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Abstract— This paper addresses the problem of nonlinear
Least-Square estimation. A new approach is presented which
employees a change of probability measure technique to de-
rive recursive equations for conditional means of nonlinear
problems. The theory developed is applied to multipath fading
wireless channels to derive phase and envelope estimates.
Furthermore, some numerical results are presented in order
to evaluate the performance of these estimators.

I. INTRODUCTION

In classical Least-Square estimation one is interested in

finding the best estimate, Φ∗(Y ), of X from the measure-

ments Y , by minimizing the expected value of the least-

square error e(X, Φ)
△
= ||X − Φ(Y )||2ℜn over all functions

Φ : ℜd 7→ ℜn,Y 7→ Φ(Y ), which is a function of Y (||x||2ℜn

denotes Euclidean norm of x ∈ ℜn). By the orthogonal

projection theorem, the solution is given by the conditional

expectation:

Φ∗(Y ) = E[X|Y ] =

∫

ℜn

xdPX|Y (x|y) (I.1)

where PX|Y is the conditional distribution of X given Y [1],

[2].

The solution to this estimation problem is stated in terms

of the a posteriori density function PX|Y . This density

contains all information available about the state X . The

objective is thus to estimate, recursively in time, the a

posteriori density and its associated features. However, it

is only in a few special cases that this density can be

parameterized using a Finite number of statistics. The most

important example is the case with linear dynamics and

observations in additive Gaussian noise. In this case all

involved densities are Gaussian, and hence they can be

parameterized using the corresponding mean and covariance.

The equations of the finite statistics are given by the Kalman

Filter [1], [3].

In the case of nonlinear systems, there are serious diffi-

culties in obtaining the solution of the a posteriori density

in closed form. Often, approximations have to be made to

find sub-optimal recursive nonlinear estimators. The standard

approximation is to use the Taylor series expansion and apply

linear filtering theory, giving rise to the so-called extended

Kalman filter (EKF) [4], [5], [6]. Other more sophisticated

estimation techniques than the EKF are available, as well,
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e.g., reiteration, higher order filters, and statistical lineariza-

tion [4]. Although more advanced techniques generally im-

prove the estimation accuracy, they involve complex imple-

mentation while they increase the computational burden.

The current paper, builds on the theoretical background of

[1] to investigate nonlinear estimation problems for a class

of systems, which include nonlinear recursive equations in

discrete-time and autoregressive channel models found in [7],

[8]. The methodology is based on nonlinear estimation theory

using the concept of a “sufficient statistic”. The “sufficient

statistic” being the unnormalized a posteriori distribution,

which is shown to satisfy a recursive equation. The recursive

equations for the a posteriori distribution are derived using

the change of probability measure technique [9]. The condi-

tional distribution is a sufficient statistic in the sense that it

conveys all the information of the observed sample path.

The theory developed is applied to multipath fading

wireless channels. Typically, in a wireless fading channel,

the a priori distribution of the channel parameters (phase,

attenuation, etc.) are not Gaussian, and therefore linear

filtering techniques can not be used to find the optimal Least-

Squares estimates. This problem is a nonlinear estimation

problem which can be solve using the recursive equation of

the conditional distribution.

The rest of the paper is organized as follows. In Section

II the general state and observation model is presented. In

Section III the mathematical theory is presented and the re-

cursive equation of the unnormalized a posteriori distribution

is derived. In Section IV the theory of Section III is applied

to multipath fading wireless channels. Various estimators are

derived by solving the recursive equation satisfied by the

unnormalized version of the a posteriori density. Finally,

some numerical results are presented in order to evaluate

the performance of the derived estimators.

II. STATE AND OBSERVATION MODELS

Let
(

Ω,F , P
)

be a complete probability space on

which the state or unobserved process {xk}, k ∈ N+
△
=

{0, 1, 2, 3, . . . } and the observation process {yk}, k ∈ N+,

are defined by the following recursions:

xk+1 = f(k + 1, xk) + Bk+1wk+1, x0 ∈ ℜn

yk = h(k, xk) + Dkvk, y0 ∈ ℜd (II.2)

Here x0 : Ω → ℜn is the initial state and w : Ω × N+ →
ℜn, v : Ω × N+ → ℜd, are random noises.

Also {wk}, {vk}, k ∈ N+ are independent noise se-

quences of random variables with densities Ψwk
(w) =
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1

(2π)
n

2

e−
w

tr
w

2 , Ξvk
(v) = 1

(2π)
d

2

e−
v

tr
v

2 , respectively, x0

has density πx0
(x) =

dΠx0
(x)

dx
, which is also independent

of {wk}, {vk}.

We shall assume throughout that f : N+ × ℜn → ℜn and

h : N+×ℜd → ℜd, Bk,Dk are Borel measurable functions,

and (BkBtr
k )−1, (DkDtr

k )−1 exist (the importance of these

conditions is discussed in [9]).

For background material on probability concept we use

[9]. Let {Go
m} be the σ-field generated by the complete data

{x0, x1, . . . , xm, y0, y1, . . . , ym} and let {Gm}, m ∈ N+

denote its complete filtration [9]. Let {Yo
m} define the σ-

field generated by the incomplete data {y0, y1, . . . , ym} and

let {Ym},m ∈ N+ denote its complete filtration. Let ym

denote the sequence {y0, . . . , ym} and similarly for other

sequences. We denote by x̃m the estimate of the state xm

given {Ym},m ∈ N+; we assume recursive estimates which

update x̃m from knowledge of x̃m−1 and past and present

data {y0, . . . , ym}.

III. RECURSIVE EQUATION FOR THE UNNORMILIZED

CONDITIONAL DENSITY

The next theorem presents intermediate steps using the

change of probability measure discussed extensively in [9].

Theorem 3.1: Let Φ be a bounded continuous function on

ℜn taking values in ℜ.

Define the likelihood function of the complete data

{x0, . . . , xm, y0, . . . , ym} by

Λm
△
=

∏m

k=0

[

Ξvk
(D−1

k
(yk−h(k,xk)))

|Dk|Ξvk
(yk)

Ψwk
(B−1

k
(xk−f(k,xk−1)))

|Bk|Ψwk
(xk)

]

= dP (xm,ym)

dP (xm,ym)

where under probability distribution P , {xk} is i.i.d.

N(0, In) and {yk} is i.i.d. N(0, Id) with density func-

tions Ψwk
(xk) = 1

(2π)
n

2

exp(
−xtr

k
xk

2 ) and Ξvk
(yk) =

1

(2π)
d

2

exp(
−ytr

k
yk

2 ), k ∈ N+, respectively.

Then we have the following results.

1) Conditional expectations are related via

E
[

Φ(xm)
∣

∣

∣
Ym

]

=
E

[

Φ(xm)Λm|Ym

]

E
[

Λm|Ym

] (III.3)

where E denotes expectation under the probability distribu-

tion P .

Moreover, the numerator of (III.3) can be written in terms

of unnormalized probability distribution αm(.) via

αm(Φ)
△
= E

[

Φ(xm)Λm|Ym

]

=

∫

ℜn

Φ(z)dαm(z) (III.4)

2) If αm(Φ) has a density, that is d
dx

αm(x) = αm(x), then

αm(Φ) =

∫

ℜn

Φ(x)dαm(x) =

∫

ℜn

Φ(x)αm(x)dx (III.5)

and the density {αm(x)}m≥0 satisfies the recursion

αm(x) =
Ξvm

(D−1
m (ym − h(m,x)))

|Dm|Ξvm
(ym)

×

∫

ℜn

Ψwm
(B−1

m (x − f(m, z)))

|Bm|
αm−1(z)dz

(III.6)

with initial condition

α0(x) =
Ξv0

(D−1
0 (y0 − h(0, x)))

|D0|Ξv0
(y0)

πx0
(x) (III.7)

Proof. The derivation can be found in [9].

IV. PHASE AND ENVELOPE ESTIMATION FOR

FREQUENCY SELECTIVE MULTIPATH FADING CHANNELS

Consider a frequency-selective fading channel given by

y(tk) =
N

∑

i=1

hi(tk, θi, ri) + D(tk)v(tk)

= h(tk, θ, r) + D(tk)v(tk) (IV.8)

where ωc is the carrier frequency, {τi(tk)} denotes the

propagation delay, {ri}, {θi} are random variables denoting

the attenuation and phase, respectively, of the signal received

associated with ith path, and v(tk) ∼ N(0, 1). Define the

phase vector θ
△
= (θ1, . . . , θN )′, and attenuation vector r

△
=

(r1, . . . , rN )′, and hi(tk, θi, ri)
△
= ri cos(ωc(tk − τi(tk)) +

θi)S(tk − τi(tk)).
Assume the delays {τi(ω, .)}N

i=1 are fixed, while the

phases θi : Ω → [0, 2π] are independent and identically

distributed random variables with a priori density πθ0
(θi) =

1
2π

, θi ∈ [0, 2π], while the attenuations ri : Ω → [0,∞)
are independent and identically distributed random variables

with a priori density πr0
(ri), for 1 ≤ i ≤ N . In addition

we assume {ri}
N
i=1 and {θi}

N
i=1 are independent, and also

independent of the noise process {v(tk); k ∈ N+}.

The relation of model (IV.8) with model (II.2) is the

following. Clearly, sampling time k of previous section is

now represented by tk, and the state vector of (IV.8) which

needs to be estimated is

x =

(

θ

r

)

∈ ℜ2N . However, since

(

θ

r

)

are random

variables then xk+1 = xk, ∀k ∈ N+.

The density (III.6) is specialized to model (IV.8). This

is done by replacing the integrand Ψwt
(B−1

t (x − f(t, z))),
x ∈ ℜ2N , z ∈ ℜ2N in (III.6) with the delta measure δ(r −
z1) × δ(θ − z2) =

∏N

i=1 δ(ri − z1
i ) × δ(θi − z2

i ), where

x =

(

θ

r

)

, z =

(

z1

z2

)

∈ ℜ2N , f(t, z) =

(

z1

z2

)

to get

αm(θ, r) = πθ0
(θ)πr0

(r)

×
m
∏

k=0

[

Ξvk
(D−1(tk)(y(tk) −

∑N

i=1 hi(tk, θi, ri)))

|D(tk)|Ξvk
(y(tk))

]

(IV.9)
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where πθ0
(θ) =

∏N

i=1 πθ0
(θi) is the a priori joint density

of (θ1, . . . , θN ), and πr0
(r) =

∏N

i=1 πr0
(ri) is the a priori

joint density of (r1, . . . , rN ).

For the rest of this paper, we shall neglect the 2ωc terms

(”double-frequency” terms) since the receiver will remove

them in the process of reconstructing the transmitted signal.

Furthermore, we also assume that the received paths are

resolvable, meaning that inter-path delays are larger than the

reciprocal of bandwidth of the transmitted signals. Therefore,

under the resolvability assumption, the expressions contain-

ing cross terms are zero.

Using the above assumptions, and by further manipulation

of (IV.9) we get a simplified version of the unnormalized

conditional density

αm(θ, r) =
N
∏

i=1

[

πθ0
(θi)πr0

(ri) exp (−r2
i Km

i )

× exp
(

riVi(y
m) cos(θi − γi(y

m))
)

]

× exp
(1

2

m
∑

k=0

y2(tk)[1 − D−2(tk)] −
m

∑

k=0

log |D(tk)|
)

(IV.10)

where Km
i = 1

4

∑m

k=0 D−2(tk)S2(tk − τi(tk)).

The following quantities are also needed when presenting

the estimators.

Definition 4.1: For each 1 ≤ i, j ≤ N, i 6= j, define

V i
c (ym)

△
=

∑m

k=0 D−2(tk) cos(ωc(tk − τi(tk)))S(tk −
τi(tk))y(tk)

V i
s (ym)

△
=

∑m

k=0 D−2(tk) sin(ωc(tk − τi(tk)))S(tk −
τi(tk))y(tk)
Vi(y

m) =
√

V i
c (ym)2 + V i

s (ym)2,

γi(y
m) = − tan−1

(

V i

s
(ym)

V i
c
(ym)

)

Note that path resolvability implies that each path component

(θi, ri) can be estimated independently of the rest.

Theorem 4.1: Assuming the phases θi are independent

and identically distributed random variables with a priori

density πθ0
(θi) = 1

2π
, θi ∈ [0, 2π] and the attenuations ri

are independent and identically distributed random variables

with a priori density πr0
(ri) = ri

σ2 exp−
r2

i

2σ2 , ri ∈ [0,∞)
(Rayleigh distributed), then we obtain the following estima-

tors.

(a) The incomplete data likelihood ratio defined by Λ̂(tm) =
E[Λ(tm)|Ym] is given by

Λ̂(tm) = αm(1) =

∫

[0,∞)n

∫

[0,2π]n
αm(θ, r)dθdr

(IV.11)

=
N
∏

i=1

[

1

1 + 2σ2Km
i

exp
( V 2

i (ym)σ2

2 + 4σ2Km
i

)

]

× exp
(1

2

m
∑

k=0

y2(tk)[1 − D−2(tk)] −
m

∑

k=0

log |D(tk)|
)

(IV.12)

where I0(.) is the modified bessel function of the first kind

and zeroth order defined by

I0(x) = 1
2π

∫ π

−π
exp (x cos α)dα

(b) The normalized conditional density of (θ, r) given Ym,

i.e., pN (tm, θ, r|Ym), is given by

pN (tm,θ, r|Ym) =
αm(θ, r)

∫ ∫

αm(θ, r)dθdr

=
N
∏

i=1

pN (tm, θi, ri|Ym) (IV.13)

=
N
∏

i=1

[

ri(1 + 2σ2Km
i )

2πσ2
exp

(

−
r2
i (1 + 2σ2Km

i )

2σ2

)

× exp
(

riVi(y
m) cos(θi − γi(y

m))
)

× exp
(

−
V 2

i (ym)σ2

2 + 4σ2Km
i

)

]

(IV.14)

(c) The minimum least-square estimator of θi given Ym is

given by

θ̃∗i (tm) = E
[

θi|Ym

]

=

∫ ∞

0

∫ 2π

0

θipN (tm, θi, ri)dθidri

(IV.15)

=
(1 + 2σ2Km

i )

2πσ2
exp

(

−
V 2

i (ym)σ2

2 + 4σ2Km
i

)

×

∫ ∞

0

∫ 2π

0

θi ri exp
(

−
r2
i (1 + 2σ2Km

i )

2σ2

)

× exp
(

riVi(y
m) cos(θi − γi(y

m))
)

dθidri (IV.16)

(d) The minimum least-square estimator of ri given Ym is

given by

r̃∗i (tm) = E
[

ri|Ym

]

=

∫ 2π

0

∫ ∞

0

ripN (tm, θi, ri)dridθi

(IV.17)

= (
√

π/2)
(

√

σ2

1 + 2σ2Km
i

)

exp
(

−
V 2

i (ym)σ2

2 + 4σ2Km
i

)

×1F 1

(3

2
, 1;

V 2
i (ym)σ2

2 + 4σ2Km
i

)

(IV.18)
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where 1F1

(

α, β; x
)

is the confluent hypergeometric function

[10].

Proof. The derivations can be found in [11].

A. Numerical Results and Discussion

We consider a multipath fading channel, given by (IV.8),

with 3 arriving paths. Next, we assume that the phases θi are

iid random variables with a priori density πθ0
(θi) = 1

2π
, θi ∈

[0, 2π] and the attenuations ri are also iid random variables

with a priori density πr0
(ri) = ri

σ2
ri

exp−
r2

i

2σ2
ri

, ri ∈ [0,∞)

(Rayleigh distributed). We take the attenuation parameter

σri
for the three arriving paths as [ 1√

2
, 0.565685, 0.452548]

respectively. It is also assumed that the time delay τi(tk) for

each path, is known precisely. Specifically, the time delay

τi(tk) is constant over time and is taken as [0, 35, 70] msec
for each arriving path respectively.

Assume frequency fc = 1KHz, signaling period Ts =
30msec, and a sampling time ∆t = 10−4sec, transmitted

signal S(tk) = 1, D(tk) = 1, and a Gaussian noice v(tk) ∼
N(0, σ2

n). Finally, the Signal to Noise Ratio (SNR) is defined

as SNR = Ps

σ2
n

, were Ps is the power of the transmitted

signal.

We are going to evaluate the performance of our estimators

using the Mean Square Error (MSE) of each estimator for

each path over time, for SNR=10 dB, and taking N=100

realizations. The general expression of the MSE is given by

MSEZi
=

1

N

N
∑

j=1

|Zi − Z̃∗
i,j |

2 (IV.19)

where N is number of realizations, Zi is the real value of

the parameter we would like to estimate for path i and Z̃∗
i,j

is the estimated value of that parameter for path i.
First, we begin with the phase estimation. Figure (VI.1)

displays the performance of the phase estimator (IV.16) over

time for each arriving path for SNR=10 dB. We notice that

the MSE decreases with time for all three paths, as time

increases. This shows that our estimated phase converges to

the real phase, as time increases, for all three paths.

Next, we continue with the estimation of the channel

attenuation. Figure (VI.2) displays the performance of the

attenuation estimator (IV.18) over time for each arriving path

and for SNR=10 dB. Our observations, are similar with the

ones experienced for the phase MSE. We can see the the

MSE decreases as time increases.

V. CONCLUSION

This paper considers the problem of nonlinear estimation

and employs a change of probability measure technique to

derive recursive equations for conditional means. The theory

developed is applied to frequency selective fading channels

and the results derived include new estimators for phase

and envelope estimation problems. Numerical examples are

presented to evaluate the performance of these estimators.

Future work should concentrate on the application of the

theory to MIMO Channels.
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