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Abstract— This paper considers the problem of control syn-
thesis via dynamic output feedback for linear time-delay sys-
tems with finite frequency specifications. A finite frequency per-
formance analysis condition for time-delay systems is presented.
Then, a procedure of control synthesis via dynamic output
feedback such that finite frequency specifications are captured,
is given in the framework of linear matrix inequality (LMI)
approach. Finally, the design procedure and the effectiveness
of the proposed method are illustrated via a numerical design
example.

I. INTRODUCTION

One of the most fundamental results in the field of
dynamical systems analysis, feedback control, and signal
processing, is the Kalman-Yakubovic-Popov (KYP) lemma.
Various properties of dynamical systems can be characterized
by a set of inequality constraints in the frequency domain.
The KYP lemma establishes equivalence between such fre-
quency domain inequality (FDI) for a transfer function and a
linear matrix inequality (LMI) for its state space realization.
While the KYP lemma has been a major machinery for de-
veloping systems theory, it is not completely compatible with
practical requirements. In particular, design specifications are
often given for a certain frequency range of relevance. The
generalized KYP (GKYP) lemma ([1]-[3]) provides a unified
LMI characterization of FDIs in finite frequency ranges.

The phenomena of time delay are often encountered
in many practical systems, such as chemical engineering
systems, inferred grinding model, manual control, neural net-
work, nuclear reactor, population dynamic model, and ship
stabilization. Time delay often causes instability and gen-
eration of oscillation. Hence, many stabilization approaches
have been proposed to deal with the problem of specification
requirements. H∞ control is proposed to reduce the effect of
the disturbance input on the regulated output to within a
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prescribed level [4]-[9]. Positive real control is proposed to
guarantee that the resulting closed-loop system is stable, and
its transfer function is positive real [10]-[13]. Guaranteed
cost control is proposed to stabilize the system and provides
an upper bound on the performance index [14]-[18].

The main objective of this paper is to derive a delay-
independent finite frequency performance analysis condition
and propose a design procedure for dynamic output feedback
controllers such that the desired specifications in finite fre-
quency ranges for linear time-delay systems are satisfied. The
synthesis condition via dynamic output is given in terms of
solutions to a set of LMIs by using full multiplier expansion
approach based on the analysis result. A numerical design
example will illustrate the procedures and usefulness of the
proposed method.

The paper is organized as follows. Section 2 presents a
finite frequency performance analysis condition for linear
time-delay systems, and Section 3 provides a design pro-
cedure of dynamic output feedback controller. In Section 4,
a numerical example is proposed to illustrate the design pro-
cedure and demonstrate their effectiveness. Some concluding
remarks are shown in Section 5.

The following notations are used throughout this paper.
For a matrix A, its transpose and complex conjugate trans-
pose are denoted by AT and A∗, respectively. The Hermitian
part of a square matrix A is denoted by He(A) := A+A∗. The
symbol Hn stands for the set of n×n Hermitian matrices. I
denotes the identity matrix with an appropriate dimension.
The set of matrices N = N∗≤ 0 is denoted by N. For matrices
Φ and P, Φ⊗P means the Kronecker product. For matrices
G∈Cn×m and Π∈Hn+m, a function σ : Cn×m×Hn+m →Hm
is defined by

σ(G,Π) :=
[

G
Im

]∗
Π

[
G
Im

]
.

II. FINITE FREQUENCY PERFORMANCE ANALYSIS FOR
LINEAR TIME-DELAY SYSTEMS

Consider a linear time-delay system described by

ẋ(t) = Ax(t)+Adx(t−d)+Bϖ(t)
z(t) = Cx(t)+Dϖ(t) (1)

for the continuous-time case or

x(k +1) = Ax(k)+Adx(k−d)+Bϖ(k)
z(k) = Cx(k)+Dϖ(k) (2)

for the discrete-time case, where x ∈ Rn is the state vector,
ϖ ∈Rnϖ is the disturbance input and z∈Rnz is the regulated
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output, respectively. A, Ad , B, C and D are known constant
matrices of appropriate dimensions. d > 0 is an unknown
state delay.
The transfer function matrix G(λ ) from ϖ to z is denoted
by

G(s) = C(sI−A− e−dsAd)−1B+D (3)

for the continuous-time case or

G(z) = C(zI−A− z−dAd)−1B+D (4)

for the discrete-time case. Given a Hermitian matrix Π, the
specification can be described by

σ(G(λ ),Π) < 0 ∀λ ∈ Λ(Φ,Ψ) (5)

where

Λ(Φ,Ψ) := {λ ∈ C|σ(λ ,Φ) = 0,σ(λ ,Ψ)≥ 0} (6)

and Λ := Λ if Λ is bounded and Λ := Λ∪{∞} if unbounded.
Subsequently, a finite frequency performance analysis con-
dition is given by the following theorem.
Theorem 1: Let matrices A ∈Cn×n, Ad ∈Cn×n, B ∈Cn×nϖ ,
C ∈ Cnz×n, D ∈ Cnz×nϖ , Π ∈ Hnϖ +nz , and Φ, Ψ ∈ H2 be
given and define Λ by (6). Suppose Λ represents curves
on the complex plane. Then, σ(G(λ ),Π) < 0 holds for all
λ ∈ Λ(Φ,Ψ) if there exist P = P∗, Q = Q∗ > 0 and X = X∗
such that[

A B Ad
I 0 0

]∗
(Φ⊗P+Ψ⊗Q)

[
A B Ad
I 0 0

]
+




[
C D
0 I

]∗
Π

[
C D
0 I

]
+

[
X 0
0 0

]
0

0 −X


 < 0. (7)

Proof. For the continuous-time setting, the specification (5)
can be denoted by the FDI

J∗
[
C D
0 I

]∗
Π

[
C D
0 I

]
J < 0, ω ∈ Λc (8)

where J :=
[
( jωI−A− e−d jω Ad)−1B

I

]
. It is equivalent to

L∗




[
C D
0 I

]∗
Π

[
C D
0 I

]
+

[
X 0
0 0

]
0

0 −X


L < 0, (9)

where L :=




( jωI−A− e−d jω Ad)−1B
I

e−d jω( jωI−A− e−d jω Ad)−1B


 and X = X∗.

Similarly, for the discrete-time setting, we can get the fol-
lowing FDI from (5)

J∗
[
C D
0 I

]∗
Π

[
C D
0 I

]
J < 0, (10)

where ω ∈ Λd . It follows that

L∗




[
C D
0 I

]∗
Π

[
C D
0 I

]
+

[
X 0
0 0

]
0

0 −X


L < 0. (11)

Defining

ζ :=




( jωI−A− e−d jω Ad)−1B
I

e−d jω( jωI−A− e−d jω Ad)−1B


η (12)

with η ∈ Cnϖ , η 6= 0 and ω ∈ Λc for the FDI in (9) or

ζ :=




(e jω I−A− e−d jω Ad)−1B
I

e−d jω(e jω I−A− e−d jω Ad)−1B


η (13)

with η ∈ Cnϖ , η 6= 0 and ω ∈ Λd for the FDI in (11), we
have

Γλ Fζ = 0, λ ∈ Λ (14)

where

Γλ :=

{
[I −λ I] (λ ∈ Λ)
[0 −I] (λ = ∞) , F :=

[
A B Ad
I 0 0

]
.

(15)

Now we consider the generalization of the strict S-procedure
in [1] given by

tr(ΘS) < 0 ⇔ (Θ+M)∩ int(N) 6= φ (16)

where S is a set specified by M as follows:

S := {S ∈Hq : S 6= 0,S≥ 0, tr(MS)≥ 0, rank(S) = 1}. (17)

Correspondingly, the set S would be given by

S := {ξ ξ ∗ : ξ ∈Gλ ,λ ∈ Λ}
Gλ := {ξ ∈ C2n+nϖ : ξ 6= 0,Γλ Fξ = 0}. (18)

From Lemma 2, the set S can be characterized by (17) with
M in (43). By Lemma 3, the set M is admissible and rank-
one separable. Hence, from Lemma 1, tr(ΘS)< 0 where Θ :=

[
C D
0 I

]∗
Π

[
C D
0 I

]
+

[
X 0
0 0

]
0

0 −X


 is equivalent to the

existence of M ∈M satisfying

Θ+M < 0. (19)

From (14), it is easy to see that ζ ∈Gλ , so ζ ∗Θζ < 0 holds
if (19) holds. Thus (9) and (11) hold.
Remark 2: Theorem 1 gives a sufficient condition for finite
frequency performance analysis of linear time-delay systems.
It should be emphasized that the condition of Theorem 1 is
only sufficient, not necessary. Correspondingly, it will lead
to some conservatism.
The following result provides a dual version of Theorem 1.
Theorem 2: Let matrices A ∈Cn×n, Ad ∈Cn×n, B ∈Cn×nϖ ,
C ∈Cnz×n, D∈Cnz×nϖ , Π∈Hnϖ +nz , and Φ, Ψ∈H2 be given
and consider Λ defined by (6). Suppose Λ represents curves
on the complex plane. Then σ(G(λ )∗,Π) < 0 holds for all
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λ ∈Λ(Φ∗,Ψ∗) if there exist P = P∗, Q = Q∗ > 0 and X = X∗
such that 


A I
C 0
Ad 0


(Φ⊗P+Ψ⊗Q)




A I
C 0
Ad 0



∗

+




[
B 0
D I

]
Π

[
B 0
D I

]∗
+

[
X 0
0 0

]
0

0 −X


 < 0. (20)

By Theorem 1, we can obtain the following result in the
entire frequency range.
Corollary 1: Let matrices A ∈Cn×n, Ad ∈Cn×n, B ∈Cn×nϖ ,
C ∈ Cnz×n, D ∈ Cnz×nϖ and Π ∈ Hnϖ +nz be given. Then,
σ(G(λ ),Π) < 0 holds if there exist P = P∗ > 0 and X =
X∗ > 0 such that[

A B Ad
I 0 0

]∗
(Φ⊗P)

[
A B Ad
I 0 0

]
+




[
C D
0 I

]∗
Π

[
C D
0 I

]
+

[
X 0
0 0

]
0

0 −X


 < 0, (21)

where Φ =
[

0 1
1 0

]
for continuous-time case or Φ =

[
1 0
0 −1

]
for discrete-time case.

Remark 3: Corollary 1 provides an exact solution to the
FDI specification given for the entire frequency range. In
particular, the parameters P and X are required to be positive
definite to enforce a stability constraint.

III. DYNAMIC OUTPUT FEEDBACK CONTROL SYNTHESIS

Consider the plant G(λ ) described by

λx = Ax+Adxd +B1ϖ +B2u

z = C1x+D11ϖ +D12u

y = C2x+D21ϖ (22)

with a dynamic output feedback controller K(λ ) of the
following form:

λxK = AKxK +BKy

u = CKxK +DKy (23)

where λ is the frequency variable (s for continuous-time and
z for discrete-time cases), and x ∈ Rn is the state vector,
xd ∈Rn is the delayed state with a time delay d > 0, ϖ ∈Rnϖ

is the disturbance input, u ∈ Rnu is the control input, z ∈
Rnz is the regulated output, y ∈ Rny is the measured output
and xK ∈ Rn is the state of the controller, respectively. A,
Ad , B1, B2, C1, C2, D11, D12 and D21 are known constant
matrices of appropriate dimensions. AK , BK , CK and DK are
the controller parameter matrices. Then the resulting closed-
loop system is

λx = (A+B2DKC2)x+B2CKxK +Adxd +(B1 +B2DKD21)ϖ
λxK = BKC2x+AKxK +BKD21ϖ

z = (C1 +D12DKC2)x+D12CKxK +(D11 +D12DKD21)ϖ .
(24)

Denote by H(λ ) the closed-loop transfer function from ϖ
to z. The control synthesis problem under consideration is to
design a dynamic output feedback controller K(λ ) such that

σ(H(λ )∗,Π) < 0 ∀λ ∈ Λ(ΦT ,ΨT ). (25)

For the later development, the following preliminaries are
required.
Lemma 4 (Finsler’s Lemma): Let x ∈Rn, symmetric matrix
Ξ ∈ Rn×n, and Ω ∈ Rm×n such that rank(Ω) = r < n. Then
the following statements are equivalent:
i) x∗Ξx < 0, for any x 6= 0 and Ωx = 0.
ii) ∃∆ ∈ Rn×m: Ξ+∆Ω+Ω∗∆∗ < 0.
The following result provides a feasible method to solve the
control synthesis problem via dynamic output feedback.
Theorem 3: Consider the linear time-delay system (22) with
a dynamic output feedback controller (23). Let Φ,Ψ ∈ H2
and Π ∈ Hnϖ +nz be given. Suppose R ∈ C(n+ny)×(4n+nϖ +nz)

satisfies

Y T




Φ⊗P+Ψ⊗Q 0 0 0
0 Π 0 0
0 0 X 0
0 0 0 −X


T ∗Y ∗−µY R∗RY ∗ < 0,

(26)

Y :=




Â+ B̂0KĈ0 I B̂+ B̂0KD̂2 I 0 0
Ĉ + D̂1KĈ0 0 D̂+ D̂1KD̂2 0 I 0

Âd 0 0 0 0 I
Ĉ0 0 D̂2 0 0 0


 , (27)

K :=
[

AK BK
CK DK

]
(28)

where

Â :=
[

A 0
0 0

]
, Âd :=

[
Ad 0
0 0

]
, B̂ :=

[
B1
0

]
,

B̂0 :=
[

0 B2
I 0

]
, Ĉ :=

[
C1 0

]
, Ĉ0 :=

[
0 I

C2 0

]
,

D̂ := D11, D̂1 :=
[
0 D12

]
, D̂2 :=

[
0

D21

]
, (29)

µ > 0 is a real scalar and T is the permutation matrix such
that

[
M1 M2 M3 M4 M5 M6

]
T =[

M1 M2 M3 M5 M4 M6
]

(30)

for arbitrary matrices M1, M2, M3, M4, M5 and M6 with
column dimensions 2n, 2n, nϖ , nz, 2n and 2n, respectively.
If there exist matrices P = P∗, Q = Q∗ > 0, X = X∗, W , V1,
V2, V3 and K such that the following inequality

T ZT ∗ < He




−Ĉ∗0ΣΛ+V1
V2

−D̂∗
2ΣΛ+V3

(ÂĈ∗0 + B̂D̂∗
2)ΣΛ− ÂV1−V2− B̂V3− B̂0K R

(ĈĈ∗0 + D̂D̂∗
2)ΣΛ−ĈV1− D̂V3− D̂1K R
ÂdĈ∗0ΣΛ− ÂdV1




,

(31)
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Λ := Ĉ0V1 + D̂2V3−WR,

Z :=




Φ⊗P+Ψ⊗Q 0 0 0
0 Π 0 0
0 0 X 0
0 0 0 −X




holds where

Σ =
[

I 0
0 (C2C∗2 +D21D∗

21)
−1

]
, (32)

then the resulting closed-loop system (24) captures the finite
frequency specification (25). In this case, the parameter
matrices of the controller (23) is given by

[
AK BK
CK DK

]
:= K W−1. (33)

Proof. By virtue of Theorem 2, the specification (25) is
captured if the following inequality for the closed-loop
system (24)

[
M I

]
T




Φ⊗P+Ψ⊗Q 0 0 0
0 Π 0 0
0 0 X 0
0 0 0 −X


T ∗

[
M I

]∗
< 0,

(34)

M :=




A I B
C 0 D
Ad 0 0




holds, where T is defined by (30) and

A :=
[

A+B2DKC2 B2CK
BKC2 AK

]
, Ad :=

[
Ad 0
0 0

]
,

B :=
[

B1 +B2DKD21
BKD21

]
,

C :=
[
C1 +D12DKC2 D12CK

]
, D :=

[
D11 +D12DKD21

]
.

(35)

Defining a parameter matrix K of the controller (23) by (28)
and matrices by (29), the closed-loop system matrices can
be denoted by

A = Â+ B̂0KĈ0, Ad = Âd , B = B̂+ B̂0KD̂2,

C = Ĉ + D̂1KĈ0, D = D̂+ D̂1KD̂2. (36)

So M can be rewritten as follows:

M : = A +BKC

=




Â I B̂
Ĉ 0 D̂
Âd 0 0


+




B̂0
D̂1
0


K

[
Ĉ0 0 D̂2

]
. (37)

We assume that C has full row rank without loss of gener-
ality. According to Lemma 4, it follows that

T




Φ⊗P+Ψ⊗Q 0 0 0
0 Π 0 0
0 0 X 0
0 0 0 −X


T ∗ < He

([
I

−M

]
W

)
.

(38)

To make the problem tractable, the multiplier W is given to
be

W := C +WR+(I−C +C )V, det(W ) 6= 0 (39)

where W ∈C(n+ny)×(n+ny), V ∈C(4n+nϖ )×(4n+nϖ +nz) and R ∈
C(n+ny)×(4n+nϖ +nz) is a matrix to be specified. If there exists
a real scalar µ > 0 such that R is chosen to satisfy (26), then
(38) is equivalent to

T




Φ⊗P+Ψ⊗Q 0 0 0
0 Π 0 0
0 0 X 0
0 0 0 −X


T ∗ <

He
([

C + I−C +C
−A C +−BK A (C +C − I)

][
WR
V

])
(40)

without introducing conservatism. Defining K := KW , it
follows that

T




Φ⊗P+Ψ⊗Q 0 0 0
0 Π 0 0
0 0 X 0
0 0 0 −X


T ∗ <

He




[
C + I−C +C 0

−A C + A (C +C − I) −B

]


WR
V

K R





 . (41)

In view of C + = C ∗(C C ∗)−1, we have

C + =




Ĉ∗0
0

D̂∗
2





[

Ĉ0 0 D̂2
]



Ĉ∗0
0

D̂∗
2






−1

=




Ĉ∗0
0

D̂∗
2


Σ =




Ĉ∗0Σ
0

D̂∗
2Σ


 ,

I−C +C = I−



Ĉ∗0Σ
0

D̂∗
2Σ


[

Ĉ0 0 D̂2
]

=




I−Ĉ∗0ΣĈ0 0 −Ĉ∗0ΣD̂2
0 I 0

−D̂∗
2ΣĈ0 0 I− D̂∗

2ΣD̂2


 ,

−A C + =−



Â I B̂
Ĉ 0 D̂
Âd 0 0







Ĉ∗0Σ
0

D̂∗
2Σ




=



−(ÂĈ∗0 + B̂D̂∗

2)Σ
−(ĈĈ∗0 + D̂D̂∗

2)Σ
−ÂdĈ∗0Σ


 ,
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A (C +C − I) =


(ÂĈ∗0 + B̂D̂∗
2)ΣĈ0− Â −I (ÂĈ∗0 + B̂D̂∗

2)ΣD̂2− B̂
(ĈĈ∗0 + D̂D̂∗

2)ΣĈ0−Ĉ 0 (ĈĈ∗0 + D̂D̂∗
2)ΣD̂2− D̂

ÂdĈ∗0ΣĈ0− Âd 0 ÂdĈ∗0ΣD̂2


 ,

Σ = (Ĉ0Ĉ∗0 + D̂2D̂∗
2)
−1

=
[

I 0
0 (C2C∗2 +D21D∗

21)
−1

]
. (42)

By defining V :=




V1
V2
V3


, we can obtain (31). Namely, if the

inequality (31) holds, the closed-loop system (24) meets the
requirement of the finite frequency specification (25).
Remark 4: The result of Theorem 3 is given in the
framework of LMIs which can be solved numerically. The
condition in Theorem 3 is sufficient for the existence of
feasible dynamic output feedback controllers such that
the resulting closed-loop time-delay systems achieve finite
frequency design specifications. The choice of R will affect
the associated degree of conservatism. If R is chosen
to satisfy (26) with Y defined by (27), the introduced
conservatism is minimal.
Remark 5: In the single-objective setting, a sufficient
condition is provided for the multiplier basis to yield design
procedures. The full multiplier expansion method is used to
render the synthesis conditions convex.

The design specification in (25) can guarantee that the
closed-loop system meets the requirement of performance
in a certain finite frequency range of rlevance. However, the
closed-loop stability has not been captured, and hence one
may wish to include a stability constraint as an additional
design specification. The following lemma gives a basic
result for the closed-loop stability.
Lemma 5: Let Â, Âd , B̂0 and Ĉ0 in (29), R and Φ ∈H2 be
given. Then the following statements are equivalent:

i) There exist a parameter matrix K :=
[

AK BK
CK DK

]
and

matrices P = P∗ > 0 and X = X∗ > 0 such that
[

Â+ B̂0KĈ0 I
Âd 0

]
(Φ⊗P)

[
Â+ B̂0KĈ0 I

Âd 0

]∗
+

[
X 0
0 −X

]
< 0,

and

R∗⊥






I 0
0 I
0 0


(Φ⊗P)




I 0
0 I
0 0



∗

+




0 0 0
0 X 0
0 0 −X




R∗⊥

∗
< 0.

ii) There exist matrices W , K , P = P∗ > 0 and X = X∗ > 0
such that


I 0
0 I
0 0


(Φ⊗P)




I 0
0 I
0 0



∗

+




0 0 0
0 X 0
0 0 −X


 <

He







Ĉ+
0 W

−ÂĈ+
0 W − B̂0K
−ÂdĈ+

0 W


R


 ,

where

Ĉ+
0 :=

[
0 C∗2(C2C∗2)−1

I 0

]
.

IV. EXAMPLE

In this section, the proposed design method of a stabi-
lizing dynamic output feedback controller, which makes the
resulting closed-loop time-delay system meet specifications
in finite frequency ranges, is illustrated via an numerical
example.
Example 1: Consider the linear continuous time-delay sys-
tem given by

ẋ(t) = Ax(t)+Adx(t−d)+B1ϖ(t)+B2u(t)
z(t) = C1x(t)+D11ϖ(t)+D12u(t)
y(t) = C2x(t)+D21ϖ(t)

with the following parameters

A =
[−2 1
−1 1

]
, Ad =

[
0.2 0.1
0.3 0.1

]
, B1 =

[
1
−1

]
,

B2 =
[−2

1

]
, C1 =

[−1 1
]
, D11 = 0,

D12 = 0, C2 =
[

1 0
0 1

]
, D21 = 0.

and d is an unknown positive scalar.
Our objective is to design a stabilizing dynamic output
feedback controller (23) such that

∣∣Gzϖ ( jω)
∣∣ < γ, ∀ ∣∣ω∣∣≤ ωl

holds, where Gzϖ is the closed-loop transfer functions from ϖ
to z. From Lemma 5 and Theorem 3, the synthesis conditions
are given by




0 Ps 0
Ps Xs 0
0 0 −Xs


 < He







Ĉ+
0 W

−ÂĈ+
0 W − B̂0K
−ÂdĈ+

0 W


Rs


 ,




−Ql Pl 0 0 0 0
Pl ω2

l Ql 0 0 0 0
0 0 1 0 0 0
0 0 0 Xl 0 0
0 0 0 0 −γ2 0
0 0 0 0 0 −Xl




<

He




−Ĉ∗0ΣΛ+V1
V2

−D̂∗
2ΣΛ+V3

(ÂĈ∗0 + B̂D̂∗
2)ΣΛ− ÂV1−V2− B̂V3− B̂0K Rl

(ĈĈ∗0 + D̂D̂∗
2)ΣΛ−ĈV1− D̂V3− D̂1K Rl
ÂdĈ∗0ΣΛ− ÂdV1




,

Λ := Ĉ0V1 + D̂2V3−WRl ,
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where W , K , Ps = P∗s > 0, Xs = X∗s > 0, Pl = P∗l , Ql = Q∗
l >

0, Xl = X∗l > 0, V1, V2 and V3 are the real variables and Rs
and Rl are given by the followings, respectively

Rs =
[ −2I 2I −I 2I 0 0

0 6I 8I −I 0 0

]
,

Rl =
[

0 0 0 −5I −3I 0 0
0 0 0 I −6I 0 0

]
.

We fix the value of ωl as

ωl = 2,

and then minimize γ . The optimal value of γ is found to be

γmin = 0.3102,

and the controller parameters (AK ,BK ,CK ,DK) are found to
be:

AK =
[−67.9253 −136.4110

14.9212 30.7040

]
,

BK =
[

123.3933 288.5334
−46.0145 −109.3057

]
,

CK =
[
99.7888 203.1330

]
,

DK =
[−133.7425 −293.5104

]
.

V. CONCLUSION

In this paper, the finite frequency performance analysis
conditions and synthesis conditions via dynamic output feed-
back control for linear time-delay systems have been ad-
dressed. A method for synthesizing dynamic output feedback
controllers is developed to capture the desired specifications
in finite frequency ranges based on the resulting analysis
conditions. Sufficient conditions for the existence of feasible
controllers are given in terms of solutions to a set of LMIs.
Finally, a numerical example is given to demonstrate the
utility of the proposed design approach.

APPENDIX

Before presenting the proof for Theorem 1, some prelim-
inaries are required.
Lemma 1[1]: Let an admissible set M ⊂ Hq be given and
define S by (17). Then, (16) holds for an arbitrary Θ ∈Hq,
if and only if M is rank-one separable.
Lemma 2: Let F ∈ C2n×(2n+nϖ ) and Φ, Ψ ∈ H2 be given
such that Λ in (6) represents curves. Then, the set S defined
in (18) can be characterized by (17) with

M := {F∗(Φ⊗P+Ψ⊗Q)F : P,Q ∈Hn,Q > 0}. (43)

Lemma 3: Let matrices Φ, Ψ ∈H2 and F ∈C2n×(2n+nϖ ) be
given such that Λ in (6) represents curves. Define the set
M by (43) and the matrix-valued mapping Γλ by (15). The
following statements hold true.
a) The set M is admissible and rank-one separable.

b) The set M is regular and the matrix F is a minimal
realization of the set M in the sense that

F∗(Φ⊗P+Ψ⊗Q)F = 0, P,Q ∈Hn, Q > 0
⇒ Φ⊗P+Ψ⊗Q = 0 (44)

if and only if

rank(Γλ F) = n ∀λ ∈ Λ. (45)

Remark 1: Lemma 2 and Lemma 3 correspondingly follow
from Lemma 5 and Lemma 6 of [1].
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