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Abstract

A consensus control framework for the rotational
dynamics of multiple spacecraft is developed. The
approach is energy based and guarantees asymptotic
convergence of relative states between the spacecraft.
Since the proposed control law emulates internal forces
between the spacecraft, the overall angular momentum
is kept constant. Furthermore, it is shown that the
angular velocities of each spacecraft can be made to
asymptotically converge towards a constant value, i.e.
each spacecraft can be made to rotate around a fixed
common rotational axis.

1. Introduction

One of the primary reasons of recent huge interest in
consensus control is due to its simplicity of the frame-
work. Specifically, the control laws given in [1] consti-
tute emulation of a mass-spring-damper system so that
the agents eventually converge to each other. This en-
tire behavior can be explained by employing the energy
function defined in terms of the inertial frame and by
showing that it decreases until the relative velocities be-
tween the agents coincide. Furthermore, the Krasovskii-
LaSalle’s invariance principle is invoked to show conver-
gence of relative positions as well.

In contrast to the case of translational motion of parti-
cles, consensus of attitudes during the rotational motion
of rigid bodies is not trivial although they have various
applications such as a coordinated cluster of satellites
carrying telescopes for astronomical interferometry and
enhancing resolution compared to a single satellite. The
application of attitude synchronization also extends to a
fleet of sensor-equipped underwater vehicles that move
together in an organized pattern to identify and track
features in ocean [2].

The difficulty in attitude synchronization is the
fact that if the mass moment of inertia is not spa-

This research was supported in part by the Min-
istry of Education, Culture, Sports, Science, and Technol-
ogy of Japan under Grant-in-Aid for Young Scientists (B)
18769001.

tially isotropic, the Euler equation describing rotational
motion becomes inherently nonlinear. Synchroniza-
tion/consensus on non-Euclidean manifolds (e.g., circle,
SO(3)-a subgroup of orthogonal matrices with deter-
minant +1) gives birth to various interesting phenom-
ena and are discussed in [3–6]. Specifically, there have
been a number of researches (e.g., [6–12]) addressing
distributed synchronization problems on SO(3). Most
of these works on SO(3), using the absolute states with
respect to the inertial frame of each agent, either make
the agents follow an externally given trajectory or take
a leader-follower approach. In [10] the authors showed
that attitude consensus can be achieved using only the
relative states between the rigid bodies. However, they
consider only the kinematic equation and the Euler
equation is disregarded. In contrast, [11, 12] explicitly
consider the Euler equation while aiming for attitude
synchronization on SO(3).

Our research not only considers the Euler equation
but also, to the best of our knowledge, produces the
first result in attitude synchronization that uses a simple
and intuitive control framework which emulates torques
due to springs and dampers between the agents. We
also show that the angular velocities of each agent can
be made to asymptotically converge towards a constant
value, i.e., the agents can be made to rotate around a
fixed rotational axis in the inertial frame, by applying
two types of the virtual (springs and) dampers in differ-
ent timings.

The notation used in this paper is fairly standard.
Specifically, R denotes the set of real numbers, R

n de-
notes the set of n×1 real column vectors, and N0 denotes
the set of nonnegative integers. Furthermore, we write
(·)T for transpose, A(i,j) for the (i, j)th (block) element
of the matrix A, 1n for the ones vector of dimension n,
mspec(A) for the spectrum of the matrix A, and |N | for
the cardinal number of the set N .
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2. Kinetic and Kinematic Equations of Space-

craft

Consider the nonlinear dynamical system representing
controlled n rigid spacecraft given by

Ibω̇i(t) = −ω×
i (t)Ibωi(t) + ui(t), ωi(0) = ωi0,

t ≥ 0, i = 1, . . . , n, (1)

where ωi(t) ∈ R
3 represents the angular velocity of

the spacecraft i with respect to the body-fixed frame,
Ib , diag[Ib1, Ib2, Ib3] is a positive-definite inertia ma-
trix common to all the spacecraft, ui(t) ∈ R

3 is the input
vector with control inputs providing body-fixed torques
about three mutually perpendicular axes defining the
body-fixed frame of the spacecraft i, and the notation
w× denotes the skew-symmetric matrix

w× ,





0 −w3 w2

w3 0 −w1

−w2 w1 0



 ,

representing cross-product. Furthermore, the kinematic
equations of the rigid spacecraft i, i = 1, . . . , n, are given
by

˙̂ηi(t) = 1
2 (η̄i(t)ωi(t) − ω×

i (t)η̂i(t)), (2)

˙̄ηi(t) = − 1
2ωT

i (t)η̂i(t), (3)

where ηi , [η̂T
i , η̄i]

T ∈ R
3 × R denotes Euler parame-

ters representing the orientation of the spacecraft i with
respect to the inertial frame I. The corresponding ro-
tation matrix C(ηi) ∈ SO(3), is given by

C(ηi) = (η̄2
i − η̂T

i η̂i)I3 + 2η̂iη̂
T
i − 2η̄iη̂

×
i , i = 1, . . . , n.

(4)
Note that

Ċ(ηi(t)) = −ω×
i (t)C(ηi(t)), t ≥ 0, i = 1, . . . , n.

(5)

3. Attitude Consensus Control for Multiple

Spacecraft

In the preceding work [13, 14], Tanner et al. consid-
ered an energy-based controller that emulates forces due
to springs and dampers for translational motion of par-
ticle systems. Adopting a similar idea, in this paper we
consider the control law given by

ui(t) = −
1

|Ni|

∑

j∈Ni

η̂−1
j (t)η̂i(t)

−
1

|Ni|

∑

j∈Ni

(ωi(t) − C(ηi(t))C
T(ηj(t))ωj(t)),

(6)

for the rotation dynamics (1)–(3), where Ni ⊂
{1, . . . , n}\{i} represents the set of agents which the

agent i can communicate with and η̂−1
j η̂i ∈ R

3 is the
quaternion error between quarternions η1, η2 given by

η̂−1
j η̂i , η̄j η̂i − η̄iη̂j − η̂×

j η̂i. (7)

Note that η̂−1
j η̂i is a torque along the rotational axis

of the rotation matrix C(ηi)C
T(ηj). It is also assumed

that if the agent i can communicate with the agent j,
then the agent j can also communicate with the agent i.

The control law (6) states that the torque input ui(t)
of the agent i is computed with the relative state mea-
surements with respect to the other agents specified by
Ni. Note that this control law (6) can also be written
as

u(t) = −[(Aadj ⊗ I3)η̂
−1(t)]η̂(t)

− C̃(η(t))(L ⊗ I3)C̃
T(η(t))ω(t), (8)

where u = [uT
1 , . . . , uT

n ]T, η , (η̂, η̄) ∈ R
3n ×

R
n, η̂ , [η̂T

1 , . . . , η̂T
n ]T, η̄ , [η̄1, . . . , η̄n]T, η̂−1 ,

[(η̂−1
1 )T, . . . , (η̂−1

n )T]T, ω , [ωT
1 , . . . , ωT

n ]T, C̃(η) ,

block-diag[C(η1), . . . , C(ηn)], L ∈ R
n×n is the normal-

ized Laplacian matrix defined as

L(i,j) ,











1, i = j,

− 1
|Ni|

, j ∈ Ni,

0, otherwise,

(9)

and Aadj , D − L is the adjacency matrix associated
with the Laplacian L and the associated degree matrix
D. Note that if the graph that a Laplacian matrix L

corresponds to is connected, then L possesses a simple
zero eigenvalue and the corresponding eigenvector can
be 1n.

Theorem 3.1. Consider the rotational dynamics of
n rigid spacecraft given by (1) with kinematic equations
given by (2), (3). Let N1, . . . ,Nn be such that result-
ing Laplacian represents a connected graph. Then the
feedback control law given by (6) guarantees

lim
t→∞

C(ηi(t))C
T(ηj(t)) = I3, i, j = 1, . . . , n. (10)

Proof. First, note that with ui(t) given by (6) it
follows that

Ibω̇i(t) = −ω×
i (t)Ibωi(t) −

1

|Ni|

∑

j∈Ni

η̂−1
j (t)η̂i(t)

−
1

|Ni|

∑

j∈Ni

(ωi(t) − C(ηi(t))C
T(ηj(t))ωj(t)),

ωi(0) = ωi0, t ≥ 0, i = 1, . . . , n, (11)

or, equivalently,

(In ⊗ Ib)ω̇(t)
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= −block-diag[ω×
1 (t), . . . , ω×

n (t)](In ⊗ Ib)ω(t)

− [(Aadj ⊗ I3)η̂
−1(t)]η̂(t)

− C̃(η(t))(L ⊗ I3)C̃
T(η(t))ω(t),

ω(0) = [ωT
10, . . . , ω

T
n0]

T, t ≥ 0. (12)

Since

n
∑

i=1

CT(ηi(t))ui(t)

= (1T
n ⊗ I3)C̃

T(η)u(t)

= −(1T
n ⊗ I3)[(Aadj ⊗ I3)η̂

−1(t)]η̂(t)

− (1T
n ⊗ I3)(L ⊗ I3)C̃

T(η(t))ω(t)

= 0, t ≥ 0, (13)

it follows that the angular momentum of the overall sys-
tem conserves so that the angular momentum of the sys-
tem in the inertial frame is given by

L0 =
n

∑

k=1

CT(ηk0)Ibωk0

≡
n

∑

k=1

CT(ηk(t))Ibωk(t). (14)

Next, consider the energy-like function

H(ω, η) =
1

2

n
∑

i=1

ωT
i Ibωi

+
1

2

n
∑

i=1

∑

j∈Ni

(η̂i − η̂j)
T(η̂i − η̂j)

+
1

2

n
∑

i=1

∑

j∈Ni

(η̄i − η̄j)
2

=
1

2
ωT(In ⊗ Ib)ω +

1

2
η̂T(t)(L ⊗ I3)η̂(t)

+
1

2
η̄T(t)Lη̄(t). (15)

Note that since Ib is positive definite and L is nonneg-
ative definite, H(ω, η) ≥ 0 for all (ω, η) ∈ R

3n × R
4n.

Now, letting η(t), ω(t), denote the solution to (2), (3),
and (12), it follows that the Lyapunov derivative along
the closed-loop system trajectories is given by

Ḣ(ω(t), η(t))

=

n
∑

i=1

ωT
i (t)Ibω̇i(t)

+

n
∑

i=1

∑

j∈Ni

(η̂i(t) − η̂j(t))
T( ˙̂ηi(t) − ˙̂ηj(t))

+

n
∑

i=1

∑

j∈Ni

(η̄i(t) − η̄j(t))( ˙̄ηi(t) − ˙̄ηj(t))

=

n
∑

i=1

ωT
i (t)(−ω×

i (t)Ibωi(t) − η̂−1
j (t)η̂i(t)

− (ωi(t) − C(η̂i(t))C
T(ηj(t))ωj(t)))

+

n
∑

i=1

∑

j∈Ni

(η̂i(t) − η̂j(t))
T((η̄i(t)ωi(t) − ω×

i (t)η̂i(t))

− (η̄j(t)ωj(t) − ω×
j (t)η̂j(t)))

−
n

∑

i=1

∑

j∈Ni

(η̄i(t) − η̄j(t))(ω
T
i (t)η̂i(t) − ωT

j (t)η̂j(t))

=

n
∑

i=1

∑

j∈Ni

(−ωT
i (t)η̂−1

j (t)η̂i(t) − ωT
i (t)ωi(t)

− ωT
i (t)C(η̂i(t))C

T(ηj(t))ωj(t)

+ ωT
i (t)η̂−1

j (t)η̂i(t))

= −
n

∑

i=1

∑

j∈Ni

[(CT(ηi(t))ωi(t) − CT(ηj(t))ωj(t))
T

· (CT(ηi(t))ωi(t) − CT(ηj(t))ωj(t))]

≤ 0, t ≥ 0. (16)

Hence, it follows from Theorem 4.4 of [15] that

lim
t→∞

(CT(ηi(t))ωi(t) − CT(ηj(t))ωj(t)) = 0,

i, j = 1, . . . , n. (17)

To consider the attitude consensus, consider

R , {(ω, η) ∈ R
3n × R

4n :

CT(ηi(t))ωi(t) − CT(ηj(t))ωj(t) = 0,

i, j = 1, . . . , n}, (18)

and and let M be the largest invariant set contained in
R. Note that for the system to guarantee the condition
Ḣ(ω(t), η(t)) = 0, the trajectory of the system must lie
on the set R.

In this case, since

CT(ηi(t))ω̇i(t) − CT(ηj(t))ω̇j(t) ≡ 0, i, j = 1, . . . , n,

(19)
holds, it follows from

(In ⊗ Ib)ω̇(t)

= −block-diag[ω×
1 (t), . . . , ω×

n (t)](In ⊗ Ib)ω(t)

− C̃(η(t))(L ⊗ I3)C̃
T(η(t))ω(t),

ω(0) = [ωT
10, . . . , ω

T
n0]

T, t ≥ 0, (20)

that

0 = I−1
b ω×

i Ibωi − C(ηi)C
T(ηj)I

−1
b ω×

j Ibωj

+ (I3 + C(ηi)C
T(ηj))I

−1
b η̂−1

j η̂i,

= I−1
b [I3 − IbC(ηi)C

T(ηj)I
−1
b C(ηj)C

T(ηi)]ω
×
i Ibωi

+ (I3 + C(ηi)C
T(ηj))I

−1
b η̂−1

j η̂i,

i, j = 1, . . . , n. (21)
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Note that (21) is rewritten as

0 = I−1
b [I3 − IbC(η−1

j ηi)I
−1
b CT(η−1

j ηi)]ω
×
i Ibωi

+ (I3 + C(η−1
j ηi))I

−1
b η̂−1

j η̂i, i, j = 1, . . . , n,

(22)

where η−1
j ηi , [(η̂−1

j η̂i)
T, η̂T

j η̂i + η̄j η̄j ]
T. This equality

holds only if
η̂−1

j (t)η̂i(t) ≡ 0, (23)

and hence it further follows that

lim
t→∞

η̂i(t) = lim
t→∞

η̂j(t), i, j = 1, . . . , n, (24)

which implies (10). �

Note that (22) holds in M irrespective of whether the
term ω×

i Ibωi is zero or not, which implies that ω̇i(t) does
not necessarily goes to 0, i.e., the angular velocities of
the spacecraft does not asymptotically converge towards
a constant value.

It is known that the angular velocity of a single rigid
body rotating with energy dissipation and conserved an-
gular momentum asymptotically aligns with the largest
principal axis of the rigid body. This interesting phe-
nomenon, called the major axis rule, seems extendable
to our multiple rigid body problem since our proposed
controller conserves the overall angular momentum with
its spring damper emulations and dissipates energy with
dampers. This phenomenon is adopted in the next sec-
tion which provides a control framework to bring the
angular velocities of each spacecraft to a constant value,
i.e., to make each spacecraft rotate around a fixed com-
mon axis in the inertial frame.

4. Synchronized Rotation around a Fixed Axis

In this section we characterize the control law that
resembles the case where there is no ‘stiffness’ term in
our controller. Specifically, we remove the first term in
the right-hand side of (6) so that the control law in the
following theorem is given by

ui(t) = −
1

|Ni|

∑

j∈Ni

(ωi(t) − C(ηi(t))C
T(ηj(t))ωj(t)).

(25)

Theorem 4.1. Consider the rotation dynamics of n

rigid spacecraft given by (1) with kinematic equations
given by (2), (3). Let N1, . . . ,Nn be such that resulting
Laplacian represents a connected graph. Then the feed-
back control law given by (25) guarantees conservation
of angular momentum and makes either of the following
hold:

i) limt→∞ ω×
i (t)Ibωi(t) = 0, i = 1, . . . , n;

ii) limt→∞ C(ηi(t))C
T(ηj(t)) = I3 or −I3, i, j =

1, . . . , n.

Proof. First, note that with ui(t) given by (25) it
follows that

Ibω̇i(t) = −ω×
i (t)Ibωi(t)

−
1

|Ni|

∑

j∈Ni

(ωi(t) − C(ηi(t))C
T(ηj(t))ωj(t)),

ωi(0) = ωi0, t ≥ 0, i = 1, . . . , n, (26)

or, equivalently (20). Since

n
∑

i=1

CT(ηi(t))ui(t)

= (1T
n ⊗ I3)C̃

T(η)u(t)

= −(1T
n ⊗ I3)(L ⊗ I3)C̃

T(η(t))ω(t)

= 0, (27)

it follows that the angular momentum of the overall sys-
tem conserves so that the angular momentum of the sys-
tem in the inertial frame is given by (14). Next, consider
the Lyapunov-like function

V (ω) =
1

2

n
∑

i=1

ωT
i Ibωi

=
1

2
ωT(In ⊗ Ib)ω. (28)

Note that since Ib is positive definite, V (ω) > 0 for all
ω ∈ R

3n\{0}. Now, letting ω(t) denote the solution to
(20), it follows that the time derivative of (28) along the
closed-loop system trajectories is given by

V̇ (ω(t), η(t))

=

n
∑

i=1

ωT
i (t)Ibω̇i(t)

=

n
∑

i=1

ωT
i (t)(−ω×

i (t)Ibωi(t)

− (ωi(t) − C(η̂i(t))C
T(ηj(t))ωj(t)))

= −
n

∑

i=1

∑

j∈Ni

[(CT(ηi(t))ωi(t) − CT(ηj(t))ωj(t))
T

· (CT(ηi(t))ωi(t) − CT(ηj(t))ωj(t))]

≤ 0, t ≥ 0. (29)

Hence, it follows from Theorem 4.1 of [16] that the tra-
jectory (ω(t), η(t)) ≡ (0, ·) of the closed-loop system
given by (2), (3), and (20) is Lyapunov stable with re-
spect to ω and hence ω is bounded. Furthermore, it
follows from Theorem 4.4 of [15] that

lim
t→∞

(CT(ηi(t))ωi(t) − CT(ηj(t))ωj(t)) = 0,

i, j = 1, . . . , n. (30)

Now, consider R given by (18) and let M be the
largest invariant set contained in R. Note that for the
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system to guarantee the condition V̇ (ω(t), η(t)) = 0, the
trajectory of the system must lie on the set R. Hence,
in this case, using (5), it follows that (19) holds in M
and hence it follows from (20) that

0 = CT(ηi)I
−1
b ω×

i Ibωi − CT(ηj)I
−1
b ω×

j Ibωj,

i, j = 1, . . . , n, (31)

holds in M. Note that ω×
i Ibωi = 0, i = 1, . . . , n, sat-

isfy (31) and hence {(ω, η) ∈ R
3n × R

4n : ω×
i Ibωi =

0, i, j = 1, . . . , n} is an invarient set in M.

Now, suppose ω×
i Ibωi 6= 0, i = 1, . . . , n. In this case,

using (18), it follows that

0 = CT(ηi)I
−1
b ω×

i Ibωi − CT(ηj)I
−1
b ω×

j Ibωj

= CT(ηi)[I
−1
b ω×

i Ibωi − C(ηi)C
T(ηj)I

−1
b

· (C(ηj)C
T(ηi)ωi)

×IbC(ηj)C
T(ηi)ωi]

= CT(ηi)I
−1
b [ω×

i Ibωi − IbC(ηi)C
T(ηj)I

−1
b

· C(ηj)C
T(ηi)ω

×
i Ibωi]

= CT(ηi)I
−1
b [I3 − IbC(ηi)C

T(ηj)I
−1
b

· C(ηj)C
T(ηi)]ω

×
i Ibωi, i = 1, . . . , n, (32)

and thus, it follows that either C(ηi)C
T(ηj) = I3 satis-

fies (31). �

Finally, note from (14) that the system of n spacecraft
has the constant angular moment L0 depending on the
initial condition of the system. Now, together with (14),
it follows that

L0 ≡
n

∑

k=1

CT(ηk(t))Ibωk(t)

=

n
∑

k=1

CT(ηk(t))IbC(ηk(t))CT(ηk(t))ωk(t)

= lim
t→∞

(

n
∑

k=1

CT(ηk(t))IbC(ηk(t))
)

CT(ηi(t))ωi(t),

i = 1, . . . , n. (33)

It is important to note that i) in Theorem 4.1 indi-
cates that each of the spacecraft rotates about one of
its principal axes in the case where Ib1 ≤ Ib2 < Ib3.
Specifically, even when rotating axes of the spacecraft
are aligned, they rotate with constant offset maintained.
On the other hand, when ii) in Theorem 4.1 holds, ori-
entation of all the spacecraft coincide and each of the
spacecraft rotates as if it is independent of the other
spacecraft.

In the case of i), the constant offset can be removed
by applying the ‘spring’ term, i.e., changing the control
input from (25) to (6). Making this switching only when
the angular velocities are almost aligned to the common
fixed axis, the effect of the torque due to spring on the
direction of the angular velocities can be made minimal
and thus attitude consensus with rotation around the
fixed axis is achieved.
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Figure 5.1: Angular velocity errors ω1(t) − ω2(t) and
the error of three quaternion elements η̂1(t)−η̂2(t) versus
time

5. Illustrative Numerical Example

Consider the two spacecraft given by (1) (n = 2).
It follows from Theorem 3.1 that the torque inputs (6)
achieve attitude consensus.

With Ib = diag[5, 4, 1], and the initial conditions
ω1(0) = [−0.7071, 1, 0]T, η1(0) = [0, 0, 0.7071, 0.7071]T,
ω2(0) = [1, 0.7071, 0]T, η2(0) = [0, 0, 0, 0]T, Figure 5.1
shows the relative angular velocity ω1(t) − ω2(t), and
the error of the three quarternion elements η̂1(t)− η̂2(t)
versus time and Figure 5.2 shows the control signals ver-
sus time.

With initial conditions ω1(0) = [0.5, 0, 0]T, η1(0) =
[0, 0, 0.7071, 0.7071]T, ω2(0) = [0, 0.3, 0]T, η2(0) =
[0, 0.7071, 0, 0.7071]T, and torque input (25), Figure 5.3
shows the angular velocities ω1(t), ω2(t), and the er-
ror of the three quaternion elements η̂1(t)− η̂2(t) versus
time. Note that a single pair of elements of the angu-
lar velocity reaches a constant value and the other two
pairs reaches 0. This shows that the angular velocities
asymptotically align with a principle axis. Furthermore,
note that the quarternion error does not converge to 0.

Now, with the same initial conditions as above Fig-
ure 5.4 shows the angular velocities ω1(t), ω2(t), and the
error of the three quaternion elements η̂1(t)− η̂2(t) ver-
sus time, when the control input is switched from (25)
to (6) at time t = 30. This shows that not only atti-
tude consensus but also a synchronized rotation around
a fixed axis is achieved.

6. Conclusion

In this paper we considered an attitude consensus
problem of multiple spacecraft. A controller that em-
ulates torque inputs which constitute internal forces of
the overall system was proposed and attitude consensus
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Figure 5.2: Control torques u1(t), u2(t)
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Figure 5.3: Angular velocities ω1(t), ω2(t) and the er-
ror of three quaternion elements η̂1(t)−η̂2(t) versus time

under the proposed controller was showed. Furthermore,
a method to achieve common fixed rotational axis was
proposed. Finally, we provided numerical examples to
show the properties of the closed-loop system.
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