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Abstract— This paper is a response to requests from several
respected colleagues in academia for a careful writeup of the
classical time-optimal control based hybrid controllers that we
have been using for material transport control in our modular
reconfigurable manufacturing systems application. Specifically,
we show how classical closed form time optimal control, which
exploits the special structure of double integrator systems (ie
ones with point-mass Newton’s Law dynamics) can be used
to design hybrid controllers for waypoint tracking. While
double integrator dynamics are very simple, they are extremely
prevalent in many domains, beyond manufacturing systems, eg,
transportation, disk drives, robotics, and aerospace.

We present two methods, one which will track general way
point specs, and another which will track waypoints that lie
on convex or concave trajectories. Both approaches are based
on appropriate setting (switching) of the state of a reference
generator with the same point mass dynamics in a two-degree-
of-freedom controller topology. The techniques we present ad-
mit very compact implementations, suitable for use in low cost
micro controllers and DSP chips used in modular reconfigurable
embedded systems applications. Since these controllers were to
be integrated with a discrete planner, as part of the control
software of a large complex new research platform, every
effort was made to keep the controllers as simple as possible.
Our controllers can be viewed as examples of basic hybrid
controllers that are being used successfully in practice, and
can be used as benchmarks by controls researchers for more
sophisticated hybrid control design methods.

I. INTRODUCTION

This paper is a response to requests from several respected

colleagues in academia for a careful writeup of the classical

time-optimal control based hybrid controllers that we have

been using for material transport control in our modular re-

configurable manufacturing systems application. Specifically,

we show how classical closed form time optimal control

[14], [5], [1], [9], which exploits the special structure of

double integrator systems (ie ones with point-mass Newton’s

Law dynamics) can be used to design hybrid controllers

for waypoint tracking. While double integrator dynamics

are very simple, they are extremely prevalent in many

domains, beyond manufacturing systems, eg, transportation,

disk drives, robotics, and aerospace.

We present two methods, one which will track general way

point specs, and another which will track waypoints that lie

on convex or concave trajectories. Both approaches are based

on appropriate setting (switching) of the state of a reference

generator with the same point mass dynamics in a two degree

of freedom controller topology [14], [5], [1], [16], [9].

The authors are with Palo Alto Research Center (PARC), California,
USA. {hhindi,lcrawford,rzhou,celdersh}@parc.com
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Fig. 1. Diagram of the PARC hypermodular high speed parallel printer
fixture. Paper feeders (inputs) are on the left, and paper outputs are on the
right. The four large boxes are marking engines, which actually perform the
printing. There are three high-speed “highways” in the fixture, with “off-
ramps” and “on-ramps” sending paper to and from the marking engines.
Many cross-connections link the highways. A typical sheet path is shown in
red. Black boxes indicate paper path module boundaries. Typical letterhead
paper is about 2 modules in length. Each module contains two or three
independently controlled stepper motor actuated rollers to move the paper
along, shown as double circles. There are sensors at each module boundary
(not shown). The modules communicate via a CAN bus network.

Our approach can be viewed as a special case of the

more sophisticated modern methods available today, see for

example [3], [6], [2], [4]. However, the techniques we present

admit very compact implementations, suitable for use in

low cost micro controllers and DSP chips used in modular

reconfigurable embedded systems applications. Since these

controllers were to be part of a complex system integration

effort for a new research platform, every effort was made to

keep the controllers as simple as possible. Our controllers

can be viewed as examples of basic hybrid controllers that

are being used successfully in practice, and can be used as

benchmarks by controls researchers for more sophisticated

hybrid control design methods [13], [12], [15], [2], [4], [10].

Our work is motivated by tracking control problems en-

countered, while working on the PARC hypermodular high

speed parallel printer fixture, shown in Fig.1. The fixture

is designed to be highly modular and reconfigurable, both

in hardware and in software, and to serve as a testbed to

explore the integration of control and planning. The goal of

the control is drive paper along the paper paths shown, while

meeting waypoint tracking requirements. The waypoints for
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each sheet of paper, along with the routing and scheduling,

are determined by a separate combinatorial search planner

which will not be discussed here, see [11], [7]. In this paper,

our focus will be on the controllers used to achieve the

desired waypoint tracking requirements.

II. PROBLEM STATEMENT

We will be concerned mainly with the double integrator

system:
ṡ = v

v̇ = u
(1)

where s and v are the position (m) and speed (m/s), respec-

tively; u is the acceleration control signal (m/s/s). If we define

the plant state xP = (s,v), then (1) can be written in state

space form as

ẋP(t) = AxP(t)+ Bu(t); xP(t0) = xP0 (2)

where

A =

[

0 1

0 0

]

and B =

[

0

1

]

Note that [A,B] is controllable, and the system has an

invertible time evolution matrix

Φ(t0,t f ) = eA(t f −t0) =

[

1 (t f − t0)
0 1

]

.

In many modern control systems, such as the one in Fig.1,

an abstract planner handles task ordering and scheduling, and

then passes a set of waypoints to the physical controller.

These are a set of specific times, locations, and speeds,

{(t0,s0,v0), . . . ,(tN ,sN ,vN)} for the system to achieve at

certain times. Suppose we view the way points as sam-

ples at instants {t0, . . . ,tN} of a fictitious reference state

trajectory xR(t), whose values at those times are xR(t0) =
(s0,v0), . . . ,xR(tN) = (sN ,vN). Then we may state the way-

point tracking problem in its most skeletal form as

min
u

∑
ti∈{t0,...,tN}

||xP(ti)− xR(ti)||p

s.t. ẋP(t) = AxP(t)+ Bu(t); xP(t0) = (s(t0),v(t0))
||u||∞ ≤ amax

This captures our primary objective, namely that of hitting

the waypoints without exceeding our motor peak acceleration

constraints.

As systems become more modular, and as the modules

themselves become more autonomous, eventually, one arrives

at the following single module waypoint tracking problem,

which will be the focus of this paper. The multiple waypoint

tracking problem above can be decomposed into a sequence

of single module problems, possibly by using tricks such as

fictitious modules, to handle nonuniform spacing, etc.

Problem Statement: [single module waypoint tracking]

Given a module with double integrator dynamics (2), find a

control u : R2 → R that will take the state from xP0 = (s0,v0)
at t0 to xP f = (s f ,v f ) at t f , while not exceeding the peak

acceleration limit amax. If such a control u can be found

from a certain class of control laws, then we say that the

module

amax

(t0, s0, v0) (tf, sf, vf)

sf−s0

Fig. 2. Single module waypoint tracking

xR0 R

Pf (·) ux̃

xP

xR

sP

sR

e

Fig. 3. Two degree of freedom controller topology. The controller consists
of R and f (·); takes 2 inputs: initial condition xR0 and plant state xP; and
produces the control output u = f (x̃).

pair {(t0,xP0),(t f ,xP f )} is amax-feasible under that class of

control laws. See Fig.2.

Note that the above only captures the most critical con-

straints. In practice, one would like to have all the following:

1) pass through the waypoints (or as close as possible),

2) don’t exceed acceleration limits

3) easy to check that {(t0,xP0),(t f ,xP f )} is amax-feasible

4) feedback implementation to reject disturbances

5) low memory and computation costs for DSP imple-

mentation

6) compact parametrization to fit network bandwidth lim-

its

7) minimal transit time through overall path

8) smooth machine-friendly position and velocity trajec-

tories

9) speed should always be positive (no moving back-

wards)

III. 2DOF CONTROL TOPOLOGY

We now introduce the basic idea that we use to solve the

waypoint tracking problem. Specifically, we will make use of

the two degree of freedom controller (2DOF) topology, Fig.3,

which uses a reference generator to provide feedforward

control, and a state feedback for stabilization and disturbance

rejection. This is a classical architecture, discussed in many

standard references [14], [5], [1], [16], [9]. The equations for

the overall system are now

ẋR = AxR ;xR(t0) = xR0

ẋP = AxP + Bu ;xP(t0) = xP0
(3)

In this paper, we assume the plant state is directly available

to the controller; if not, an observer can be used as part of the

controller to estimate xP. In the hypermodular printer fixture

in Fig.1, each stepper motor is controlled independently by

its own DSP processor, which runs such a 2DOF controller.

Proposition 1: Consider the problem of tracking the state

of a linear reference generator, as in (3), whose state is fully
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observable, with the same dynamics A-matrix as the plant.

Let u : Rn → R be a stabilizing (possibly nonlinear) state

feedback for the plant. Let x̃ := xP − xR. Then the control

u(x̃) will stabilize the tracking error x̃ and drive it to zero

with the same closed loop dynamics as it has on the plant

by itself.

Proof : Trivially we observe that subtracting the two state

equations in (3) gives

˙̃x = Ax̃+ Bu(x̃)

which has exactly the same dynamics as the original system

in closed loop with the stabilizing state feedback u.�

Proposition 2: Assume that Φ(t0,t f ) = eA(t f −t0) is invert-

ible and that [A,B] is controllable. Set xR(t0) = eA(t0−t f )xP f .

Then if u is a control law which takes the state x̃ := xP − xR

to zero in finite time t∗ ∈ [t0,t f ], then u(x̃) solves the single

module waypoint trajectory control problem.

Proof : Since Φ is invertible, we can propagate xR back

in time from t f to t0. Now from time t∗ onwards, we

have xP(t∗) ≡ xR(t∗). By controllability, this means that u ≡
0,∀t ≥ t∗. Thus xP and xR will both evolve homogeneously

according to xP(t) = xR(t) = eA(t−t∗)xR(t∗),∀t ≥ t∗. Since the

reference generator was evolving homogeneously all along,

we have xR(t∗) = eA(t∗−t0)xR(t0) = eA(t∗−t0)eA(t0−t f )xP f =
eA(t∗−t f )xP f . Substituting into the expression for xP(t) and

evaluating at t = t f gives xP f . �

Thus given any finite time stabilizing control law u for the

double integrator system, we have a paradigm for solving the

single module waypoint tracking problem as follows:

1) check points are amax-feasible

2) set xR(t0) = eA(t0−t f )xP f

3) apply control law u(x̃) from t0 to t f

IV. TIME OPTIMAL CONTROL BASED TRACKING

We will now review some classical results on time optimal

control for double integrator systems, which will supply

us with a finite time stabilizing control law, that can be

used in the propositions above to design waypoint tracking

controllers, see [14], [5], [1], [9].

The time optimal control problem is

min
u

T =

∫ t0+T

t0

1 dt

s.t. ẋ(t) = Ax(t)+ Bu(t); x(0) = xo

x(T ) = 0

‖u‖∞ ≤ amax

The solution to the time optimal control problem for the dou-

ble integrator system is a nonlinear state-dependent control

law

u(t) = fTOC(x(t)) (4)

= −amaxsgn
(

sgn(s(t))
√

2amax|s(t)|+ v(t)
)

where recall that the state x(t) = (s(t),v(t)).
At this point one might be tempted to apply u(t) =

fTOC(x̃(t)) right away to the plant and reference system to

solve the problem. But first we need to be able to check

amax-feasibility of a given pair of waypoints under the control

law fTOC(x̃(t)). Fortunately, once again thanks to the special

structure of the double integrator system, there is a closed

form expression for the time optimal transfer time: For the

double integrator system (2), the time taken to bring the state

from x0 to the origin under the time optimal control law (4)

is given by

tTOC(x(t0))=















v(t0)+2

√

s(t0)+
v(t0)2

2amax
;s(t0) > −

v(t0)|v(t0)|
2amax

−v(t0)+2

√

−s(t0)+
v(t0)2

2amax
;s(t0) < −

v(t0)|v(t0)|
2amax

|v(t0)| ;s(t0) = −
v(t0)|v(t0)|

2amax

(5)

Using these facts together with Prop1 and Prop2, we

can propose the following controller for the single module

waypoint tracking problem:

Proposition 3: Consider the double integrator system,

with acceleration limit amax, together with the reference

generator system as in (3). Let x̃ := xP − xR, and suppose

we want to move from xP0 = (s0,v0) at t0 to xP f = (s f ,v f )

at t f . Then by taking xR(t0) = eA(t0−t f )xP f , the control

u(x̃) = fTOC(x̃) (6)

will take the state from (t0,xP0) to (t f ,xP f ) while not

exceeding the peak acceleration limit amax, if and only if

tTOC(x̃(t0)) ≤ t f − t0. (7)

where x̃(t0) = xP(t0)− xR(t0).
Remark: Note that here evaluating xR(t0) = eA(t0−t f )xP f is

merely setting

xR(t0) =

[

1 (t0 − t f )
0 1

][

s f

v f

]

=

[

s f − v f (t f − t0)
v f

]

.

In other words, we simply extrapolate back the desired

output trajectory, start the reference generator on that desired

trajectory, and then apply the control that will move the

system from its input trajectory to the desired one in minimal

time, see Fig.5(top). �

Thus if we use (6) for f (·) in the 2DOF architecture

of Fig.3, the resulting controller satisfies almost all of our

desired practical criteria above, except for the last two,

which we will address later. Note, in particular, the exact

end-to-end state transfer, the compactness, low memory

and computational burden, and the ease with which amax-

feasibility under the above control law of a given point to

point state transfer can be determined using the tTOC formula.

Furthermore, the messaging bandwidth requirements are also

minimal: once feasibility is checked, the only information

that must be sent to the controllers to execute the end-to-end

transfer is x̃(t0) = xP(t0)− xR(t0).
Fig.4 shows the feasible input and output speeds for a

module of fixed length and a given amax. Pairs that are

outside the boundaries are infeasible. Again, the formulas

(5) and (7) are easy to check in a low cost processor.

We now refer back to Fig.5, and confirm that the last two

specs were indeed not met. First, the control (acceleration)
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dt=0.08

dt=0.14

Fig. 4. As we sweep ∆t from 0 to 0.15, each value produces a “lemon”
shape region, corresponding to the set of (v0,v f ) pairs that are amax feasible
with the control law (6) for that choice of ∆t and the fixed ∆s and amax .

profile does have some large swings as it switches from

−amax to amax at various points in time. This can cause

significant wear and tear on mechanical components as well

as induce undesirable vibrations in the system. Second, it

also can require moving the paper backwards which could

interfere with previous modules’ tasks that have been handed

off to downstream modules. This motivates us to explore the

method below.

V. INFLECTION FREE CONTROL BASED

TRACKING

In this section we will describe another waypoint tracking

control method which has smoother profiles, at the expense

of some restriction on the feasible set of state transfers.

Similar ideas can be found in standard references, eg: [8].

However, we have not seen elsewhere the closed loop im-

plementation via time optimal control, presented here. The

resulting controller contains switching not only due to the

time optimal control law, but also due to deliberate switching

of the state of the reference generator. It can be viewed as

a practical example of a simple hybrid systems switching

controller.

Specifically, in some applications, it is known ahead of

time, or by design, that the overall function of a certain mod-

ule is either to slow down or to speed up. In this case, one

can design inflection free trajectories. These are trajectories

where the acceleration does not flip sign and hence are either

convex or concave. We will design controllers for a specific

subclass of inflection free trajectories.

Assumption: For the rest of this section, we will assume

that it is required to keep the controlled objects moving in

the forward direction, ie, we will not allow the velocity to

reverse.

Definition 1: A constant acceleration inflection free

(CAIF) trajectory is one which is generated by applying

a constant acceleration amax for some subinterval of time

[t ′0,t
′
f ] ⊆ [t0,t f ], see Fig.6.
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Fig. 5. Reference tracking using control law (6), for waypoints
((0.0,0.0,0.25),(0.18,0.10,1.0)) . (Top) position plant (red) and reference
(blue). (Mid) plant speed. (Bot) acceleration control.

t t ’ t ’ t

v

v

s

s

0 0 f f

o

f

o

f

a

v

v

o

f

Fig. 6. Constant acceleration inflection free trajectory.

By integrating the area under the curves, one can see that

the trajectory will have the following form:

s(t)=







s0 +v0(t − t0) ;t0 ≤ t < t ′0
s0 +v0(t − t0)+ 1

2 amax(t − t ′0)
2 ;t ′0 ≤ t < t ′f

s0 +v0(t
′
f − t0)+ 1

2 amax(t
′
f − t ′0)

2 +v f (t − t ′f ) ;t ′f ≤ t < t f

(8)

The next question is: what pairs of waypoints are CAIF

amax-feasible? Since (8) gives us the explicit expression for

CAIF amax-feasible points, then we can check the feasibility

of a given waypoint pair ((t0,s0,v0),(t f ,s f ,v f )) by checking
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t ’f
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Fig. 7. Extreme cases: given a fixed amax, the top figure shows the minimal
possible change in distance (smallest possible area under the velocity curve
for amax); the bottom figure shows the maximal possible distance change
(maximum possible area).

if they are consistent with (8). Specifically, if we evaluate

(8) at t = t f , we obtain the expression

s f = s0 + v0(t
′
f − t0)+

1

2
amax(t

′
f − t ′0)

2 + v f (t f − t ′f ).

Using this together with the observation (see Fig.6)

amax =
v f − v0

t ′f − t ′0
⇒ t ′f = t ′0 +

v f − v0

amax
(9)

we can solve for the switching times as functions of
((t0,s0,v0),(t f ,s f ,v f )):

t ′0 =

(

1

v f −v0

){

v f t f −v0 t0 − (s f − s0)−
1

2amax
(v f −v0)

2

}

(10)

t ′f =

(

1

v f −v0

){

v f t f −v0 t0 − (s f − s0)+
1

2amax
(v f −v0)

2

}

.

Therefore, the waypoint pair ((t0,s0,v0),(t f ,s f ,v f )) being

feasible and consistent with (8), is equivalent to plugging it

into (10) and obtaining valid switching times which satisfy:

t0 ≤ t ′0 and t ′f ≤ t f . (11)

Equivalent consistency conditions can be obtained by in-

specting the extreme cases in Fig.7. Noting that the distance

covered is the area under those curves, one obtains the

following conditions, which turn out to be exactly equivalent

to (10) and (11):

v0∆t + δ ≤ ∆s ≤ v f ∆t − δ ;v0 ≤ v f

v f ∆t + δ ≤ ∆s ≤ v0∆t − δ ;v0 > v f
(12)

where ∆v = v f −v0, ∆t = t f − t0, ∆s = s f −s0, and δ = ∆v2

2amax
.

Fig.8 shows the feasible input and output speeds for a

module of fixed length and a given amax. Pairs that are

outside the boundaries are infeasible. Again, the formulas

(11) and (12) are easy to check in a low cost processor.
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0.6
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Fig. 8. As we sweep ∆t from 0 to 0.15, each value produces a pair of
“lemon” shaped regions, corresponding to the set of (v0,v f ) pairs that are
amax CAIF feasible for that choice of ∆t and the fixed ∆s and amax . Also
shown for comparison in the cyan dotted lines are the regions of the control
law in the previous section.

Furthermore, if we ignore the waypoint timing constraint

and simply ask: what pairs ((s0,v0),(s f ,v f )) are CAIF amax-

feasible for some ∆t = t f − t0, one obtains the condition:

1

2amax
(v2

f − v2
0) ≤ (x f − x0)

which is shown as the solid boundary lines in Fig.8. This fol-

lows from (9) and Fig.7 & Fig.6, which show that any CAIF

curve must contain at least the trapezoidal area (distance)

between t ′0 and t ′f , which is 1
2amax

(v2
f − v2

0).
Proposition 4: Given amax, the waypoint pair

((t0,s0,v0),(t f ,s f ,v f )) is CAIF amax-feasible if and

only if (11) or (12) hold. Then the double integrator system

can be made to track the CAIF trajectory using the 2DOF

architecture with the time optimal control law by setting

xR(t0) = xP(t0) = (s0,v0) and applying the control law

u(x̃) = fTOC(x̃); then at time t = t ′0 given by (10), the

reference generator state is switched to track the desired

output trajectory, xR(t ′0) = eA(t′0−t f )x f = (s f − v f (t f − t ′0),v f ),
while continuing to apply u(x̃) = fTOC(x̃) all along.

Proof : By construction, the amax CAIF curve is the result of

applying amax to the double integrator on the interval [t ′0,t
′
f ].

Since the TOC control will attempt to drive x̃ to zero in

minimum time, it must also apply amax for that same duration

- it cannot do anything else to reduce the error any faster. �

Thus if we use (6) for f (·) in the 2DOF architecture of

Fig.3, with the reference generator switching as described

above, the resulting controller now satisfies all of our desired

practical criteria above, see Fig.9. Of course the satisfaction

of all of the constraints comes at a cost: the inflection free

property of the trajectories reduces the set feasible end-

to-end transfers, see Fig.8; the reference switching adds

(minimal) complexity to the controller; and there is a small

additional messaging bandwidth cost: once feasibility has

been established, instead of sending x̃ at t0, we must now

send xR(t ′0) and also include t ′0. Nevertheless, we have found

these tradeoffs quite acceptable, in order to achieve the specs
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Fig. 9. Tracking using the CAIF control of the same waypoints as in
Fig.5. (Top) position plant (red) and reference (blue). (Mid) plant speed.
(Bot) acceleration control.

of smoother trajectories and no backwards motion.

Remark: Note that in the absence of noise, the optimal

control will be zero on the initial interval [t0,t
′
0] since both the

reference and the plant have the same dynamics and initial

conditions, and hence the tracking state error x̃ will be zero.

The control will be nonzero on the interval [t ′0,t
′
f ], during

which the tracking error will be reduced to zero. Then again

after t ′f , the control will again be zero. See Fig.9. Of course,

the benefit of having the closed loop control implementation

is that, in practice, the system will always be subject to noise

and disturbances, and thus there is the opportunity for the

control to correct for these perturbations.

Remark: Our presentation has been in continuous time;

however, in practice, we have implemented our systems in

discrete time. There are various subtleties in approximating

continuous time optimal control with discrete time-optimal

control. However there are solutions too. We refer the reader

to [9] for a discussion of these issues. We have found the

proximate time optimal servo (PTOS) described there to be

quite satisfactory in addressing the main issues in discrete

time implementation.

Remark: Note that we have derived the conditions for

switching in terms of times t ′0 and t ′f . One could just as

well compute corresponding transition conditions in terms of

the state xP. It would be interesting to compare the hybrid

robustness properties of both approaches, along the lines of

[15].

VI. CONCLUSION

In conclusion we have presented two classical time optimal

control based methods for waypoint tracking for double in-

tegrator systems that give rise to hybrid switching dynamics.

Both are based on using a finite time stabilizing control

law in a two-degree-of-freedom topology with a reference

generator in conjunction with the plant model. We have

found the constant acceleration inflection free method to be

quite effective in our practical applications, especially when

implemented using the switched time optimal scheme. Other

finite time controllers, such as sliding mode controllers, can

also be used to construct similar hybrid dynamics.

Simplicity was one of our main design objectives and

challenges, to keep costs to a minimum, and to minimize

complexity of system integration with the discrete planner.

In addition to tracking the waypoints from the planner, our

controllers had nine other practical criteria to meet, including

fast and exact end-to-end state transfer, actuator saturation,

disturbance rejection, low memory and cpu burden, trajectory

smoothness and monotonicity. While there are some very

sophisticated control design methods available that could

handle such constraints, the two classical time optimal con-

trol based methods presented here are able to meet most, if

not all, the desired constraints, with quite minimal hardware,

software and communications burden.
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