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Abstract— We propose robust adaptive control designs for
a twin-rotor aircraft with specific focus on attaining good
disturbance attenuation properties to facilitate operation in
a shipboard environment wherein the aircraft is subject to
severe aerodynamic disturbances including ship airwake, deck
vortices, and rotor downwash especially during ship roll and
pitch motions. Furthermore, the controllers can operate on their
own or can gracefully co-exist with a baseline controller in a
control augmentation fashion thus minimizing flight software
change impact. The performance of the proposed controllers
was validated through extensive simulation studies.

I. INTRODUCTION

The control of rotorcraft operating under severe aerody-
namic disturbance conditions is a challenging problem [1–
5]. It has been noted that conventional designs of the Flight
Control System (FCS) which address operations over land do
not suffice in the case of shipboard operations at sea. In this
paper, we propose two control approaches for a twin-rotor
aircraft (for instance, the Bell XV-15 and the Bell/Boeing
V-22 Osprey) with particular focus on flight operations
in close proximity to ships. The proposed controllers are
designed to operate as augmentation controllers (as shown in
Figure 1) in conjunction with the existing FCS (nominally
a PID controller of the structure shown in Figure 2). The
requirement of an augmentation controller is most critical in
the attitude control block whereas the performance of the
baseline roll/pitch command generator and the baseline alti-
tude controller are, in general, adequate. The controllers are
based on nonlinear robust and adaptive control techniques;
the first approach (Section III) is based on nonlinear adaptive
control using backstepping and Input-to-State Stability (ISS)
concepts while the second approach (Section IV) is based
on the θ-D technique to obtain approximate solutions to a
State Dependent Riccati Equation (SDRE) in real-time with
low computational complexity.

The controllers have been tested and validated through
extensive simulation studies; the simulation platform in-
cludes all major components of the real rotorcraft operating
environment (i.e., a six degree-of-freedom model of the
twin-rotor aircraft including rotor models, a six degree-of-
freedom model of the ship, aerodynamic interactions be-
tween the ship and the rotorcraft, and a pilot-in-the-loop
model) thus providing a reasonable fidelity of the simulation.
The overall dynamic system formed by a rotorcraft operating
in a shipboard environment has multiple components as
illustrated in Figure 3. The core of the dynamic system
which forms the focus of control design in this effort is
the six degree-of-freedom (DOF) dynamic model of the
twin-rotor aircraft. It is demonstrated through simulation
studies in Section V that the proposed FCS designs offer
significant disturbance attenuation improvements over the
existing baseline controller and provide robustness to severe
aerodynamic interactions such as ship airwake, deck vortices,
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and rotor downwash especially during ship roll and pitch
motions, thus significantly enlarging the operational envelope
of ship and rotorcraft motions and wind conditions. The
utilization of the proposed augmentation controllers offers
better tracking performance and disturbance rejection, adap-
tation to changes in environmental conditions and operating
characteristics, greatly reduced computational complexity
compared to SDRE based controllers, and reduced pilot
workload.
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Fig. 3. Structure of the overall system model.

II. MODELING

In this section, the six degree-of-freedom dynamic model
of a twin-rotor aircraft (with a left rotor and a right rotor
- designated as MR1 and MR2, respectively) is described
briefly. The structure of the dynamic model is illustrated
in Figure 4. Following the Heffley modeling approach [6],
the six degree-of-freedom dynamic model of the aircraft is
developed with 17 states, namely the translational position
(x, y, z) measured in earth-frame (in feet), the translational
velocity (vbx, vby , vbz) measured in body-frame (in feet/sec),
the angular position, i.e., roll (θx), pitch (θy), yaw (θz) (in
radians), the angular velocity (vbθx , vbθy , vbθz ) measured in
body-frame (in radians/sec), the flapping angles of rotors,
i.e., tip-path-plane orientation angles (in radians) denoted by
a11 and b11 for rotor MR1 and a12 and b12 for rotor MR2,
and the RPM of the two rotors (in revolutions per minute)
denoted by RPMMR. Throughout, for brevity, we use the
notations cx = cos(θx), sx = sin(θx), tx = tan(θx), etc.

Seven control inputs (throttle of both rotors; collec-
tive, roll cyclic, and pitch cyclic of each rotor) are
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Fig. 4. 6DOF modeling of a twin-rotor aircraft.

available: MR1 collective, MR2 collective, MR1 rollcyclic,
MR2 rollcyclic, MR1 pitchcyclic, MR2 pitchcyclic, and the
throttle. The body-fixed frame is constructed with X axis
pointed towards the aircraft nose, Y axis towards the aircraft
right, and Z axis downwards. The earth-fixed frame is
constructed such that in the nominal aircraft orientation (level
flight), the alignment of the earth-fixed frame is such that
the X axis is pointed towards the aircraft nose, the Y axis
is pointed towards the aircraft left, and the Z axis is pointed
upwards. The net force and torque on the aircraft include
contributions from gravity, MR1, MR2, fuselage, and wind.
The force and torque computations for MR1, MR2, and
fuselage are based on the Heffley model and autogyro theory
as applied to a twin-rotor aircraft operating in helicopter
mode [6,7]. The rotor RPM dynamics are modeled as a first-
order lag from the throttle input. The additional dynamics
due to the presence of a human pilot has a similar structure as
the baseline controller shown in Figure 2 and can be viewed
as a parallel interconnection with the flight controller The
additive perturbations into the rotorcraft control inputs due to
pilot-in-the-loop can be modeled [5] via a third-order transfer
function which includes a second-order transfer function for
neuromuscular dynamics and a first-order transfer function
for the outer-loop pilot command model.

The aerodynamic forces and torques experienced by the
rotorcraft in the presence of a ship are modeled in terms
of transfer functions (see Figure 5) from a unity covariance
white noise to the rotorcraft control inputs that reflect ap-
proximately the turbulence effects seen by the rotorcraft. For
instance, the MR1 collective input is modeled as perturbed
by an additive deflection δMR1 collective which is modeled as

δMR1 collective
w

(s) =

∑1

i=0
ηMR1 collective,is

i

s2 +
∑1

i=0
ζMR1 collective,is

i
(1)

where w represents a unity covariance white noise input, and
the coefficients in the transfer function on the right hand
side of (1) are modeled as functions of the wind speed, ship
and rotorcraft geometries, and ship and rotorcraft positions,
orientations, and velocities. This model captures the essence
of the rotorcraft-ship aerodynamic interactions in a form that
is tractable for control design and simulation studies.

While computational fluid dynamics (CFD) models of
the ship airwake and deck vortices and their effect on
the rotorcraft blade elements would yield more accurate
estimates of the aerodynamic disturbance, CFD models are
much more complex and are not tractable for use in a control
system design setting. Furthermore, CFD characterization of
the ship/rotorcraft dynamic interface is still an open and
active research problem [1,3,4]. In contrast, the model above
is based on a lumped characterization of the aerodynamic
effects [2,5] and yields physically realistic estimates of
the size and nature of the aerodynamic disturbances, thus
providing a viable model for use in control system validation.

III. NONLINEAR ADAPTIVE CONTROLLER

The structure of FCS augmentation based on a nonlinear
adaptive controller is illustrated in Figure 6. The central
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Fig. 5. Aerodynamic disturbance model via second-order transfer functions
with time-varying coefficients (signal flow for one control input shown).

tools used in the design of the augmentation controller are
robust adaptive backstepping and ISS concepts [8–11] with
the design being based on identifying certain suitable subsys-
tems (of a lower triangular system structure) of the overall
aircraft dynamics and exploiting certain ISS properties of the
subsystem comprising of the remaining states.

As shown in Figure 6, the FCS augmentation based on
the nonlinear adaptive control design technique is comprised
of three sub-components: an augmentation for the baseline
roll/pitch command generator block, an augmentation for
the baseline attitude controller, and an augmentation for the
baseline altitude controller. The nonlinear adaptive controller
for roll/pitch command generation is designed based on the
subsystem with states (x, y, vex, vey); the nonlinear adaptive
controller for attitude compensation is designed based on
the subsystem with states (θx, θy, θz, vbθx , vbθy , vbθz ); and
the nonlinear adaptive controller for the altitude axis is
designed based on the subsystem with states (z, vez) where
(vex, vey, vez) is the linear velocity expressed in earth-fixed
frame. It can also be shown that the states corresponding
to the tip-path-plane orientation and the rotor RPM can
be considered as ISS input unmodeled dynamics. From the
dynamics of the flapping angles [6,7], it is seen that the
dynamics of [a11, b11]T , for instance, can be written as

˙︷ ︸︸ ︷[
a11

b11

]
= Aab1(ΩMR)

[
a11

b11

]
+Bab1(ΩMR)

[
MR1 rollcyclic

MR1 pitchcyclic

]
+Qab1(ΩMR, vbx, vby, vbθx , vbθy ) (2)

where ΩMR is the angular velocity of the rotors measured
in rad/sec. The dynamics of (a12, b12) can be written sim-
ilarly featuring matrices Aab2, Bab2, and Qab2. Based on
the physically meaningful range of the coefficients appear-
ing in Aab1 and Aab2, it can be shown that Aab1 and
Aab2 are stable matrices; hence, the dynamics of (a11, b11)
and (a12, b12) can be considered as stable input unmod-
eled dynamics for the purposes of control design. Further-
more, it can also be shown that, relative to the “inputs”
(ΩMR, vbx, vby, vbθx , vbθy ) which enter into the dynamics of
the flapping angles via the matrices Aab1, Bab1, Qab1, Aab2,
Bab2, and Qab2, the dynamics of the subsystem with states
(a11, b11, a12, b12) are ISS. It can also be shown that the
subsystem comprising of the single state, the rotor RPM,
can also be viewed as a stable input unmodeled dynamics
driven by the throttle input. Thus, the overall 17th order
dynamic model of the twin-rotor aircraft can be considered
(see Figure 7) as composed of a 12th order core consisting
of the rigid-body dynamics and 5th order input unmodeled
dynamics. In this context, it is important to note that the
intrinsic robustness and adaptation properties of the nonlinear
adaptive controller design can accomodate much richer input
dynamics without requiring a redesign of the controller.
Nonlinear adaptive attitude controller: The dynamics of
the subsystem with state comprising of the angular po-
sition (pr = [θx, θy, θz]T ) and angular velocity (vr =
[vbθx , vbθy , vbθz ]) can be written as

ṗr = Jr(pr)vr , v̇r = I−1
RB(τ + τ̃) (3)
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where Jr(pr) is the angular velocity Jacobian matrix (depen-
dent on pr), τ̃ is a lumped characterization of torques due to
various aerodynamic and rigid-body effects, and τ is the (ap-
propriately scaled) torque vector capturing the contributions
of the rotors to the roll, pitch, and yaw axes torques. The
nonlinear adaptive control design will be presented below
with an adaptation for the inertia matrix IRB and with
robustness incorporated to handle τ̃ . The attitude controller
is designed based on a two-step robust adaptive backstepping
procedure. In the first step, the state pr is addressed and vr is
viewed as a virtual control input driving the dynamics of pr;
a virtual control law v∗r for vr is designed to make pr track
its reference trajectory pr,ref = [θx,ref , θy,ref , θz,ref ]T . In
the second step, the error between vr and v∗r is considered
and the control law for the input τ is designed to make the
error (vr − v∗r ) small. Finally, a commutation procedure is
used to translate the control law for τ into control laws in
terms of the rotor pitch, roll, and collective inputs.
Step 1: In the first step of backstepping, the Lyapunov
function V1 = p̃Tr Qprp̃r is used where p̃r = pr − pr,ref and
Qpr is a 3× 3 positive-definite matrix which can be used to
tune the controller performance. Defining ṽr = vr−v∗r where
v∗r = J−1

r (ṗr,ref−Kprp̃r) with Kpr being a 3×3 gain matrix
which must be picked such that QprKpr+KT

prQpr ≥ ν1I3×3

where I3×3 denotes the 3 × 3 identity matrix and ν1 is
any positive constant, we obtain the Lyapunov inequality
V̇1 ≤ −ν1||p̃r||2 + 2p̃Tr QprJrṽr. Since Qpr is a positive-
definite matrix, it is evident that a matrix Kpr can be picked
to satisfy the prescribed condition.
Step 2: A new Lyapunov function is defined as V2 = V1 +
ṽTr IRB ṽr differentiating which

V̇2 ≤ −ν1||p̃r||2 + 2p̃Tr QprJr ṽr + 2ṽTr (τ + τ̃)

+2ṽTr IRB

[
−

˙︷︸︸︷
J−1
r (ṗr,ref −Kprp̃r)

−(J−1
r )[p̈r,ref −Kpr(Jrvr − ṗr,ref )]

]
. (4)

Define

ζr=−
˙︷︸︸︷

J−1
r (ṗr,ref−Kprp̃r)−(J−1

r )[p̈r,ref−Kpr(Jrvr−ṗr,ref )].

Then, the terms in the second line of (4) reduce to simply
2ṽTr IRBζr. Using the Kronecker algebra property that with

any three matrices A ∈ Rn×m, X ∈ Rm×p, and B ∈
Rp×q , the property vec(AXB) = (BT ⊗ A)vec(X) holds,
we obtain 2ṽTr IRBζr = 2(ζTr ⊗ ṽTr )vec(IRB) where ⊗
denotes the Kronecker product and vec denotes the vector
operator which is defined as the vector formed by stacking
the columns of its matrix argument. Design τ = τ∗ with

τ∗ = −Kdr ṽr + mat3(ξ̂r)
[ ˙︷︸︸︷
J−1
r (ṗr,ref −Kprp̃r)

+(J−1
r )[p̈r,ref −Kpr(Jrvr − ṗr,ref )]

]
− JTr QTprp̃r (5)

where Kdr is a 3× 3 positive-definite controller gain matrix
(Kdr could be picked as a function of all measured states),
ξ̂r is an adaptation vector of dimension 9 × 1, and mat3
denotes the matrix reshaping operator defined for a vector
ω = [ω1, ω2, . . . , ω9] ∈ R9 as the matrix with (i, j)th

element ωi+3∗(j−1). The dynamics of ξ̂r are designed as
˙̂
ξr = Γ−1

ξr
[ζTr ⊗ ṽTr ]T (6)

where Γξr is a 9 × 9 gain matrix which should be picked
as a positive-definite matrix. Defining the Lyapunov function
V = V2 + ξ̃Tr Γξr ξ̃r where ξ̃r = ξ̂r − vec(IRB), it is seen
from the definition of τ∗ in (5), the adaptation dynamics in
(6), and the fact that 2ṽTr τ̃ ≤ ṽTr Kdrṽr + τ̃TK−1

dr τ̃ , that
V̇ ≤ −ν1||p̃r||2 − ṽTr Kdr ṽr + τ̃TK−1

dr τ̃ . (7)

From (7), noting that τ̃ can be captured within some (pos-
sibly state-dependent) bound over the range of operating
conditions, it follows by standard Lyapunov auguments that
||p̃r|| and ||ṽr|| can be regulated to a small neighborhood of
the origin if Kpr and Kdr are picked sufficiently large. In
general, Kdr could be picked to depend on any measured
state variable for simple gain-scheduling; the utility of such
gain-scheduling has been noted in simulations to be primarily
relative to pr wherein Kdr is picked to be dependent on pr
with a larger value of pr resulting in a smaller value of Kdr.
Remark 1: In implementation, a σ-modification is utilized to
guard against adaptation parameter drift instability, i.e., the
dynamics (6) are replaced by ˙̂

ξr = −σξr ξ̂r+Γ−1
ξr

[ζTr ⊗ ṽTr ]T
with σξr being a 9 × 9 matrix chosen such that Γξrσξr +
σTξrΓξr ≥ νξrI9×9 where νξr is a positive constant. Since Γξr
is a positive-definite matrix, such a choice of σξr is always
possible. The additional term −σξr ξ̂r introduced provides a
stabilizing effect in the adaptation dynamics.
Remark 2: While the Lyapunov analysis above addressed
uncertainty in the inertia matrix, it can be shown that
the adaptation in the designed controller actually addresses
a lumped characterization of system uncertainty including
unmodeled nonlinearities and changing environmental con-
ditions. It is also worthwhile to note that while ξ̂r is of
dimension 9× 1 in the design presented above, its elements
which contribute most to controller performance are entries
corresponding to diagonal elements of mat3(ξ̂r), i.e., the first,
fifth, and ninth elements of ξ̂r. Hence, the controller dynamic
order can be reduced by incorporating dynamic adaptations
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only for these elements. In this case, the adaptation vector
ξ̂r is of dimension 3× 1 and τ∗ is designed as

τ∗ = −Kdr ṽr + diag(ξ̂r)
[ ˙︷︸︸︷
J−1
r (ṗr,ref −Kprp̃r)

+(J−1
r )[p̈r,ref −Kpr(Jrvr − ṗr,ref )]

]
− JTr QTprp̃r (8)

where diag(ξ̂r) denotes the 3 × 3 matrix with its diagonal
elements being the entries of ξ̂r and with zeros elsewhere.
The dynamics of ξ̂r are designed as

˙̂
ξr = −σξr ξ̂r + Γ−1

ξr
[ζr,1ṽr,1 , ζr,2ṽr,2 , ζr,3ṽr,3]T (9)

where ζr,i, i = 1, 2, 3 are the elements of ζr, ṽr,i, i = 1, 2, 3
are the elements of ṽr, Γξr is a 3× 3 positive-definite gain
matrix and σξr is a 3×3 matrix which should be chosen such
that Γξrσξr + σTξrΓξr ≥ νξrI3×3 with νξr being a positive
constant. In (9), the σ-modification described in Remark 1
has also been incorporated.
Nonlinear adaptive roll/pitch command generator: The
objective of the roll/pitch command generator design is to
construct roll and pitch reference signals to make (x, y)
track given reference signals (xref , yref ). The backstepping
based design is carried out in two steps. In the first step,
the states (x, y) are considered and the states (vex, vey) are
considered as virtual control inputs. In the second step, roll
and pitch signals are considered as the control inputs and are
designed to regulate the signals (vex, vey) to the values of
their designed virtual control laws. Carrying out the design
along analogous lines to the design of the attitude controller
presented earlier, the roll/pitch command reference signals
(θ∗x, θ

∗
y) are designed via the following equations

pp = [x, y]T , p̃p = pp − pp,ref , pp,ref = [xref , yref ]T

vep = [vex, vey]T , v∗ep = −Kppp̃p+ṗp,ref , ṽep = vep−v∗ep
θp = −Kdpṽep − K̃ppp̃p − ξ̂p[Kpp(vep − ṗp,ref )− p̈p,ref ]

˙̂
ξp = −σξp ξ̂p+Γξp ṽep [Kpp(vep−ṗp,ref )−p̈p,ref ][

θ∗x
θ∗y

]
=

[
0 −1
1 0

]
(Rbe)

T θp (10)

where Rbe is the rotation matrix relating the earth frame to
the body frame, Kpp, K̃pp, Kdp, σξp , and Γξp are controller
gains which should be picked to be positive numbers, and
ξ̂p is a 2 × 1 adaptation vector which addresses a lumped
characterization of overall system uncertainty in roll/pitch
contribution to the dynamics of (x, y) degrees of freedom.
Nonlinear adaptive altitude controller: The altitude con-
troller is designed using the subsystem comprising of the
states (z, vez) with the objective being to track a given
altitude reference signal zref . Carrying out the backstepping
based design along analogous lines to the design of the
attitude controller presented earlier, the altitude control law
is designed in terms of d∗z as

z̃ = z − zref , v∗ez = −Kpz z̃ + żref , ṽez = vez − v∗ez
d∗z = Kdz ṽez + K̃pz z̃ + ξ̂z[Kpz(vez − żref )− z̈ref ]

˙̂
ξz = −σξz ξ̂z + Γξz ṽez[Kpz(vez − żref )− z̈ref ] (11)

where Kpz , K̃pz , Kdz , σξz , and Γξz are controller gains
which should be picked to be positive numbers and ξ̂z is a
scalar adaptation signal.
Commutation: MR1 collective, MR2 collective,
MR1 rollcyclic, MR2 rollcyclic, MR1 pitchcyclic, and

MR2 pitchcyclic are computed based on d∗z and τ as:

MR1 collective =
d∗z − τroll

2
+ TMR1 collective

MR2 collective =
d∗z + τroll

2
+ TMR2 collective

MR1 rollcyclic = τroll + TMR1 rollcyclic
MR2 rollcyclic = τroll + TMR2 rollcyclic

MR1 pitchcyclic =
τpitch + τyaw

2
+ TMR1 pitchcyclic

MR2 pitchcyclic =
τpitch − τyaw

2
+ TMR2 pitchcyclic

where TMR1 collective, etc., are the trim values for the
aircraft. The commutation described above prescribes
a control allocation mapping the four control signals
(τroll, τpitch, τyaw, d∗z) to the six control surface signals
(MR1 collective,MR2 collective,MR1 rollcyclic,
MR2 rollcyclic,MR1 pitchcyclic, MR2 pitchcyclic). For
better performance and to avoid one degree of freedom
from dominating over another in the computation of a
control input that they share, saturations with appropriate
saturation levels can be incorporated into the terms of the
commutation laws. Also, the control inputs are saturated to
appropriate levels before feeding into the servos.

IV. θ-D BASED CONTROLLER

In this section, an augmentation scheme which utilizes
a θ-D based controller [12–15] is described. The structure
of the FCS augmentation with the θ-D based controller is
shown in Figure 8. The θ-D approach is based on casting
a nonlinear system as a pseudo-linear system with state-
dependent system matrices and then using an SDRE to design
the control law. In contrast, however, with solving the SDRE
at every sampling instant which would be computationally
very burdensome, the θ-D approach relies on an iterative
approximate solution of the SDRE using a reformulation of
the pseudo-linear system as the combination of a nominal
part and a perturbation part. This procedure essentially
replaces the Riccati equation with a Lyapunov equation.
Since a Lyapunov equation is computationally much simpler
to solve than a Riccati equation, the θ-D approach yields a
controller with very low computational requirements relative
to the original SDRE based controller.

For brevity, as shown in Figure 8, we focus here on the
θ-D augmentation for the inner-loop controllers since these
are the most critical in shipboard operation. Since the altitude
degree of freedom can be handled easily in conjunction with
the roll, pitch, and yaw axes in a unified manner, the θ-D
augmentation presented here addresses the four degrees of
freedom of roll, pitch, yaw, and altitude. Similar θ-D based
augmentation controllers could be designed for the roll and
pitch command generators if required under the operating
conditions. Considering the roll, pitch, yaw, and altitude de-
grees of freedom, the state vector for control design purposes
is given by xIL = [vbθx , vbθy , vbθz , θx, θy, θz, vez, z]

T The
input vector is formulated as uIL = [δc, δp, δq, δr]T where
(see Figure 8) δc, δp, δq , and δr are the contributions of
the θ-D controller to the altitude, roll, pitch, and yaw axis
actuations, respectively. To formulate the SDRE, the system
with state xIL is first written in the form

ẋIL = AIL(xIL)xIL +BIL(xIL)uIL + F̃IL (12)
where AIL and BIL are state-dependent matrices of di-
mensions 8 × 8 and 8 × 4, respectively, and F̃IL is an
8 × 1 vector which denotes a lumped characterization of
various aerodynamic and rigid-body effects. Considering a
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decomposition of the state vector xIL into its constituent
attitude and altitude components as xIL = [vTbθ, θ

T , vez, z]T
where vb = [vbθx , vbθy , vbθz ]

T and θ = [θx, θy, θz]T , using
the dynamic model described in Section II, relegating various
aerodynamic and rigid-body terms to F̃IL to be handled
through the robustness margin of the θ-D controller, and
examining the axes through which the control inputs enter
into the system, it can be shown that

AIL=

I−1
RBS(IRBvbθ) 03×3 03×1 03×1

Jr 03×3 03×1 03×1

01×3 01×3 0 0
01×3 01×3 1 0


BIL=

 Bvbθ,IL
03×4

[1, 0, 0, 0]
01×4

 ; Bvbθ,IL =

[
0 1 0 0
0 0 −1 0
0 0 0 −1

]
(13)

where Jr is the angular velocity Jacobian, IRB is the 3× 3
inertia matrix, and S(ω) with ω = [ωx, ωy, ωz]T denotes the
skew-symmetric matrix of ω.

Given a pseudo-linear system description ẋ = A(x)x +
B(x)u, the stabilizing controller that minimizes the quadratic
cost J = 1

2

∫∞
0

(xTQx + uTRu)dt with Q being a positive
semi-definite matrix of dimension n × n and R being a
positive definite matrix of dimension m × m, is given by
u = −R−1BT (x)P (x)x where P (x) is a symmetric n× n
matrix computed as the solution to the SDRE P (x)A(x) +
AT (x)P (x) − P (x)B(x)R−1BT (x)P (x) + Q = 0. The
controller based on solving the SDRE at every controller
sampling instant is computationally very expensive. The
θ-D technique addresses this computational intractability of
the SDRE approach by replacing on-line calculation of the
SDRE with an approximate closed-form solution based on a
power series representation of the form P (x) ≈

∑nθD
i=0 Tiθ

i

where T0, . . . , Tn are n × n symmetric matrices, θ is any
positive constant, and nθD is a positive integer indicating the
number of terms in the power series expansion. The matrices
T0, . . . , Tn are computed based on a perturbation of the cost
function of the form J = 1

2

∫∞
0

(xT [Q +
∑nθD
i=1 Diθ

i]x +
uTRu)dt using the method described in [12–15].

V. SIMULATION STUDIES
A simulation package has been developed for the overall

dynamic system formed by a twin-rotor aircraft operating
in a shipboard environment (including the ship/rotorcraft
dynamic interface and the human pilot in the loop) based on
the dynamic model illustrated in Figure 3. In developing the
simulation platform, IntelliTech’s high-fidelity 6DOF ship
dynamic simulator [16] was leveraged and a 6DOF dynamic
model of the rotorcraft was implemented along the lines
described in Section II. The dynamics of the twin-rotor
aircraft and the ship were implemented in C++ while the
remaining components of the overall dynamic simulator and
the controllers were implemented in Matlab. The overall
system was hooked together in Simulink using the S-function
interface for the C++ implementations of the dynamics of
the rotorcraft and the ship. A 3D visualization environment
was also implemented using OpenGL (see screenshots in

Figure 9). The visualization environment shows the positions
and orientations of both the ship and the twin-rotor aircraft
and provides full pan, tilt, and zoom capabilities.

Fig. 9. Screenshots of the 3D visualization environment for twin-rotor
aircraft operation in shipboard environment.

A. Simulation studies with the nonlinear adaptive controller
The performance of the nonlinear adaptive controller is

evaluated in this section using a test case wherein the
twin-rotor aircraft is commanded to track the position and
yaw reference trajectories described by the equations (where
positions are in feet and angle is in radians) xref (t) =
100 + 50 sin(0.01t), yref (t) = 50 + 50 sin(0.06t), zref (t) =
20 + 3 sin(0.04t), and θz,ref (t) = 0.1 sin(0.03t). A ship is
introduced into the environment with its trajectory being such
that it would pass directly under the aircraft around time
156 seconds. Based on the disturbance modeling outlined
in Section II, this results in the injection of disturbance
forces of magnitude around 14000 lb-force and disturbance
torques of magnitude around 1200 ft lb-force. It is seen from
Figure 10 that the aircraft would lose stability at around 160
seconds if the baseline controller is used without a controller
augmentation (this level of disturbance which reflects an
environment at the high end of sea state 3 exceeds the
maximum level of disturbance that the baseline controller can
handle alone by around 40%). With the nonlinear adaptive
controller added in as an augmentation controller, it is seen
from Figure 11 that the aircraft stability is preserved even in
the face of severe aerodynamic disturbances.
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Fig. 10. Instability seen with baseline controller.

B. Simulation studies with the θ-D based controller
While the static fixed-gain PID controller is not able

to retain stability when large roll and pitch motions are
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Fig. 11. FCS performance with nonlinear adaptive controller augmentation.
caused due to high disturbance conditions in the test case
presented in Section V-A, the θ-D based controller is able
to adjust gains in real-time to retain stability. While the
point-wise eigenvalues of a time-varying nonlinear system
do not necessarily relate directly to system stability, it is
nevertheless interesting to observe the variation of closed-
loop eigenvalues as illustrated in Figure 12; note that the
θ-D controller is able to maintain the eigenvalues in the left
half plane through approximate solution of the SDRE. In
the absence of θ-D augmentation, the eigenvalues would be
shifted to the right half plane.

Fig. 12. Dynamic poles shifting under high disturbance.
The closed-loop behavior of the twin-rotor aircraft with

controller augmentation is illustrated in Figure 13 for two
cases. In the first case, the augmentation controller is a direct
Linear Quadratic Regulator (LQR), i.e., on-line solution of
the SDRE at every sampling instant, and in the second case,
the proposed θ-D controller is used as the augmentation
controller. It is seen that the θ-D controller actually provides
a smoother response than the straightforward LQR solver due
to the smoothing nature of the power series representation
used in the θ-D controller which tends to not excite higher
frequency modes in the dynamics. Furthermore, the compu-
tational burden of the θ-D controller is very small relative
to the full SDRE solution, typically requiring less than 3%
computational time per controller sample. The computational
burden of the nonlinear adaptive controller is even lower
(less than 2% computational time per controller sample as

compared to the full SDRE solver).
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Fig. 13. FCS performance with augmentation using full SDRE based
controller (red solid line) and using θ-D controller (blue dashed line).

VI. CONCLUSION

Two techniques for FCS augmentation for robustness
and stability enhancement of the twin-rotor aircraft have
been developed and demonstrated through simulation studies.
The proposed FCS augmentation design techniques promise
significant improvements in performance, robustness, and
stability of the aircraft flight under severe aerodynamic
disturbances, and also enhance the operational envelope of
shipboard operations to a wider range of sea conditions and
ship and rotorcraft motions.
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