≤limj→∞dist(Rn\Ĉi(Xf )j ,Xf):
The proof can be carried out by contradiction.

First, by Point ii), notice that ϑ(Ĉi(Xf )∞) =
Ĉi(Xf )∞. Assume there exists ǫ

′

∈ R>0 such that

limj→∞dist(Rn\Ĉi(Xf )j ,Xf)=dist(Rn\RCi(Xf ),Xf)−
ǫ
′

. Then, the set ∂Ĉi(Xf )∞ ⊂ Ci(int(Xf )). Since there

exists ǫ
′′

∈R>0 such that minx∈∂Ĉi(Xf )∞
J◦

FHD(x,u◦
0,i)≥

ǫ
′′

, then there exist a set ϑ(Ĉi(Xf )∞)⊃Ĉi(Xf )∞, which

invalidates the original assumption.
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