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Abstract— This paper focuses on control applications over
lossy data networks. Sensor data is transmitted to an
estimation-control unit over a network and control commands
are issued to subsystems over the same network. Sensor, control
and acknowledgement packets may be randomly lost accord-
ing to a Bernoulli process. In this context, the discrete-time
Linear Quadratic Gaussian (LQG) optimal control problem
is considered. We can show how the partial loss of acknowl-
edgements makes the optimal control law a nonlinear function
of the information set. For the special case of complete state
observation we can compute the optimal controller and show
that the stability range increases monotonically with the arrival
rate of the acknowledgement packets.

I. INTRODUCTION

This paper is concerned with the design and analysis of

control systems where components are connected via packet-

based communication networks. This requires a generaliza-

tion of classical control techniques to explicitly take into

account the stochastic nature of the communication channel.

In recent years these kinds of problems have drawn consider-

able attention in the academic world, focusing on estimation

([1],[2] and [3],[4],[5] and [6]) and optimal control problems

(see [7], [8] and [9]). In particular the problem considered

in this paper is a generalized formulation of the Linear

Quadratic Gaussian (LQG) optimal control problem where

the arrival of both measurement and control packets are

modeled as random processes, whose parameters are related

to the characteristics of the communication channel. Accord-

ingly, independent Bernoulli processes are considered, with

parameters γ and ν governing the packet losses between the

sensors and the estimation-control unit and between the latter

and the actuation points. The key issue relating to properly

design networked control systems is to clearly understand

which information is available at each time instant to the

controller. It is usual to distinguish between TCP-like pro-

tocols, where packet acknowledgements are guaranteed at

each time instant, and UDP-like protocols in the case that no

acknowledgement mechanism is provided [10]. In many real
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Fig. 1. Overview of the system. Architecture of the closed loop system
over a communication network. The binary random variables νt, γt and θt

indicates whether packets are transmitted successfully.

cases this distinction is too simplistic because it is impossi-

ble to guarantee a perfectly deterministic acknowledgement

through an unreliable channel. In this paper we will deal

with the control design problem for networked system in

which acknowledgement packets can be lost according to a

Bernoulli process of parameter θ.

Previous work ( [1], [7], [11]) has shown the existence of a

critical domain of values for the parameters of the Bernoulli

arrival processes, ν and γ, outside of which a transition to

instability occurs and the optimal controller fails to stabilize

the system. In particular, it has been shown that the classical

separation principle holds in the TCP-like protocols, the

optimal control is linear and the critical arrival probabilities

for the control and observation channels are independent

each other. On the contrary, under UDP-like protocols, no

separation principle arises, the optimal control is in general

nonlinear and, in the case of complete observability, critical

arrival probabilities are coupled and define more restrictive

stability regions, as shown in Figure 2.

In this paper we will show that in the ”quasi-TCP like”

context considered here, even if the same ”structural prob-

lems” of the UDP-like protocols arise (nonlinearity of the

optimal law and no separation principle), in the case of

complete observability, the stability range of the system

increases with the arrival rates of the acknowledgement pack-

ets. Furthermore, we can show how such a stability range

converges to that achievable under the TCP-like protocol, as

the probability of acknowledgement packet drops tends to

zero.
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Fig. 2. Region of stability for UDP-like and TCP-like optimal control
relative to measurement packet arrival probability γ̄, and the control packet
arrival probability ν̄ in the case C = I .

The remainder of this paper is organized as follows.

Section 2 provides the problem formulation. In Section 3

the Single Channel problem is studied: nonlinearity of the

optimal control is pointed out and the optimal control for

the complete observability case considered. Section 4 gen-

eralizes the previous Section’s results to the multi-channel

case. Section 5 provides an example, Finally, in Section 6,

conclusions are provided.

II. PROBLEM FORMULATION

Consider the following linear stochastic system with in-

termittent observation and control packets:

xk+1 = Axk + Bua
k + ωk,

ua
k = Nkuk + [Im×m − Nk] ul

k,
y (k) = Γk (Cxk + vk) ,

(1)

where xk ∈ Rn is the state vector, yk ∈ Rp is the

output vector, (x0 ∈ Rn, wk ∈ Rn, vk ∈ Rp) are Gaussian,

uncorrelated, white, with mean (x0, 0, 0) and covariance

(P0, Q,R) respectively. Moreover

Nk =





ν1,k . . . 0
. . . . . . . . .
0 . . . νm,k



 , (2)

Γk =





γ1,k . . . 0
. . . . . . . . .
0 . . . γp,k



 , (3)

where (γi,k) , i = 1, . . . , p and (νj,k) j =
1, . . . ,m, ∀k ∈ Z, are binary variables modeling the

successful transmission of the information from the i-th
sensor and to the j-th actuator at time k. ua

k ∈ Rm is

the effective control input applied to the actuators while

uk ∈ Rm denotes the desired control input computed by the

controller. Finally ul
k ∈ Rm is the signal locally provided

to the actuators in the case Nk = 0m×m (all packets to the

actuators are lost). While it is possible to choose ul (k) in

several ways, the most common strategies are the following:

1) zero-input scheme: ul
k = 0

2) hold-input scheme: ul
k = ua

k−1

Here we will deal with the zero-input scheme.

Because groups of sensors/actuators could send/receive

their data in the same packet, we will suppose that the

information transmission is organized in independent sensor

and actuator clusters . This means we can rewrite Γk and

Nk as follows:

Γk = Ip×p −

p′

∏

i=1

(

Ip×p − γ′
i,kdiag {gi}

)

(4)

Nk = Im×m −
m′
∏

i=1

(

Im×m − ν′
i,kdiag {ηi}

)

(5)

where γ′
i,k and ν′

j,k are i.d.d. Bernoulli processes with prob-

abilities of successful transmission γ′
i = P

(

γ′
i,k = 1

)

, i =

1, . . . , p′ and ν′
j = P

(

ν′
j,k = 1

)

, i = 1, . . . ,m′. gi, i =

1, . . . ,m′ and ηi, i = 1, . . . , p′ are vectors of length p and

m respectively such that:

• (gi)j = 1 ((ηi)j = 1) if the j-th sensor (actuator)

belongs to the i-th cluster

• (gi)j = 0 ((ηi)j = 0) if the j-th sensor (actuator) does

not belong to the i-th cluster

A key point toward the design of any control strategy is the

definition of the Information Set available to the controller at

each time instant. It is usual in literature (see [10]) to refer

to the following two information sets

Ik =

{

Fk = {Γtyt,Γt,Nt−1|t = 0, .., k}
Gk = {Γtyt, Γt|t = 0, .., k}

TCP − like
UDP − like

(6)

The difference between the two Information Sets is the

acknowledgement of the actually arrived packets to the

actuators i.e. the matrix Nk−1.

While the ”TCP-like” case has several desirable proper-

ties (separation principles, linear quadratic gaussian optimal

control, etc...), it is well known that the availability of

deterministic ”perfect” acknowledgements, in the case the

acknowledgement packets use unreliable channels, is theo-

retically impossible since it represents a particular case of the

two-armies problem (see [12]). On the other hand if ”UDP-

like” protocols [7] are employed (see Figure 2) performance

and stability regions are highly affected, due to the fact that

no ”real” information on the actual input is exploited. In

many practical cases, it is reasonable to use communication

channels where acknowledgements are provided although

they can be dropped, i.e. we have a non-zero probability

of losing the acknowledgment packet from the channel j. To

formalize this assumption we introduce the matrix

Θk =





θ1,k . . . 0
. . . . . . . . .
0 . . . θm,k



 , (7)
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where θi,k is the acknowledgement event from the i-th
actuator at time k. It can be rewritten as

Θk = Im×m −
m′
∏

i=1

(

Im×m − θ′i,kdiag {ηi}
)

(8)

where θ′i,k are i.i.d. Bernoulli processes with θ′i =

P
(

θ′i,k = 1
)

, i = 1, . . . ,m′. The information structure of

a networked system with stochastic acknowledgments is the

following:

Ek = {Γkyk, Γk, Θk−1, Θk−1Nk−1|k = 0, .., t}. (9)

Let us now define uN−1 = {u0, u1, . . . , uN−1} as the set of

all the input values between 0 and N − 1. In this paper we

will analyze the LQG control problem, i.e. we will look for

a control input sequence uN−1∗, function of the information

set Ek, that solves the following optimization problem:

J∗
N (x̄0, P0) = minuk=gk(Ek)JN (uN−1, x̄0, P0), (10)

where the cost function JN

(

uN−1, x0, P0

)

is defined as

follows:

JN

(

uN−1, x0, P0

)

=

=E

[

xT
NWNxN +

N−1
∑

k=0

xT
kWkxk+uaT

k Ukua
k

∣

∣

∣

∣

uN−1,x0, P0

]

.

(11)

Because the general multichannel formulation requires a

large use of notation that would affect negatively the intuitive

nature of the results, we will first concentrate the treatment

on the single channel case, i.e. m′ = 1 and n′ = 1 and

provide for this case the main results. After that, we will

present the results for the multi-channel case with fewer

details. Due to lack of space, many of the proofs will be

omitted and the interested reader is referred to [13] for

details.

III. SINGLE INPUT/OUTPUT CHANNEL CASE

A. Estimator design

If m′ = 1 and n′ = 1, system (1) becomes

xk+1 = Axk + νkBuk + ωk

yk = γkCxk + vk
(12)

and Θk = θk. By the knowledge of the information set (9),

the one-step prediction can be written as:

x̂k+1|k = Ax̂k|k + θkνkBuk + (1 − θk) νBuk. (13)

Using (13) it is possible to rewrite the predicted error as

follows:

ek+1|k = xk+1 − x̂k+1|k = Axk + νkBuk + ωk − Ax̂k|k

+θkνkBuk − (1 − θk) νBuk =
= Aek|k + (νk − θkνk − (1 − θk) ν) Buk + ωk

.

(14)

We can then compute the associated error covariance one-

step prediction:

Pk+1|k = E
[

ek+1|keT
k+1|k|Ek, θk, θkνk

]

=

= E
[

Aek|keT
k|kA|Ek

]

+ E
[

ωkωT
k |Ek

]

+

+E
[

(νk − θkνk − (1 − θk) ν)
2
|Ek, θk, θkνk

]

BukuT
k BT ,

obtaining

Pk+1|k = APk|kAT + Q + (1 − θk) (1 − ν) ν
[

BukuT
k BT

]

.
(15)

Equations (13), (14) and (15) represent the predictions of

the Kalman Filter for the system (12). The correction steps,

instead, are the classical ones considered in [14]:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1

(

yk+1 − Cxk+1|k

)

(16)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k (17)

Kk+1 = Pk+1|kCT
(

CPk+1|kCT + R
)−1

(18)

Remark 1: Note that:

θk = 1 ⇒ Pk+1|k = APk|kA + Q
θk = 0 ⇒ Pk+1|k = APk|kA + Q + ν (1−ν)

[

Buku
T
kB

T
]

.

This implies that, at each time k, the prediction switches

between the ”TCP-like” predictions or the ”UDP-like” one,

depending on the instantaneous value of θk.

B. Optimal Control - general case

Here we will show that, in the presence of stochastic

acknowledgements, the optimal control law is not a linear

function of the state estimate and that the estimation and

control design cannot be treated separately. In order to prove

such a statement, it is sufficient to consider the following

simple counterexample. Consider a simple scalar discrete-

time Linear Time-Invariant (LTI) System with a single actua-

tor and a single sensor, i.e. A=B=C=WN =Wk=R=1,Uk=Q=0.

We can define the value function

V (N) = E
[

xT
NWNxN |EN

]

= E
[

x2
N |EN

]

;

for k = N − 1 we will have:

VN−1 (xN−1) = min
uN

E
[

x2
N−1 + VN (xN ) |EN−1

]

=

= min
uN

E
[

x2
N−1 + x2

N |EN−1

]

=

= min
uN

E
[

x2
N−1 + (xN−1 + νN−1uN−1)

2
|EN−1

]

(19)

and then finally

VN−1 (xN−1) = E
[

2x2
N−1|N−1|EN−1

]

+

+min
uN

ν
(

u2
N−1 + 2x̂N−1|N−1uN−1

) (20)

If we differentiate the latter, we obtain the following optimal

input :

u∗
N−1 = −x̂N−1|N−1̂ (21)

If we substitute (21) in (19) the cost becomes:

VN−1 (x) = E
[

2x2
N−1|EN−1

]

− ν x̂2
N−1|N−1 =

= (2 − ν)E
[

x2
N−1|G

]

− νPN−1|N−1.
(22)

Let us focus now on the covariance matrix:

PN−1|N−1 = PN−1|N−2 − γN−1
P 2

N−1|N−2

(PN−1|N−2+1)
=

= PN−1|N−2 − γN−1

(

PN−1|N−2 − 1 + 1

(PN−1|N−2+1)

)

(23)
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because of

PN−1|N−2 = PN−2|N−2 + (1 − θN−2) (1 − ν) νu2
N−2

(24)

then:

E
[

PN−1|N−1|EN−2

]

=PN−2|N−2+
(

1−θ
)

(1−ν)νu2
N−2+

−γ
(

PN−2|N−2 +
(

1 − θ
)

(1 − ν) ν u2
N−2 + θ 1

PN−2|N−2

−1 +
(

1 − θ
)

1
PN−2|N−2+(1−ν)νu2

N−2

)

.

(25)

Finally we get

VN−2 (x) = min
uN−2

E
[

x2
N−2 + VN−1 (xN−1) |EN−2

]

=

= (3 − ν)E
[

x2
N−1|EN−2

]

+ min
uN−2

PN−2|N−2+

+
(

1 − θ
)

(1 − ν) νu2
N−2+

−γ
(

PN−2|N−2 +
(

1 − θ
)

(1 − ν) νu2
N−2 − 1+

+θ 1
PN−2|N−2

+
(

1 − θ
)

1
PN−2|N−2+(1−ν)νu2

N−2

)

(26)

The first terms within the last parenthesis in (26) are convex

quadratic functions of the control input uN−2; however, the

last term is not such. Therefore, the optimal control law is,

in general, a nonlinear function of the information set Ek.

By inspection we can state the following result

Theorem 1: Let us consider the stochastic system defined

in Equation (12) with horizon N ≥ 2. Then:

• if θ < 1 (TCP-like case), the separation principle does

not hold

• The optimal control feedback uk = g∗k (Ek) that min-

imizes the cost functional defined in Equation (11) is,

in general, a nonlinear function of information set Ek

• The optimal control feedback uk = g∗k (Ek) is a linear

function of the estimated state if and only if one of the

following conditions hold true:

– θ = 1
– Rank(C) = n and R = 0

¤

In the next subsection we will focus on the case where

Rank(C) = n, and R = 0. In particular we will compute

the optimal control, and we will show that, in the infinite

horizon scenario, the optimal state-feedback gain is constant,

i.e. L∗
k = L∗ and can be computed as the solution of a convex

optimization problem.

C. Optimal Control – Rank(C)=n, R=0 case

Without loss of generality we can assume C = I . Because

of the hypothesis of no measurement noise, i.e. R = 0, it

is possible to simply measure the state xk when a packet

is delivered. The estimator equations then simplify in the

following way:

Kk+1 = I (27)

Pk+1|k = APk|kA + Q+
+(1 − θk) (1 − ν) ν

[

BukuT
k BT

] (28)

Pk+1|k+1 = (1 − γk+1)Pk+1|k = (1 − γk+1)
(

APk|kA + Q + (1 − θk) (1 − ν) ν
[

BukuT
k BT

]) (29)

E
[

Pk+1|k+1|Ek

]

=

= (1 − γ)
(

APk|kA + Q +
(

1 − θ
)

(1−ν)ν
[

BukuT
k BT

])

.
(30)

In the last equation the independence of Ek, γk+1, θk is

exploited. Following the classical dynamic programming

approach to the optimal control, we assume that the value

function V ∗
k (xk) can be written as follows:

Vk (xk) = x̂T
k|kSkx̂k|k + trace

(

TkPk|k

)

+ trace (DkQ) =

= E
[

xT
k|kSkxk|k

]

+ trace
(

HkPk|k

)

+ trace (DkQ)

(31)

for each k = N, . . . , 0 where Hk = Tk −Sk. This is clearly

true for k = N ; in fact, we have:

VN (xN)=E
[

xT
NWNxN|EN

]

=x̂T
N |NWNx̂N|N +trace

(

WNPN|N

)

Therefore the statement is satisfied by SN = TN =
WN , DN = 0. Let us suppose that Equation (31) is true

for k + 1 and we show by induction that it holds true for k:

Vk(xk)=minuk
E

[

xT
kWkxk+νku

T
k Ukuk + Vk+1(xk+1)|Ek

]

=
minuk

E
[

xT
kWkxk|Ek

]

+νuT
k Ukuk+E

[

xT
k+1Sk+1xk+1|Ek

]

+
+trace

(

Hk+1Pk+1|k+1

)

+ trace (Dk+1Q) =
= minuk

E
[

xT
k Wkxk|Ek

]

+ νkuT
k Ukuk + trace

[

Hk+1

(

(1−γ)
(

APk|kA+Q+(1−θk)ν (1 − ν)
[

BukuT
k BT

]))]

+E
[

(

Axk|k + θkνkBuk + (1 − θk) νBuk

)T
Sk+1

(

Axk|k + θkνkBuk + (1−θk)νBuk

)∣

∣Ek

]

+trace (Dk+1Q) .

Exploiting the convexity of Vk (xk) w.r.t. uk and by further

manipulation, we can find its minimizer that is the solution

of ∂Vk (xk) /∂uk = 0 :

u∗
k =−

(

Uk+BT (Sk+1+ᾱHk+1)B
)−1(

BTSk+1Axk|k

)

=Lkxk|k,
(32)

where α = (1 − γ)
(

1 − θ
)

(1 − ν) ν. The optimal control

is a linear function of the estimated state xk|k. Substituting

back (32) into the value function and by proceeding with

further manipulations we get:

Vk (xk) = trace ((Dk+1 + (1 − γ)Hk+1) Q)+

+E
[

xT
k|k

(

Wk+ATSk+1A
)

xk|k+
(

ν
(

xT
k|kA

TSk+1B
)

Lkxk|k

)]

+

+trace
(((

(1 − γ)AT Hk+1A − νAT Sk+1BLk

)

Pk|k

))

.
(33)

From the last equation we see that the value function can

be written as in Equation (31) if and only if the following

equations are satisfied:

Sk = Wk + AT Sk+1A. + ν
(

AT Sk+1B
)

Lk (34)

Tk = (1 − γ) AT Tk+1A + Wk + γAT Sk+1A (35)

Dk = Dk+1 + (1 − γ)Tk+1 + γ̄Sk+1 (36)

Remark 2: Notice that, if θ → 0, the control design

system soon regresses to the UDP-like case studied in [1]

The optimal minimal cost for the finite horizon, J∗
N =

V0 (x0) is then given by:

J∗
N = x̄0

T S0x0 + trace(S0P0) + trace(DkQ).

For the infinite horizon optimal controller, necessary

and sufficient conditions for the average minimal cost
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J∗
∞ = lim

N→∞
J∗

N to be finite are that the coupled iterative

Equations (35) and (34) should converge to a finite value

S∞ and T∞ as N → ∞.

Theorem 2: Consider the system (12) and consider the

problem of minimizing the cost function (11) within the class

of admissible policies uk = f (Ek). Assume also that R = 0
and C is square and invertible. Then:

1) The optimal estimator gain is constant and in particular

Kk = I if C = I .

2) The infinite horizon optimal control exists if and only if

there exist positive definite matrices S∞, T∞ > 0 such

that S∞ = ΦS (S∞, T∞) and T∞ = ΦT (S∞, T∞),
where ΦS and ΦT are given by

ΦS (Sk, Wk) = Wk + AT SkA−ν
(

AT SkB
)

(

Uk+BT ((1 − α)Sk+1+αTk+1)B
)−1(

BT Sk+1A
)

(37)

ΦT (Sk, Tk) = (1 − γ) AT Tk+1A+Wk +γAT Sk+1A
(38)

3) The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞

L∞=−
(

U+BT ((1−α)S∞+αT∞)B
)−1(

BT S∞A
)

(39)

4) A necessary condition for the existence of S∞, T∞ > 0
is:

1 − |A|
2

(

1 − ν

(1−α)+α
γ|A|2

1−(1−γ)|A|2

)

≥ 0

γ > 1 − 1
|A|2

(40)

where |A| = maxi |λi (A) | is the largest eigenvalue of

the matrix A. This condition is also sufficient if B is

square and invertible.

5) The expected minimum cost for the infinite horizon

scenario converges to:

J∗
∞ = lim

k→∞

1

N
J∗

N = trace (((1 − γ)Tk + γSk)Q)

(41)

Proof: see [13]

IV. GENERALIZATION TO THE MULTICHANNEL CASE

Here, following the same reasoning of the previous Sec-

tion, we will generalize the obtained results to the multi-

channel case. Due to space constraints, here we will just

summarize the principal differences with the single channel

case. For details please refer to [13].

A. Optimal Observer

The prediction step of the Kalman filter shown in equation

(13), (14) and (15) for the single input case becomes

x̂k+1|k = Ax̂k|k + BΘkNkuk + B (1 − Θk) N̄uk (42)

ek+1|k = Aek|k + B (I − Θk)
(

Nk − N̄
)

uk + ωk (43)

Pk+1|k =APk|kA
T +Q+B(1−Θk)

(

Ψ(uk,N̄)
)

(1−Θk)B
T

(44)

where the following shorthand is introduced

N̄ = E[Nk] = Im×m −
m′
∏

i=1

(Im×m − ν̄′
idiag {ηi}), (45)

NI = Im×m−
∏

i∈I∪{0}

(Im×m−diag{ηi}) , (46)

Ψ(uk, N̄) =

=
∑

I∈2ℑ

((

∏

i∈I

ν̄′
i

∏

i/∈I

(1−ν̄′
i)

)

[(

NI−N̄
)

uku
T
k

(

NI−N̄
)]

)

.
(47)

where I ⊆ ℑ ≡ {1, ...,m′} is a set of index and η0 = 0m.

The correction steps, instead, remain the ones shown in [15]:

x̂k+1|k+1 = x̂k+1|k+Kk+1Γ
m
k+1

(

yk+1−Cxk+1|k

)

(48)

Pk+1|k+1 = Pk+1|k − Kk+1Γ
m
k+1CPk+1|k (49)

Kk+1 =
Pk+1|kCT ΓmT

k+1
(

Γm
k+1CPk+1|kC

TΓmT
k+1+Γm

k+1RΓmT
k+1

)−1(50)

where Γm
k is the matrix of the nonzero rows of Γk.

B. Optimal Control

In this subsection we generalize the above theorem for the

multi-channel case. In the general case, the following result

can be stated:

Theorem 3: Let us consider the stochastic system defined

in (12) with horizon N ≥ 2. Then:

• if ∃i : θi < 1, the separation principle does not hold

• The optimal control feedback uk = g∗k (Ek) that min-

imizes the cost functional defined in Equation (11) is,

in general, a nonlinear function of information set Ek

• The optimal control feedback uk = g∗k (Ek) is a linear

function of the estimated state if and only if one of the

following conditions hold true:

– θi = 1,∀i
– Rank(diag{gi}C) = n, i = 1, . . . , p′ and R = 0

¤

It is worth noticing that the conditions Rank(diag{gi}C) =
n and R = 0 are equivalent to the case whereby every

sensor data packet contains the actual value of the whole

state. System (1) is then equivalent to

xk+1 = Axk + Bua
k + ωk,

ua
k = Nkuk + [Im×m − Nk] ul

k,
y (k) = γkxk,

(51)

where

γk = 1 −

p′

∏

i=1

(

1 − γ′
i,k

)

.

This means that the optimal control is linear only when the

sensing apparatus is able to perfectly measure and deliver

the full state. For such a case it is possible to extend the

results previously derived in the following manner:

Theorem 4: Consider the system (1) and consider the

problem of minimizing the cost function (11) within the class

of admissible policies uk = f (Ek). Assume also that R = 0
and C is square and invertible. Then:
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(a) The optimal estimator gain is constant and in particular

Kk = I if C = I .

(b) The optimal control is linear and is

u∗
k = − [ΩN̄Θ̄ (Sk+1,Hk)]

−1 (

N
)

BT Sk+1Axk|k = Lkxk|k

(52)

where

ΩN̄Θ̄ (Sk+1,Hk) =

=
∑

I ∈ 2ℑ

Iθ ∈ 2ℑ









∏

i ∈ I
j ∈ IΘ

ν̄′
iθ̄

′
j

∏

i /∈ I
j /∈ IΘ

(

1 − θ̄′j
)

(1 − ν̄′
i)





(

NIUkNI + NIΘIΘ
BT Sk+1BΘIΘ

NI+

+
(

NI − N̄
)

(I − ΘIΘ) BT Hk+1B(I − ΘIΘ)
(

NI − N̄
)

+

+2uT
k N (I − ΘIΘ

) BT Sk+1BΘIΘ
NIu+

+N (I − ΘIΘ)BT Sk+1 (I − ΘIΘ)NB

)





and ΘI = NI . Matrices Tk,Sk,Dk remain the same defined

in (34),(35),(36) and Hk = Tk − Sk.

¤

V. EXAMPLE

This section is devoted to show how the probability of

receiving an acknowledgement from the actuators affects the

stability regions of the LQG controller. In order to exploit

necessary and sufficient conditions arising from equation

(40), we consider a very simple system with an invertible

and square B:

x(t + 1) = 3x(t) + u(t) + w(t)
y(t) = x(t)

(53)

with Q = 1. Figure 3 shows the different stability regions

with respect to ν̄ and γ̄, parameterized by the acknowledge-

ment probability θ̄. In particular it is possible to show that,

as θ̄ → 1 the stability region converges to the one computed

for the TCP-like protocol.

VI. CONCLUSIONS

In this paper we analyzed a generalized version of the

LQG control problem for the case where both observation

and control packets may be lost during transmission over

a communication channel and in which a stochastic input

acknowledgment mechanism is provided. We have shown

that the partial lack of acknowledgement of control packets

results in the failure of the separation principle and that

estimation and control are now intimately coupled. We have

shown that the LQG optimal control is linear only in the par-

ticular case where we have access to full state information.

In such a case, the partial presence of acknowledgements

increases the stability range of the overall system, converging

to the TCP-like with deterministic acknowledgements as the

arrival rate for the acknowledgement packets tends to one.
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Fig. 3. Region of stability relative to measurement packet arrival probability
γ̄, and the control packet arrival probability ν̄, parameterized into the
acknowledgment packet arrival probability θ̄.
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