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Abstract— In recent results, a moving-horizon state estima-
tion problem has been addressed for a class of nonlinear
discrete-time systems with bounded noises acting on the sys-
tem and measurement equations. For the resulting estimator,
suboptimal solutions can be addressed for which a certain error
is allowed in the minimization of the cost function. Building on
such results, in this paper the use of nonlinear parameterized
functions is studied to obtain suitable state estimators with
guaranteed performance. Thanks to the off-line optimization
of the parameters, the estimates can be generated on line
almost instantly. A new technique based on the approximation
of the cost value (and not of its argument) is proposed and the
properties of such a scheme are studied. Simulation results are
presented to show the effectiveness of the proposed approach
in comparison with the extended Kalman filter.

I. INTRODUCTION

The idea of estimating the state of a system by a moving-

horizon (MH) approach dates back to the sixties and was

originally motivated by its intrinsic robustness, which makes

the approach well-suited in the presence of modelling un-

certainties and/or numerical errors [1]. Recently, researches

have focused on the application of such techniques to linear

systems [2], [3], [4], [5], hybrid systems [6], [7], and

nonlinear systems [8], [9], [10], [11], [12], [13], [14]. In [8]

an asymptotic state observer is described that results from

the numerical solution of a sequence of nonlinear algebraic

equations via the Newton’s method. Similar optimization-

based solution techniques are employed in [9], [10] to

construct stable estimators for continuous-time dynamic sys-

tems. In [11], a MH observer for nonlinear continuous-time

systems was proposed that performs estimation at discrete-

time instants by approximately minimizing an integral error

defined on the preceding time window. In [12], a MH

estimation scheme was presented that allows one to explicitly

take into account possible constraints on the system and

requires the solution of a nonlinear programming problem at

each time step. Moreover, a sufficient condition for the non-

divergence of the estimation error in the presence of bounded

noises was provided. All the aforementioned methods require

that either the exact minimization of a nonlinear error cost
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function or the exact solution of a system of nonlinear

equations is obtained on line. Such a requirement may lead

to heavy calculations, thus reducing the applicability of such

approaches. In order to overcome this drawback, a method

was proposed in [13], where the possibility of committing

a certain error in the minimization of the cost function

is considered and the computation required to design the

approximate filter may be carried out off line.

These results were furtherly extended in [14] were the

simultaneous presence of both system and measurement

noises was accounted for, the conditions that guarantee

the stability of the estimation error were relaxed and the

essentially local results of [13] were extended to regional

stability. The stability analysis was based on quite a standard

observability notion.

In this paper, we rely on the results in [14], with particular

attention to the possibility of making a certain error in the

minimization of the cost function. Such a result can be

obtained by deriving off line an approximate state estimation

function by means of suitable fixed-structure nonlinear ap-

proximators, in which a fixed number of parameters have to

be optimized and that are particularly convenient in terms of

structural complexity [15], [16]. With respect to [13] (where

a similar technique was proposed), the approximate solution

is referred to the value of the cost function and not to its

argument, thus leading to less restrictive assumptions.

Various fixed-structure nonlinear approximators can be

used, e.g., feedforward neural networks, radial basis func-

tions, linear combinations of sinusoidal functions with vari-

able frequencies, etc. In general, nonlinear approximators

benefit from better approximation capabilities than those of

traditional linear approximators (i.e., approximating func-

tions made up of linear combination of fixed algebraic basis

functions). However, how to choose, among various possible

nonlinear approximators, a particular structure for solving a

given functional optimization problem is a fundamental but

still unsettled issue.

In this paper, we chose one-hidden-layer feedforward

neural networks. Such a choice is motivated both by the

nice properties of such class of approximators in solving ap-

proximately complex functional optimization problems (for a

thorough discussion on this issue, see [17] and the references

therein) and by the satisfactory experimental results obtained

in solving highly nonlinear optimal control and estimation

problems [18], [13], [19].

The paper is organized as follows. In Section II, the

approximate MH state estimation algorithms is formulated

and the results presented in [14] are summarized. In Section
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III, nonlinear parameterized functions are introduced to solve

off line the approximate estimation problem. A minimax

method is presented for the determination of the optimal

parameter vector characterizing such functions. Moreover,

the approximating properties of the proposed technique are

studied in connection with the use of a suitable projection

operator. A simulation example is reported in Section IV.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Let us consider a dynamic system described by the

discrete-time equations

xt+1 = f(xt, ut) + ξt , (1a)

yt = h(xt) + ηt , (1b)

for t = 0, 1, . . . , where xt ∈ R
n is the state vector (the

initial state x0 is unknown) and ut ∈ R
m is the control

vector. The vector ξt ∈ R
n is an additive disturbance

affecting the system dynamics. The state vector is observed

through the measurement equation (1b) where yt ∈ R
p

is the observation vector and ηt ∈ R
p is a measurement

noise vector. We assume the statistics of x0, ξt, and ηt to

be unknown, and consider them as deterministic variables

of unknown character that take their values from known

compact sets.

We adopt the estimation scheme described in [14], which

is bases on a MH strategy: at any time t = N,N+1, . . ., the

estimates x̂t−N,t, . . . , x̂t,t of the state vectors xt−N , . . . , xt

are obtained on the basis of a prediction x̄t−N of the state

xt−N and of the information vector

It
△
= col (yt−N , . . . , yt, ut−N , . . . , ut−1) (2)

where N + 1 measurements and N input vectors are col-

lected within a “sliding window” [t − N, t]. The estimates

x̂t−N+1,t, . . . , x̂t,t are generated by x̂t−N,t through the

noise-free dynamics, that is,

x̂i+1,t = f (x̂i,t, ui) , i = t−N, . . . , t− 1. (3)

Hence it follows that at time t only the estimate x̂t−N,t has

to be determined. The prediction x̄t−N is obtained from the

estimate x̂t−N−1,t−1 via the application of the function f ,

that is,

x̄t−N = f(x̂t−N−1,t−1, ut−N−1), t = N + 1, N + 2, . . . .

The vector x̄0 denotes an a-priori prediction of x0.

In the lines of [14],we make the following assumptions.

A1. The sets Ξ, H , and U where ξt, ηt and ut (respec-

tively) take their values are compact sets, with 0 ∈ Ξ
and 0 ∈ H .

A2. The initial state x0 and the control sequence {ut} are

such that, for any possible sequence of disturbances

{ξt}, the system trajectory {xt} lies in a compact set

X .

Since, under assumption A2, at every time step t =
0, 1, . . ., the state xt falls within the set X , the condition

x̂t−N,t ∈ X could be considered as a further constraint in

our estimation scheme. In general, fulfilling such a constraint

when applying a mathematical programming procedure re-

sults to be a very hard task. In order to mitigate this

problem, a compact convex outer-approximation of X will

be considered and denoted by X . Then, the constraint

x̂t−N,t ∈ X (4)

will be enforced. Of course, the fulfillment of such a

constraint, together with assumption A3, ensures that the

prediction x̄t−N belongs to the compact set X
△
= f(X , U)

for every t = N,N + 1, . . . (the a-priori prediction x̄0 is

chosen inside the set X ). The following assumption is also

needed:

A3. The functions f and h are C2 functions with respect

to x on X for every u ∈ U .

The sets Y and I from which the vectors yt and It take

their values, respectively, can be expressed as

Y
△
= {y ∈ R

p : y = h(x) + η, x ∈ X, η ∈ H} ,

I
△
= Y N+1 × UN .

Summing up, the estimation scheme takes on the form

x̂t−N,t = a(x̄t−N , It), t = N,N + 1, . . . (5a)

x̄t−N+1 = f(x̂t−N,t, ut−N ), t = N,N + 1, . . .(5b)

x̄0 ∈ X .

where x̂t−N,t = a(x̄t−N , It) will be denoted as the state-

estimation function.

Following a least-squares approach, in [14] the minimiza-

tion of the following cost function1 is addressed at any time

t = N,N + 1, . . .:

J (x̂t−N,t, x̄t−N , It) = µ ‖ x̂t−N,t − x̄t−N ‖
2

+

t
∑

i=t−N

‖ yi − h(x̂i,t) ‖
2

(6)

where µ is a positive scalar by which we express our belief in

the prediction x̄t−N with respect to the observation model.

In order to explicitly account for a possible error in the

minimization of the cost (6), given a generic pair (x̄t−N , It)
with x̄t−N ∈ X and It ∈ I, let us denote by J◦(x̄t−N , It)
the cost associated with the exact minimization of cost (6),

i.e.,

J◦(x̄t−N , It)
△
= min

x̂t−N,t∈X
J(x̂t−N,t, x̄t−N , It) .

The following algorithm can be stated.

Approximate MH estimator (Algorithm Eε). Given an a-

priori prediction x̄ε
0 ∈ X and a positive scalar ε, at any time

t = N,N+1, . . ., find an estimate x̂ε
t−N,t such that x̂ε

t−N,t ∈
X and

J
(

x̂ε
t−N,t, x̄

ε
t−N , It

)

− J◦
(

x̄ε
t−N , It

)

≤ ε . (7)

1Throughout the paper, for a generic vector v, we denote its Euclidean
norm by ‖v‖. For a generic matrix M , we shall denote its induced
Euclidean norm by ‖M‖.
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The prediction is propagated as

x̄ε
t−N+1 = f(x̂ε

t−N,t, ut−N ) . (8)

In order to state the stability properties of Algorithm Eε,

let us first define the function

F
(

xt−N , u
t−1
t−N

) △
=











h (xt−N )
h ◦ fut−N (xt−N )

...

h ◦ fut−1 ◦ · · · ◦ fut−N (xt−N )











,

for t = N,N + 1, . . ., where ut−1
t−N

△
= col(ut−N , . . . , ut−1),

“◦” denotes function composition, and fui(xi)
△
= f (xi, ui).

The following assumption is made.

A4. System (1) is X -observable in N + 1 steps; i.e., there

exists a K-function2 ϕ(·), such that ϕ
(

‖x1 − x2‖
2
)

≤

‖F (x1, ū) − F (x2, ū)‖
2
, ∀x1, x2 ∈ X ,∀ ū ∈ UN .

Let us consider a sequence of approximate estimates

x̂ε
t−N,t , t = N,N + 1, . . . obtained by applying Algo-

rithm Eε for a certain ε ≥ 0 and denote by eε
t−N

△
=

xt−N − x̂ε
t−N,t the related estimation error. Finally, let us

denote by kf an upper bound on the Lipschitz constant of

f(·, u) with respect to xt on X for every u ∈ U .

Then the following result can be stated (see [14] for the

proof).

Theorem 1: Suppose that assumptions A1, A2, A3, and

A4 are satisfied. Moreover suppose that the K-function ϕ,

defined in assumption A4, satisfies the following condition

δ
△
= inf

x1,x2∈X ; x1 6=x2

ϕ
(

‖x1 − x2‖
2
)

‖x1 − x2‖2
> 0 . (9)

Then suitable scalars α, β̄0, and β̄ exist such that the square

norm of the estimation error is bounded as

‖eε
t−N‖2 ≤ ζ̄t−N

where {ζ̄t} is a sequence generated by

ζ̄0 = β̄0

ζ̄t = α ζ̄t−1 + β̄ , t = 1, 2, . . . .
(10)

Moreover, if µ is selected such that

8 k2
f µ

µ+ δ
< 1 , (11)

the bounding sequence {ζ̄t} has the following properties:

(a) the sequence {ζ̄t} converges exponentially to the

asymptotic value eε
∞(µ)

△
= β̄/(1 − α);

(b) if ζ̄t > eε
∞(µ) then ζ̄t+1 < ζ̄t , t = 0, 1, . . . .

2Recall that a function ϕ : R
+ → R

+ is a K-function if it is continuous,
strictly monotone increasing, and such that ϕ(0) = 0.

III. OFF-LINE DESIGN OF AN APPROXIMATE MH

ESTIMATOR

In this section, a method is developed for the off–line

solution of the minimizations involved in Algorithm Eε that

is based on the so-called nonlinear approximators. Such a

method consists in constraining the estimation function to

take on a fixed structure of the form

â(x̄t−N , It, w), t = N,N + 1, . . .

where w is a finite-dimensional vector of parameters to

be optimized off line in order to ensure the fulfillment of

condition (7) at any time instant. Once the parameters vector

w has been determined, the approximate estimation function

â(x̄t−N , It, w) can be used on line to generate state estimates

with a small computational effort.

As motivated in the introduction, among various fixed-

structure nonlinear approximators that can be used, in this

paper we chose one-hidden-layer feedforward neural net-

works. Clearly, the input variables of such a network are the

components of the prediction x̄t−N and of the information

vector It. The output variables correspond to the components

of the neural estimate x̃t−N,t. This means that the j-th

component x̃
(j)
t−N,t of the output vector takes on the form

x̃(j)
t−N,t = ã(j)(x̄t−N , It, w)

=

ν
∑

p=1

cpj g
(

w̄⊤
p x̄t−N + w⊤

p It + w0p

)

+ c0j ,

where ν is the number of parameterized basis functions of

the neural network, g(·) is a sigmoidal activation function,

and the coefficients cpj , c0j , w̄p , wp, and w0p, for p =
1, 2, . . . , ν and j = 1, 2, . . . , n, are the components of the

vector w to be determined, i.e.,

w
△
= col (cpj , c0j , w̄p , wp , w0p ;

p = 1, 2, . . . , ν; j = 1, 2, . . . , n) .

It is important to note that the integer ν is sufficient to

characterize the complexity of the network since the number

of free parameters grows linearly with ν.

Unfortunately, when the state estimates are generated by

means of a nonlinear approximator, one cannot guarantee that

such estimates belong to the set X , where the trajectory of

the system lies. In order to constrain the estimates inside

the set X , a possibility consists in projecting the outputs

of the neural network onto the set X . With this respect, by

defining as pS(v) an operator that provides a projection of

a vector v onto a compact set S, i.e.,

pS(v) ∈ arg min
v′∈S

‖v − v′‖ , (12)

the approximate state estimate x̂t−N,t can be obtained as

x̂t−N,t = â(x̄t−N , It, w) = pX [ã(x̄t−N , It, w)] . (13)

In the following, the above mapping made up of the compo-

sition of the neural approximator with the projection operator

will be called neural state estimation function. Furthermore,
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we shall always explicitly indicate the dependence of the

structure of the approximate estimation function on the

number ν of units in the hidden layer by means of a

superscript. Then the approximate state estimator takes on

the form

x̂t−N,t = âν(x̄t−N , It, w), t = N,N + 1, . . .

x̄t−N+1 = f(x̂t−N,t, ut−N ), t = N,N + 1, . . .

x̄0 ∈ X .

Clearly, the latter is a suboptimal estimator and at each

time t = N,N + 1, . . ., the following error is made in the

minimization of the cost

εt−N
△
= J(x̂t−N , x̄t−N , It) − J◦(x̄t−N , It)

= J [âν(x̄t−N , It, w), x̄t−N , It)] − J◦(x̄t−N , It) .

If one can guarantee, for a given ε, that

εt−N ≤ ε, t = N,N + 1, . . . , (14)

then, at any time t = N,N + 1, . . ., the estimate x̂t−N,t =
âν(x̄t−N , It, w) satisfies condition (7) in Algorithm Eε.

Hence, as shown in the previous section (see Theorem 1), it

is possible to determine an upper bound on the norm of the

estimation error et−N
△
= xt−N − x̂t−N,t.

It is important to point out that, given the output of

the neural networks x̃t−N,t the computation of the pro-

jection pX (x̃t−N,t) requires, in general, the solution of a

minimization problem (see (12)). If no a-priori assumption

is made on the form of the compact set X , this may

lead to considerable complications. With few exceptions, a

closed form for pX (·) is not available; then, in general,

such a computation has to be performed on–line, stage after

stage, as soon as the vector x̃t−N,t becomes available. This

can be a serious drawback, since the calculation of the

projection can be very computationally demanding. However,

as the set X is convex, the computation of the projection

pX (x̃t−N,t) becomes a convex optimization problem for

which many computationally efficient numerical solvers exist

[20]. Moreover, in this case, the projection pX (x̃t−N,t)
is always unique and depends continuously on the vector

x̃t−N,t.

These considerations suggest to choose the outer approxi-

mation X of X among some particular kinds of sets (e.g.,

polytopes or ellipsoids), the computation of pX (x̃t−N,t) can

be considerably simplified and speeded up [21], [22]. Note

that, even when the set X is convex, such an outer approx-

imation may be useful in order to reduce the computational

burden associated with the calculation of the projection.

The need for fulfilling condition (14) enforces us to use

an approach to derive the optimal parameter vector that

turns out to be quite different from most neural–network

learning algorithms (e.g., backpropagation). In fact, such

methods would not offer us any guarantee that the error

due to the replacement of the optimal cost with the ap-

proximate cost associated with the neural state estimation

function âν(x̄t−N , It, w) can be uniformly bounded by a

given positive scalar ε, or, more specifically, that inequality

(14) can be verified. This leads us to determine a minimax

neural estimator by solving the following problem.

Problem M. Find a number ν∗ of neural units and a parameter

vector w∗ such that

max
x̄∈X , I∈I

{

J
[

âν∗

(x̄, I, w∗), x̄, I
]

− J◦(x̄, I)
}

≤ ε . (15)

Problem M can be addressed by solving a sequence of

minimax problems. One can start with a small number ν of

neural units and then increasing ν until inequality (15) is

satisfied. In practice, we solve the related minimax problem

for each ν and verify if the left–hand side of (15) is less

than or equal to ε. In the case this condition does not

hold, we increase the number ν and repeat the procedure,

which ends when the number ν∗ is obtained and the solution

of the minimax problem yields the vector w∗, hence the

corresponding neural minimax estimator.

A difficulty in solving our minimax problem depends on

the fact that the function J◦(x̄t−N , It) is unknown. How-

ever, given a couple (x̄t−N , It), the scalar J◦(x̄t−N , It) can

be computed by solving a nonlinear programming problem

for which cost (6) is minimized. Let us remark that, in the

search of the optimal parameter vector, we cannot apply well-

know methods like backpropagation, as such algorithms are

derived from the minimization of L2 cost, since in our case

the solution has to satisfy an L∞ condition.

Once the estimation function âν(x̄t−N , It, w) has been

given the structure (13), the ability of this function to provide

approximate estimates that satisfy condition (14) at any time

instant becomes a crucial point of the method considered

in the paper. In order to address this issue, the following

assumption is now needed.

A5. Cost (6) has a unique global minimizer x̂◦t−N,t for

any x̄t−N ∈ X and any It ∈ I.

Assumption A5 together with the well-known density

properties of one-hidden-layer feedforward neural networks

(see, for example, [23], [24] and the references therein)

allows one to state the following result.

Theorem 2: Suppose that assumptions A1-A5 are veri-

fied. Then, for every ε > 0, there exist an integer ν and

a parameter vector w, i.e., a neural approximation function

âν(x̄t−N , It, w) and hence a neural state estimation function

ãν(x̄t−N , It, w), such that

J [âν(x̄t−N , It, w), x̄t−N , It] − J◦(x̄t−N , It)

= J {pX [ãν(x̄t−N , It, w)] , x̄t−N , It} − J◦(x̄t−N , It) ≤ ε

for any x̄t−N ∈ X and any It ∈ I.

Proof. Let us denote by a◦(x̄t−N , It) the optimal

estimation function that, given a couple (x̄t−N , It) with

x̄t−N ∈ X and It ∈ I provides the unique (by as-

sumption A5) minimum of the cost (6) over the set X .

Under assumptions A1-A3, cost (6) depends continuously

on the estimate x̂t−N,t, on the prediction x̄t−N , and on the
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information vector It. Hence, recalling that the set X is

compact, one may invoke the Theorem of the Maximum (see

[25]) and conclude that the optimal estimate a◦(x̄t−N , It)
depends continuously on the prediction x̄t−N and on the

information vector It.
In addition, note that assumptions A1, A2, and A3 ensure

the compactness of the sets X and I to which the prediction

x̄t−N and the information vector It , respectively, belong.

Then, by exploiting the density properties of one-hidden-

layer feedforward neural networks (see [23], [24]), one may

conclude that for every scalar ϑ > 0, there exist an integer

ν and a parameter vector w , [i.e., a neural approximating

function ãν(x̄t−N , It, w) ] such that

‖ãν(x̄t−N , It, w) − a◦(x̄t−N , It)‖ ≤ ϑ (16)

for any x̄t−N ∈ X and any It ∈ I.

Now note that, as the set X is convex, the function

pX (x̃t−N ) is continuous over R
n . Thus, the function

J̃ (x̃t−N , x̄t−N , It)
△
= J [pX (x̃t−N ), x̄t−N , It] obtained as

composition of continuous functions is also continuous over

R
n ×X × I. Moreover, the images of the compact set

X × I via the continuous functions a◦(x̄t−N , It) and

ãν(x̄t−N , It, w) (for fixed values of ν and w) are compact.

Hence, by using the Heine-Cantor theorem, it follows that the

function J̃ (x̃t−N , x̄t−N , It) is uniformly continuous. Then,

for every ε > 0 , there exists a scalar ϑ̄ > 0 such that, if

‖ãν(x̄t−N , It, w) − a◦(x̄t−N , It)‖ ≤ ϑ̄

for any x̄t−N ∈ X and any It ∈ I, then
∣

∣

∣
J̃ [ãν(x̄t−N , It, w), x̄t−N , It]

−J̃ [a◦(x̄t−N , It), x̄t−N , It]
∣

∣

∣
≤ ε (17)

for any x̄t−N ∈ X and any It ∈ I.

Furthermore, since the optimal estimate a◦(x̄t−N , It)
always belongs to the set X , we have pX [a◦(x̄t−N , It)] =
a◦(x̄t−N , It) for any x̄t−N ∈ X and any It ∈ I, and

so J̃ [a◦(x̄t−N , It), x̄t−N , It] = J◦(x̄t−N , It). As a conse-

quence, inequality (17) can be rewritten as
∣

∣

∣
J [âν(x̄t−N , It, w), x̄t−N , It] − J◦(x̄t−N , It)

∣

∣

∣
≤ ε . (18)

The proof is completed by combining (16) with (18).

Theorem 2 shows that the errors due to the introduction

of the neural approximators and of the projection operators

can be made arbitrarily small, provided that a sufficiently

large number of neural units ν is used, thus ensuring the

theoretical solvability of Problem M. The reader is referred

to [17] for an extensive discussion on the capability of neural

approximators to be characterized by a moderate number of

parameters according to Barron’s theorem [15].

IV. NUMERICAL RESULTS

In this section, a simple example is considered to illustrate

the performance of the proposed estimation approach.

Let us first consider the following discrete-time system

xt+1 = Axt +B ut + ξt

yt = C xt + ρ sin
[

2
(

x
(2)
t − x

(1)
t

)]

+ ηt
(19)

where xt = [x
(1)
t x

(2)
t ]⊤ ∈ R

2 and

A
△
=

[

0.998 0.009
−0.241 −0.930

]

, B
△
=

[

0.1
0.9

]

,

C
△
=

[

−100 100
]

, ρ
△
= 40 .

In the following, we shall consider x0, ξt, and

ηt as uniformly distributed, independent random vari-

ables with p(x0) = Π
(

[

1 1
]⊤
,
[

σ2
x σ2

x

]⊤
)

, p(ξt) =

Π
(

0,
[

σ2
ξ σ2

ξ

]⊤
)

, and p(ηt) = Π
(

0, σ2
η

)

, where Π(m, v)

represents the probability density function of a component-

wise independent uniform distribution with mean value m
and covariance diag(v). The control ut was chosen equal

to ut = 104 sin (0.1 t− ψ), where ψ is a random variable

uniformly distributed in [0, 2π].
Let us consider the performance indices given by the Root

Mean Square Error (RMSE) and the Asymptotic Root Mean

Square Error (ARMSE). As additional performance index,

we considered also the convergence time, i.e., the number

of time instants that guarantees an RMSE smaller than 1.5
times the ARMSE.

In the following of this section, for the sake of brevity, we

shall denote the filter obtained by applying Algorithm Eε

where each approximate minimization is carried out by

means of a mathematical programming tool (the Matlab

Optimization Toolbox) as the On-line Moving Horizon Filter

(OMHF) and the filter obtained solving Problem M as the

Neural Moving Horizon Filter (NMHF). The NMHF was

implemented by means of a one hidden layer feedforward

neural network with 100 sigmoidal activation functions in

the hidden layer. The values of µ, N , and ε were chosen

equal to 105, 5, and 10−6, respectively.

In order to evaluate the effectiveness of the proposed

MH estimation scheme, such filters were compared with the

Extended Kalman Filter (EKF). Fig. 1 shows the behavior of

the true values and the estimates of the two state components

for a randomly chosen simulation. The influence of the

TABLE I

PERFORMANCE OF THE CONSIDERED FILTERS FOR σx = 4 · 103 ,

ση = 10, AND DIFFERENT σξ VALUES.

convergence time ARMSE

σξ OMHF NMHF EKF OMHF NMHF EKF

0.1 52 161 207 0.14 0.19 0.12

0.5 47 111 202 0.73 0.74 0.55

1 46 60 160 1.40 1.39 4.10

5 37 37 172 7.29 7.27 51.79

10 36 36 110 14.52 14.50 125.68

50 25 25 43 70.62 70.60 1284.40
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Fig. 1. True values and estimates of the first (a) and the second (b)
component of the state for a randomly chosen simulation of system (19)
with σx = 40, σξ = 20, ση = 10.

system disturbance on the performance of the considered

filters is illustrated in Table I. First, note that in most of

the considered settings, the OMHF and the NMHF have an

almost coincident behavior: only in the presence of low sys-

tem noise, the NMHF shows a certain decay in performance

with respect to the OMHF. This is not surprising as, in order

to use the same neural network in all the simulations, the

training has been performed in the least favorable conditions

(i.e., in the presence of high system noise). However, it is

important to point out once more that the OMHF requires

heavy on-line computations, while the NMHF provides the

estimates of the state almost instantly. As to the comparison

with the EKF, while, on the one hand, in the presence

of a low system disturbance, all the filters show a similar

asymptotic behavior, on the other hand in the presence of

a high system disturbance the asymptotic performance of

the proposed filters turns out to be much better than those

of the EKF. Furthermore, in all the considered frameworks,

regardless of the value of σξ, both the OMHF and the NMHF

provide a better transient behavior than the EKF.
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