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Abstract— This paper addresses designing finite dimensional
linear time invariant (LTI) controllers for infinite dimen-
sional LTI plants subject to H∞ mixed-sensitivity performance
objectives and convex constraints. Specifically, we focus on
designing control systems for two classes of systems which
are generally described by hyperbolic partial differential equa-
tions: (1) Irrigation systems and (2) Hypersonic Vehicles with
flexible dynamics. The distributed parameter plant is first
approximated by a finite dimensional approximant. The Youla
parameterization is then used to parameterize the set of all
stabilizing LTI controllers and a weighted mixed-sensitivity
H

∞ optimization is formulated. After transforming the infi-
nite dimensional problem to a finite-dimensional optimization
problem, convex is optimization is used to obtain the solution.
Subgradient concepts are used to directly accommodate time-
domain specifications. Illustrative examples for irrigation sys-
tems and hypersonic vehicles are provided.

I. INTRODUCTION AND MOTIVATION

A. Irrigation Systems

Irrigation is an increasingly important issue worldwide.
Irrigation systems may be required for several key reasons
in crop production. These may include: delivering water
to an arid area, draining water from a wet area, provid-
ing supplements, protecting against frost and weed growth.
Water management becomes particularly important in order
to properly (and fairly) address water right conflicts. Most
irrigation canals are operated using gates placed upstream
and/or downstream. We use the classic Saint Venant equa-
tions (nonlinear hyperbolic PDEs) to describe gravity-based
laminar fluid flow in canals and rivers. In this paper, we
linearize these equations to obtain a model suitable for
control design. The model is used to design near-optimal
weighted H∞ controllers subject to (convex) constraints.

B. Hypersonic Vehicles

With the historic 2004 scramjet-powered Mach 7 and 10
flights of the X-43A hypersonics research has seen a resur-
gence. This is attributable to the fact that air-breathing hy-
personic propulsion is viewed as the next critical step toward
achieving (1) reliable affordable access to space, (2) global
reach vehicles. Both of these applications have commercial
as well as military implications. While rocket-based (com-
bined cycle) propulsion systems are needed to reach orbital
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speeds, they are much more expensive to operate because
they must carry oxygen. This is particularly costly when
travelling at lower altitudes through the troposphere. Current
rocket-based systems also do not exhibit the desired levels
of reliability and flexibility (e.g. with a landing option). For
this reason, much emphasis has been placed on two-stage-
to-orbit (TSTO) designs which involve a turbo-ram-scramjet
combined cycle first stage and a rocket-scramjet second
stage. Hypersonic vehicles are characterized by significant
aero-thermo-elastic-propulsion interactions and uncertainty.
Such vehicles are generally characterized by unstable non-
minimum phase dynamics as well as uncertain (hyperbolic)
flexible dynamics. A nonlinear model for the longitudinal
dynamics of a scramjet-powered hypersonic vehicle has been
used as the basis for our analysis and design.

C. Control Design Methodology

In this work, the distributed parameter plant is first ap-
proximated by a finite dimensional approximant. For unstable
plants, the coprime factors are approximated by their finite
dimensional approximants. The Youla parameterization is
then used to parameterize the set of all stabilizing LTI
controllers and formulate a weighted mixed-sensitivity H∞

optimization that is convex in the Youla Q−Parameter.
A finite-dimensional (real rational) stable basis is used to
approximate the Q−parameter. By so doing, the associated
infinite-dimensional optimization problem is transformed to
a finite-dimensional optimization problem involving a search
over a finite-dimensional parameter space. In addition to
solving weighted mixed-sensitivity H∞ control system de-
sign problems, subgradient concepts are used to directly
accommodate time-domain specifications (e.g. peak value of
control action, overshoot) in the design process. As such,
a systematic design methodology is provided for a large
class of distributed parameter plant control system design
problems. Convergence results are presented. Illustrative
examples for irrigation systems and hypersonic vehicles are
provided. In short, the approach taken permits a designer
to address control system design problems for which no
direct method exists. Detailed description of the design
methodology used can be found in [1], [2], [3].

This paper is organized as follows: Section II describes
the open channel system model, Section III describes the
hypersonic vehicle model, Section IV describes the control
design methodology used, Section V presents the control
designs, Section VI presents a summary and directions for
future research.
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II. IRRIGATION SYSTEM MODEL

The Saint Venant equations (named after Adhémar Jean
Claude Barré de Saint-Venant) are a set of hyperbolic partial
differential equations that describe the flow below a pressure
surface in a fluid. The following form of the St. Venant
equations is used to describe open-channel flow:

∂A

∂t
+

∂Q

∂x
= 0 (1)

∂Q

∂t
+

∂Q2/A

∂x
+ gA

∂Y

∂x
+ gA(Sf − Sb) = 0 (2)

Q(0, t) = u1(t), Q(L, t) = u2(t) (3)

Q(x, 0) = Qo, Y (x, 0) = Yo (4)

Equation 1 is called the continuity equation, Equation 2 is
called the momentum equation, and Equations 3 and 4 define
the boundary and initial conditions, respectively. Variables
and parameters used in Equations 1–4 are given in Table I
and illustrated in Fig.1.
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Fig. 1. Canal Structure Schematic

TABLE I

St. Venant Equations: Descriptions of Variables and Parameters

Symbol Description Unit
A(x, t) wetted area m2

Q(x, t) total discharge across section A(x, t) m3/s
Y (x, t) water depth m
Sf (x, t) friction slope −

Sb(x, t) bed slope (assumed constant) −

x distance in the direction of flow m
t time s
g acceleration due to gravity m/s2

L length of channel m
ui(t) control flow rates m3/s

The friction slope, Sf , is modelled using the Manning–
Strickler formula [4]:

Sf =
Q2n2

A2R4/3
(5)

where n represents Manning’s resistance coefficient
(s/m1/3), R represents hydraulic radius

def
= A/P (m), and

P represents hydraulic perimeter (m).

Assuming a prismatic channel, which allowes Ao = ToYo

where To is the width of channel at surface level, and
linearizing 1–2 yields [5]

To
∂y

∂t
+

∂q

∂x
= 0 (6)

∂q

∂t
+ 2 Vo

∂q

∂x
+ (C2

o − V 2
o ) To

∂y

∂x
− βo q − γo y = 0 (7)

q(x, t) and y(x, t) represent “small” variations from

Qo(x, t) and Yo(x, t), respectively. In Equations 6-7, Fo
def
=

Vo/Co is the Froude number, Co
def
=

√
g Ao

To
(m/s) is the

celerity, Vo
def
= Qo

Ao
(m/s) is the mean fluid velocity . βo and

γo are given by [5]:

βo=−
2g

Vo

(
Sb −

dYo

dx

)
(8)

γo=V 2
o

dTo

dx
+gTo

{
(1 + κ)Sb−

[
1+κ−(κ−2)F 2

o

] dYo

dx

}
(9)

where

κ =
7

3
−

4

3

Ao

ToPo

∂Po

∂Y
. (10)

It is assumed that Fo < 1 (laminar flow).
By taking the Laplace Transform of Equations 6-7 and

solving for q(x, s) and y(x, s) we obtain the following
infinite dimensional transfer functions:

q(x, s) =
eλ2Leλ1x − eλ1Leλ2x

eλ2L − eλ1L
u1 +

eλ2x − eλ1x

eλ2L − eλ1L
u2 (11)

y(x, s) = −
1

Tos

λ1e
λ2Leλ1x − λ2e

λ1Leλ2x

eλ2L − eλ1L
u1

−
1

Tos

λ2e
λ2x − λ1e

λ1x

eλ2L − eλ1L
u2 (12)

where

λ1,2(s) =
2VoTos + γo

2(C2
o − V 2

o )To
±√

(2VoTos + γo)2 + 4s(C2
o − V 2

o )T 2
o (s− βo)

2(C2
o − V 2

o )To
(13)

Equation 12 can be visualized as shown in Fig. 2.
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Fig. 2. Block diagram of open channel flow in a reach [6]

Equations 12 and 13 leads to the 2-input 1-output
Saint-Venant transfer function matrix [7]:

y(x, s)=
[

λ2eλ1Leλ2x
−λ1eλ2Leλ1x

Tos(eλ2L−eλ1L)
λ1eλ1x

−λ2eλ2x

Tos(eλ2L−eλ1L)

][u1

u2

]
(14)

A low frequency approximation of this transfer function
can be given as [7]:

y(x, s) =
[

e−sτ̂d(x)

Âd(x)(s+α)
− 1

Âd(x)(s+α)

] [
u1(s)

u2(s)

]
(15)

with the equivalent downstream backwater area, Âd(x), and
the downstream delay, τ̂d(x), and a seepage factor, α.

The equivalent downstream backwater area, Âd(x), is
given by

Âd(x) = Ad(L− x)

(
1 +

Ad(x)

Au(L− x)

)
(16)
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where

Ad(x) =
T 2

o (C2
o − V 2

o )

γo

(
1− e

−
γo

To(C2
o−V 2

o )
x
)

, (17)

Au(x) =
T 2

o (C2
o − V 2

o )

γo

(
e

γo
To(C2

o−V 2
o )

x
− 1

)
. (18)

The equivalent downstream delay, τ̂d(x), is given by

τ̂d(x) = τd(x) + τd(L − x) where τd =
x

Co + Vo
. (19)

III. HYPERSONIC VEHICLE MODEL

A scramjet (supersonic combustion ramjet) powered hy-
personic wave-rider is characterized by significant aero-
thermo-elastic-propulsion interactions and uncertainty [8].
Such interactions include viscous shock and boundary layer
interactions as well as nonlinear coupling associated with a
tightly integrated vehicle and propulsion system. The nonlin-
ear dynamical model [8] captures the vehicle’s longitudinal
rigid body dynamics, hypersonic aerodynamics, atmospheric
effects, structural dynamical coupling, and vehicle-scramjet
propulsion coupling effects.

Given the historic 2004 X-43A scramjet powered hyper-
sonic flights at Mach 7 and 10, the scramjet is of particular
interest. A scramjet is a variation of a ramjet with the key
difference being that the flow in the combustor is supersonic.
Like a ramjet, a scramjet essentially consists of a constricted
tube through which inlet air is compressed by the high speed
of the vehicle, fuel is combusted, and then the exhaust leaves
at higher speed than the inlet air.

What makes this application interesting is that the associ-
ated aero-thermo-elastic-propulsion interactions are governed
by several systems of coupled partial differential equa-
tions (PDEs). Navier-Stokes describes the basic fluid and
aerodynamics. Oblique shock and Prandtl-Meyer expansion
theory are used to simplify pressure computations and make
substantive simplifications [9], [10]. The vehicle relies on
compression lift provided by the forebody which serves as a
compressor for the scramjet. The underbelly of the vehicle
aftbody makes up the scramjet. As such, vehicle flexing is
critical because it impacts the bow shock angle and air flow
into the scramjet inlet. Vehicle flexing is modeled by fore and
aft cantilever Euler-Bernoulli beams. The scramjet, which is
also governed by the Navier-Stokes equations, is modeled by
a simple fixed geometry duct with heat addition. Travel at
hypersonic speeds can result in very high temperatures which
significantly impact the structural dynamics. Such effects will
not be examined here but, in general, are described by PDEs
involving conduction, convection, and radiation terms. At
sufficiently low densities (large Knudsen numbers), Navier-
Stokes breaks down and Boltzmann-based kinetic theory
must be used. This too will not be considered here.

The variables to be controlled are speed and flight path
angle. The linear model is obtained by trimming the nonlin-
ear model at Vo = 8M and zo = 85000 ft. States of the
model are given as

x = [V γ q θ η1 η̇1 η2 η̇2 η3 η̇3] (20)

where V , γ, q, and θ represent variations in the basic 3-dof
rigid body modes, i.e. speed (ft/sec), flight path angle (deg),

pitch rate (deg/sec), and pitch angle (deg), respectively. ηi

and η̇i (i = 1, 2, 3) represent flexible modes. Control inputs
are given as

u = [δe δFER] (21)

where δe and δFER represent variations in elevator angle
(deg) and fuel equivalence ratio.

The plant approximant singular values are shown in Fig. 3
as more modes are included. The first body bending mode
is observed to lie near 20 rad/sec. Given the performance
objectives, it was deemed that 3 flexible modes would be
adequate.
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Fig. 3. Plant Singular Values

IV. CONTROL DESIGN METHODOLOGY

In this section, stable plants are used to present the main
ideas. It should be noted, however, that all of the ideas and
results presented can be extended to unstable plants. This
is discussed in [1], [3]. Results for H∞ mixed-sensitivity
minimization for stable infinite-dimensional plants without
constraints are given in [2].

Proposition 4.1: (Stabilizing Compensators). Given Np,
Dp, Ñp, D̃p, Nk, Dk, Ñk, D̃k ∈ H

∞, let

P = NpD
−1
p = D̃−1

p Ñp (22)

be right and left co-prime factorizations of P , and[
D̃k −Ñk

−Ñp D̃p

] [
Dp Nk

Np Dk

]
=

[
I 0
0 I

]
(23)

is the corresponding Bezout identity. Then, the set of all
proper controllers, S(P )

def
= {K(P, Q)|Q ∈ H∞} which

internally stabilize P is given by:

K(P, Q) = (Nk −DpQ)(Dk −NpQ)−1 (24)

= (D̃k −QÑp)
−1(Ñk −QD̃p) (25)

Let P (s) ∈ H∞ denote a stable MIMO transfer func-
tion matrix for a distributed parameter plant. Also, let
{Pn(s)}

∞

n=1 ∈ RH∞ denote a sequence of stable finite-
dimensional approximants for P . In order to present the
main ideas, it is useful to define the following performance
measure.

Definition 4.1: (Mixed-Sensitivity). Suppose W1, W2, W3,
F, G, H ∈ H∞, and K(G, H) internally stabilizes F (as
well as G). The mixed-sensitivity of the pair (F, K(G, H)),
denoted Jmix, is defined as the map Jmix(·, K(·, ·)) : H∞×
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H∞ ×H∞ → R+ where

Jmix(F, K(G, H))
def
=∥∥∥∥∥∥

⎡
⎣ W1

W2K(G, H)
W3FK(G, H)

⎤
⎦ (I − FK(G, H))−1

∥∥∥∥∥∥
H∞

. (26)

Comment 4.1: (Mixed-Sensitivity). It should be noted that
K(G, H) need not belong to H∞. This follows from the fact
that not every plant is stabilizable by a stable controller. It
should also be noted that in what follows three specific cases
will be considered: (1) F = G = P is an infinite-dimensional
plant, (2) F = G = Pn is a finite-dimensional approximant
for P , (3) F = P and G = Pn. In all cases H will represent
a stable Q parameter which is generally infinite-dimensional
in case (1) and finite-dimensional in cases (2) and (3).

The optimal performance for the distributed parameter
plant P with respect to the measure Jmix is defined as
follows:
Definition 4.2: (Optimal Performance)

μopt(γc)
def
= inf

Q∈H∞
{ Jmix(P, K(P, Q)) |

C(Tcl(P, K(P, Q))) < γc } (27)

where C(Tcl(P, K(P, Q))) denotes convex constraints on
the associated closed loop maps Tcl(P, K(P, Q)) and γc ∈
[0,∞] denotes a constraint parameter selected by the de-
signer. γc = ∞ corresponds to the unconstrained case.

Since P is infinite-dimensional and Q ∈ H∞, it follows
that the controller K(P, Q) = −Q(I − PQ)−1 is generally
infinite-dimensional.

Figure 4 shows a near-optimal controller Ko for P . In
general, determining Ko is difficult. Specific unconstrained
cases have been addressed within [11], [12], [13], [14].

� � � Ko
� �� � P �

�

r e u
d

y

Fig. 4. Near-Optimal Infinite-Dimensional Feedback Loop

The above optimization problem is the central problem being
considered. The approach taken here requires that P be
(suitably) approximated by a finite-dimensional system Pn.
This motivates the following finite-dimensional optimization.
Definition 4.3: (Expected Performance)

μn(γc)
def
= inf

Q∈RH∞
{ Jmix(Pn, K(Pn, Q)) |

C(Tcl(Pn, K(Pn, Q))) < γc } (28)

where C(Tcl(Pn, K(Pn, Q))) denotes convex constraints on
the associated closed loop maps Tcl(Pn, K(Pn, Q)).

� � � Kn
� �� � Pn

�

�

r e u
d

y

Fig. 5. Purely Finite-Dimensional Feedback Loop

Since Pn ∈ RH∞ is finite-dimensional, it follows that
K(Pn, Q) = −Q(I − PnQ)−1 is finite-dimensional when
Q ∈ RH∞. While well known (Riccati, LMI) methods
exist for the unconstrained case [15], [16], mainly numerical
approaches exist for the constrained case [17], [18]. Here,

μn(γc) will be referred to as the expected performance since
the numbers μn(γc) provide guidance during design.
Let Qn denote any optimal or near-optimal solution to the
problem in Definition 4.3. By the parameterization given in
Proposition 4.1, it follows that Qn generates an internally
stabilizing compensator Kn for Pn (see Figure 5):

Kn
def
= K(Pn, Qn)

def
= −Qn(I − PnQn)−1. (29)

Because, in general, Kn may not be near-optimal with
respect to μopt(γc) as defined in Definition 4.2, and in
fact not even stabilizing for P , care must be taken. These
issues motivate the following question which underscores
the approach taken and the purpose of this work:

Under what conditions on the performance measure Jmix

and the approximants {Pn(s)}
∞

n=1, can one ensure that Qn

generates a stabilizing compensator Kn which delivers near-
optimal performance for the distributed plant P?
This question leads one to naturally consider the feedback
system obtained by substituting the finite-dimensional com-
pensator Kn into a closed loop system with the distributed
plant P (see Figure 6). Assuming that internal stability can
be shown [19], this then motivates the following “natural”
definition for the actual performance.

� � � Kn
� �� � P �

�

r e u
d

y

Fig. 6. Actual Near-Optimal Feedback Loop: μ̃n = Jmix(P, Kn)

Definition 4.4: (Actual Performance)

μ̃n(γc)
def
= Jmix(P, Kn) (30)

The main goal of the paper is to design a finite-dimensional
controller Kn, based on the finite-dimensional approximant
Pn, that internally stabilizes and delivers near-optimal per-
formance for the infinite-dimensional plant P . This motivates
the so-called Approximate/Design Problem.
Problem 4.1: (Approximate/Design). Find conditions on the
performance measure Jmix and the approximants {Pn}

∞
n=1

such that
lim

n→∞
μ̃n(γc) = μopt(γc). (31)

In practice, one would like to be able to compute μopt(γc)
using finite-dimensional algorithms. With the ultimate inten-
tion of providing such algorithms, the following “Purely”
Finite-Dimensional Weighted H∞ Mixed-Sensitivity Problem
is considered.
Problem 4.2: (Purely Finite-Dimensional). Find conditions
on the performance measure Jmix and the approximants
{Pn}

∞
n=1 such that

lim
n→∞

μn(γc) = μopt(γc). (32)
Solutions to the above constrained problems (Problems 4.1-
4.2) will be presented below. A proof will be given for the
specific constraint:

C(Tcl(P, K(P, Q))) =

∥∥∥∥∥∥
⎡
⎣ W1c(I − PQ)

W2cQ
W3cPQ

⎤
⎦
∥∥∥∥∥∥
H∞

<γc. (33)

Solutions to the Approximate/Design Problem and the Purely
Finite-Dimensional Problem are provided in [1], [2], [3].
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V. CONTROL DESIGNS

In this section an irrigation control system design and a
hypersonic vehicle control systems design is presented.

A. Irrigation System Control Design

The description of the irrigation system is given in Section
II. In this example, g = 9.8, Sb = 0.001, L = 1000m, To =
2m, Yo = 1m, Vo = 1m/s, Qo = 2 m3/s, α = 0.001s−1, and
the point at which the water level is controlled is x = 750m.
Given these parameters, the approximate St.Venant transfer
function is

P =
1

596.75

[
e−242s

s + 0.001

1

s + 0.001

]
. (34)

The finite dimensional approximants Pn used are
obtained by approximating the delay by its [n, n]
Padé approximations. These approximants satisfy
limn → ∞ ‖Pn − P‖

H∞
= 0 as required.

The mixed-sensitivity problem is defined by the weighting
functions

W1 =
0.1s + 0.005

s + 5× 10−6
and W2 =

s + 10

0.001s + 100
I2. (35)

To approximate the Q-parameter, we use the basis

qk =

(
s− 5

s + 5

)k−1

with N = 3 terms. (36)

Suppose that we would like to raise the water level at
x = 750m for 0.5m.

Design 1: Unconstrained Case. Resulting μn and μ̃n

values for the unconstrained case converge to 0.5646 after
n = 7.
Closed Loop Time Responses. The associated closed loop
output and control responses given in Fig. 7. Fig. 7 shows
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Fig. 7. Irrigation System: Unconstrained Time Responses
that the water level is increased from 1.0m to 1.5 meters
in about 5 minutes. In order to achieve this, downstream
gate flow is reduced to 0.3m3/s, and upstream gate flow
rate is reduced to about 1.0m3/s from their nominal values,
Qo = 2m3/s.

Design 2: Constrained Case. Under the constraints that
the water discharge at the gates satisfy u1(t) ≤ Qo =
2m3/sec and 0.63 ≤ u2(t) ≤ Qo = 2m3/sec, resulting μn

and μ̃n values converge to 0.8618 after n = 3.
Closed Loop Time Responses. The associated closed loop
output and control responses given in Fig. 8.
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Fig. 8. Irrigation System: Constrained Time Responses

Fig. 8 shows that the water level is increased from 1.0m
to 1.5 meters in about 5 minutes. In order to achieve this,
downstream gate flow is reduced to 0.63m3/s as required,
and upstream gate flow rate is reduced to about 1.6m3/s
from their nominal values, Qo = 2m3/s.

B. Hypersonic Vehicle Control Design

The description of the plant is given in Section III. At
the given flight condition, the equilibrium values for speed,
elevator angle, and the fuel equivalence ratio are Vo =
7.8464 kft/s, δeo

= 9.5842 deg, and δFERo
= 0.4567,

respectively. These values are included in the analysis.
The mixed-sensitivity problem is defined by the weighting

functions

W1 =

[
0.1s+0.02

s+2×10−5 0

0 0.1s+0.1

s+10−4

]
, W2 =

[
s+100

10−3s+104 0

0 s+1000

10−3s+104

]
,

and W3 =

[
s+0.04

10−3s+0.4
0

0 s+0.2

10−3s+2

]
. (37)

To approximate the Q-parameter, we use the basis

qk =

(
s− 10

s + 10

)k−1

with N = 4 terms. (38)

Design 1: Unconstrained Case. Resulting μn values for
the unconstrained H∞ problem converge to 11.72.
Closed Loop Time Responses. The associated closed loop
output and control responses given in Figs. 9 and 10. Fig. 9
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Fig. 9. Hypersonic Vehicle: Unconstrained Output Time Responses
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shows that in the unconstrained case settling time for speed
is about 120 seconds and there is very small variation in the
flight path angle response. Corresponding elevator angle and
fuel equivalency ratio responses are given in Fig. 10.
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Fig. 10. Hypersonic Vehicle: Unconstrained Control Time Responses
Design 2: Constrained Case. Suppose we would like to

limit the fuel equivalence ratio signal such that δFER ≤ 0.9.
Imposing this time domain constraint results in μn values
for the H∞ problem to converge to 11.73.
Closed Loop Time Responses. The associated closed loop
output and control responses given in Figs. 11 and 12. Fig. 11
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Fig. 11. Hypersonic Vehicle: Constrained Output Time Responses
shows that in the constrained case settling time for speed
is about 130 seconds and there is very small variation in
the flight path angle response, as in the unconstrained case.
However, δFER ≤ 0.9 is satisfied as more flexible modes
are included (Fig. 12).
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Fig. 12. Hypersonic Vehicle: Constrained Control Time Responses

VI. SUMMARY AND FUTURE DIRECTIONS

This paper has shown how convex optimization may
be used to determine H∞ near-optimal finite-dimensional
controllers for distributed parameter plants subject to con-
vex constraints. Two illustrative examples have been given.
Future work will examine other convex constraints and

convergence issues [20], [21], [22], examine the impact of
temperature effects on aero-elastic properties and control for
the hypersonic vehicle, more complicated canal structures
and canal networks for the open channel flow.
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