
Control on Landscapes with Local Minima and Flat Regions:

A Simulated Annealing and Gain Scheduling Approach

Abraham K. Ishihara and Shahar Ben-Menahem

Abstract— Landscapes containing local minima and “flat”
regions are frequently encountered in multi-layer neural net-
works that employ sigmoid-like activation function in the
hidden layers. Numerous techniques in the neural network
community have been proposed to address these issues. In
this note, we extend these ideas to the neural network control
of nonlinear systems. We propose a solution which employs
simulated annealing and a gain scheduled learning rate.

I. INTRODUCTION

Convergence of the backpropagation algorithm and its

variants highly depend on the shape of the landscape1. It

is well known that multilayer neural networks employing

sigmoid-like nonlinearities in the hidden layers result in

landscapes with local minima [2]. Another type of local

minima, in which we term “flat” regions2 arise due to the

fact that the derivative of sigmoid like activation functions

tends exponentially to zero. The occurrence of “flat” regions

“is one of the main reasons for the slow convergence of

standard backpropagation”[6]. Flat regions are not local

minima in the technical sense. As pointed out by [2], with

sufficient numerical precision, and sufficient time (or number

of iterations), backpropagation is not likely to get stuck here.

However, the length of time might in fact be crucial to the

application at hand especially if it is the real-time control

of an uncertain nonlinear system. Hence, in our view, this

represents practical local minima in the sense that it may

take an impractical amount of time to converge.

Both simulated annealing and gain scheduled or adaptive

learning rates have been used before for neural network

pattern recognition and system identification [2]. On the

other hand, stochastic stability of neural network control

systems has been examined in [4], [3]. However, to the best

of our knowledge, these techniques have not been combined

in the control of uncertain nonlinear systems using multi-

layer neural networks. The primary goal of this paper is to

connect these methods with rigorous stability proofs required

for closed loop control.
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1The shape of the landscape is independent of the particular learning
algorithm.

2Flat regions are also know as flat spots, and the phenomenon of slow
convergence due to flat spots is often termed premature saturation [7]

II. A MOTIVATING EXAMPLE

We pose a system identification problem in which the

landscape has a local minimum and flat regions. Consider

the following desired signal

d∗(v∗, t) = aσ1(v
∗x(t)) + bσ2(v

∗x(t))

where σ1(y) = e−
y2

2 , σ2(y) = 1
1+e−y , a, b ∈ R are known

parameters, and v∗ ∈ R is an unknown weight. We define the

estimated signal as3 d = aσ1(vx) + bσ2(vx), where v is the

weight estimate of v∗. We define the error as e = d∗−d and

the objective or cost function as J = 1
2e2. This determines a

landscape, shown in Fig. 1, that associates the cost and the

weight vector.
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Fig. 1. The Landscape

Computing the gradient of the cost function using the

chain rule, we find

∂J

∂v
= − (aσ′

1(vx) + bσ′
2(vx)) ex

Adjusting the weight, v, according to gradient descent yields

v̇ = γ (aσ′
1(vx) + bσ′

2(vx)) ex

To illustrate the main idea, we simulate three initial condi-

tions in which the trajectories converge to the global mini-

mum, the local minimum, and a “practical” local minimum.

This is illustrated in Fig. 2. This simulation illustrates two

3For notational convenience, we will drop the explicit time dependence of
x(t) and v(t) and simply write x and v, respectively. It is to be understood
that x may depend on time and that v depends on time through a learning
rule.
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Fig. 2. Trajectories converge to the global minimum, the local minimum,
and a ‘practical’ local minimum using standard backpropagation

problems that can arise in high dimensional multilayer neural

networks. Under standard gradient descent the trajectory

(of the weight vector) may converge to a local minimum

depending on its initial condition. If this local minimum

is far from the global minima, it is likely that there will

be a large performance error. Similarly, if the trajectory is

initialized in a “flat” region, then it may become practically

stuck there. Since multilayer neural networks have numerous

local minima and “flat” regions due to the nonlinearities

introduced by activation functions such as sigmoids and

RBF’s, this scenario is highly likely.

A. Simulated Annealing: Escaping Local Minima

Simulated annealing [1] introduces an additional term in

the gradient descent algorithm. This is given by

v̇ = γ (aσ′
1(vx) + bσ′

2(vx)) ex + σn

√

T (t)Ḃ (1)

where σn represents the noise intensity, T (t) represents

temperature, and B represents a Brownian motion process4.

In the following, we will set T (t) = e2(t). To illustrate,

we simulate 20 randomly chosen initial conditions on the

interval: [−4, 4], with σn = 0.7 and γ = 1. This is illustrated

Fig. 3. We observe that most trajectories converge to the

global minimum. In fact, all trajectories that went into the

local minimum were able to get out and into the global

minimum. However, there are two trajectories that appear

to be wandering off in the “flat” region. Unlike in the

deterministic case where the trajectories in a “flat” region

appear to be stuck (see Fig. 2), in this case they appear

to be “wandering” away from the global minima. Hence,

while it appears that simulated annealing has solved the local

minima problem, we now observe that the “flat” regions

can be potentially dangerous as the weights not only can

be practically stuck but may also go unbounded.

4A precise definition of a Brownian motion process is given in Section
III-A.
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Fig. 3. Learning with Simulated Annealing: Here, we set σn = 0.7. We
simulate 20 randomly chosen initial conditions on the interval: [−4, 4].

B. Gain Scheduling the Learning Rate: Escaping “Flat”

Regions

As discussed previously, there are two trajectories that

appear to be wandering off in the “flat” region. In the

deterministic case, the trajectory would appear to be stuck as

if in a local minimum, and hence we defined this situation

as a practical local minimum. When noise is added to the

learning dynamics, however, the gradient is essentially zero,

and the derivative of the weight evolves according to a scaled

Brownian motion process. Hence, we are motivated to make

the following transformation which is applicable to both the

no noise and noise case. Consider the two transformations

w = fi(v) where

f1(v) = c tan−1
( v

α

)

and f2(v) = c tanh
( v

α

)

The transformations, f1 and f2 effectively compress v =
±∞ to the point given by w = ±cπ and w = ±c, respec-

tively. For illustration purposes, we consider only gradient

descent, that is v̇ = −γ ∂J
∂v

. Notice that
[

∂fi

∂v

]−2

ẇ = −γ ∂J
∂w

.

This motivates the following modified learning rate γ →
γ
[

∂fi

∂v

]−2

and hence the modified system is given by

˙̃v = −γ

[

∂fi

∂v

]−2

[aσ′
1(vqd) + bσ′

2(vqd)] q̃qd + σn

√

T (t)Ḃ

(2)

The main idea, is that if v begins to drift away along a

“flat” region, the effective learning rate will scale according

to
[

∂fi

∂v

]−2

. Direct calculation yields

[

∂f1

∂v

]−2

=

(

α1

c1

)2
[

1 +

(

v

α1

)2
]2

(3)

and
[

∂f2

∂v

]−2

=

(

α2

4c2

)2
(

e
v
α + e

− v
α2

)4

In what follows we will set αi = ci. This ensures that as

‖v‖ → 0, the effective learning rate tends to the constant,
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γ. In Fig. 4, we simulate the gain scheduled learning rates

in the deterministic (no-annealing) condition. Of interest is

the case when the initial conditions are in the flat region

where the effective learning rate in the baseline case is very

small. We initialize the weight at v = 10 and compare the

baseline, f1 and f2 cases. We observe that the baseline case

converges to a “practical” local minimum in the sense that

it will take an impractical amount of time to converge since

the gradient in the ‘flat’ region is essentially zero. Both the

gain scheduled learning rates are able to get out of the “flat”

region and converge to the local minimum. At this point,

they stay there as the gradient is zero. In the simulation we

set γ = 1, c1 = α1 = 1, and c2 = α2 = 10.

Remark 1: The gain scheduled learning rules are able to

overcome ‘flat’ regions, but are not able to get out of local

minima. On the other hand, simulated annealing is able to

overcome local minima but has difficulty in ‘flat’ regions.

This observation is the motivation behind the combined

approach proposed in the next section. ⋄
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Fig. 4. Comparison of Gain Scheduled Learning Rates

III. LEARNING AND CONTROL

In the previous section, we only considered the learning

component, or system identification. In this section, we

couple the learning system with a control system.

The Plant: Let the plant be described by the first order

nonlinear system:

q̇(t) + aσ1(v
∗q(t)) + bσ2(v

∗q(t)) = τ(t) (4)

where v∗ is an unknown parameter. We assume that both a

and b are known. The objective of the control input, τ , is

to ensure that the state, q(t), track a desired trajectory given

by qd(t). We use the following definitions of the controller,

performance error, and parameter error:

τ = τff + τfb q̃ = qd − q

τff = q̇d + τ̄ff ṽ(t) = v∗ − v(t)
τfb = Kpq̃ τ̄ff = aσ1(vqd) + bσ2(vqd)

(5)

Note that by Taylor expansion we have

σi(v
∗qd) = σi(vqd) + σ′

i(vqd)ṽqd + Oi for i = 1, 2 (6)

where Oi = O‖ṽqd‖2. Note that the higher order terms can

be bounded as follows:

Oi = σi(v
∗qd) − σi(vqd) − σ′

i(vqd)ṽqd

≤ 2c
(i)
1 + c

(i)
2 ‖qd‖‖ṽ‖ (7)

where c
(i)
1 = supy∈R

‖σi(y)‖ and c
(i)
2 = supy∈R

‖σ′
i(y)‖

Error Dynamics: Using (4), (5) and (6) we have,

˙̃q = −τfb + a (σ1(v
∗q) − σ1(v

∗qd))

+b (σ2(v
∗q) − σ2(v

∗qd))

+aσ′
1(vqd)ṽqd + bσ′

2(vqd)ṽqd + aO1 + bO2 (8)

A. Simulated Annealing Controller

We now introduce simulated annealing to the learning

dynamics as given in (1). The closed loop system becomes:
[

˙̃q
˙̃v

]

=

[

f1(q̃, ṽ)
f2(q̃, ṽ)

]

+ HḂ (9)

where

f1 = a (σ1(v
∗q) − σ1(v

∗qd)) + b (σ2(v
∗q) − σ2(v

∗qd))
+aσ′

1(vqd)ṽqd + bσ′
2(vqd)ṽqd + aO1 + bO2 − τfb

f2 = −γ [aσ′
1(vqd) + bσ′

2(vqd)] q̃qd + γκ‖q̃‖v
(10)

and

H =

[

0

σn

√

T (t)

]

(11)

Before proceeding, we state the Ito formula, which is the

stochastic version of the chain rule from ordinary calculus.

We refer the reader to [5] for further details and background

on stochastic differential equations.

Theorem 1 (Ito’s Lemma-adapted from [5]): Let

(Ω,F , {Ft}, P ) be a complete probability space, and

x(t, ω) be a n̄-dimensional Ito process satisfying

x(t, ω) − x(0, ω) =

∫ t

0

F (x, s)ds +

∫ t

0

H(x, s)dB (12)

where F ∈ L1(Rn̄ × R
+ × Ω; Rn̄), H ∈ L2(Rn̄ × R

+ ×
Ω; Rn̄×m), and B : R

+ × Ω → R
m is an m dimensional

Brownian motion. Let V ∈ C2,1(Rn̄ × R
+; R). Then,

V (x(t), t) − V (x(0), 0) =

∫ t

0

F̄ ds +

∫ t

0

H̄dB a.s

where F̄ = Vt +VxF + 1
2Tr

(

HT VxxH
)

and H̄ = VxH . The

notation, Vx denotes the gradient of V , and Vxx denotes the

Hessian of V .

For brevity, we define the operator L acting on the

Lyapunov function V as

LV := Vt + VxF +
1

2
Tr
(

HT VxxH
)

We will also need the following definition. Let

ẋ = F (x, t) + H(x, t)Ḃ (13)

Definition 1: The solution to the stochastic differential

equation given in (13) is said to be semi-global uniformly
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bounded in expectation if for any given (arbitrarily large) set

of initial conditions: x0 ∈ Bk, we have

E‖x(t)‖ ≤ β ∀t ≥ t0

where β is a constant that may depend on k.

Theorem 2 (SGUBE): Let F and G in (13) satisfy the

local Lipschitz and linear growth condition described

in [5] (page 51). Let V ∈ C2,1(Bh × R
+; R), and

‖x(t0)‖ ≤ k < h. Let the radius, r ∈ (0, h).
Denote the exterior of the half cylinder as Ωr,t0 :=
{(x, t) ∈ Bh × R

+ : ‖x(t)‖ > r & t ≥ t0}. Let V be pos-

itive definite and decrescent on Ωr,t0 . That is, there exists

class K functions, µ1 and µ2 such that µ1(‖x‖) ≤ V (x, t) ≤
µ2(‖x‖) for all (x, t) ∈ Ωr,t0 . Suppose, in addition, that µ1

is convex on [0, h). If LV ≤ 0 for all (x, t) ∈ Ωr,t0 , then,

the expected value,

E(‖x‖) ≤ β ∀t ≥ t0

where β = max{r, µ−1
1 (µ2(r)) , µ−1

1 (µ2(k))}.

Remark 2: Due to page limitations, we do not provide

the full proof as it follows very closely to the proof of the

deterministic version first proposed by [8].

Theorem 3: Let the plant be described by (4) with control

input, performance error and parameter error defined in (5).

Let the learning dynamics evolve according to

v̇ = γ [aσ′
1(vqd) + bσ′

2(vqd)] q̃qd − γκ‖q̃‖v + σn

√

T (t)Ḃ

where γ, κ > 0. Suppose the ideal weight v∗ satisfies ‖v∗‖ ≤
vb where vb > 0 is a known upper bound. Then, if

Kp >
(

ac
(1)
2 + bc

(2)
2

)

vb +
1

2
γ−1σ2

n

and the temperature is set to T (t) = ‖q̃‖2, the closed loop

system is semi-globally uniformly bounded in expectation

(SGUBE).

Proof: The closed loop system is given by

ẋ = F (x, t) + H(x, t)Ḃ

where x = [q̃ ṽ]T , F =

[

f1

f2

]

and fi and H are given in

(9)-(11). We have

LV = VxF +
1

2
Tr
[

VṽṽHHT
]

The term on the right hand side becomes

1

2
Tr
[

VṽṽHHT
]

=
1

2
γ−1σ2

nT (t)

where T (t) ≥ 0. Since T (t) = ‖q̃‖2 we compute

LV ≤ −‖q̃‖
{

(

Kp − r2‖v∗‖ − 1
2γ−1σ2

n

)

‖q̃‖

+
(√

κ‖ṽ‖ − κ‖v∗‖+r2‖qd‖
2
√

κ

)2

−
[

(

κ‖v∗‖+r2‖qd‖
2
√

κ

)2

+ 2r1

]







Hence, if the feedback gain is selected such that

Kp > r2vb +
1

2
γ−1σ2

n

it follows by Theorem 2, that the closed loop system is

SGUBE.

B. The Simulated Annealing and Gain Scheduling Controller

We now present the main results of this note in which

we combine the simulated annealing controller with a gain

scheduled learning rate as describe in Section II-B. As we

would like our results to hold for a time-varying desired tra-

jectory, it is necessary to slightly modify the gain scheduler5

as follows:

[

∂f1

∂v

]−2

=

(

α1

c1

)2
[

1 +

(

vqd

α1

)2
]2

The only modification is scaling v by qd. This becomes

necessary to obtain a uniform bound as qd becomes small.

Theorem 4: Let the plant be described by (4) with control

input, performance error and parameter error defined in (5).

Let the learning dynamics evolve according to simulated

annealing and gain scheduling algorithm given by

v̇ = γ

(

1 +

[

∂f1

∂v

]−2
)

[aσ′
1(vqd) + bσ′

2(vqd)] q̃qd

−γκ‖q̃‖v + σn

√

T (t)Ḃ

where γ, κ > 0. Suppose the ideal weight v∗ satisfies ‖v∗‖ ≤
vb where vb > 0 is a known upper bound. Then, if

Kp >
(

ac
(1)
2 + bc

(2)
2

)

vb +
1

2
γ−1σ2

n

and the temperature is set to T (t) = ‖q̃‖2 the closed loop

system is semi-globally uniformly bounded in expectation

(SGUBE).

Proof: With the modified learning rule given above, we

have

VxF (x) ≤ − (Kp − r2‖v∗‖) ‖q̃‖2 + 2r1‖q̃‖ + r2‖qd‖‖q̃‖‖ṽ‖
+ṽ

(

−
(

1 +
[

∂f1

∂v

]−2
)

[aσ′
1(vqd) + bσ′

2(vqd)] q̃qd

+ κ‖q̃‖v + [aσ′
1(vqd) + bσ′

2(vqd)] q̃qd

)

Using the uniform bound established in (14) in the Appendix,

we obtain

LV ≤ −‖q̃‖
{

(

Kp − r2‖v∗‖ − 1

2
γ−1σ2

n

)

‖q̃‖

+

(√
κ‖ṽ‖ − κ‖v∗‖ + r2‖qd‖ + Cf1

‖qd‖2

2
√

κ

)2

−
[

(

κ‖v∗‖ + r2‖qd‖ + Cf1
‖qd‖2

2
√

κ

)2

+ 2r1

]}

5For the remaining development, we only consider the case for which
fi = f1. The f2 case is very similar.
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As before, if the feedback gain is selected such that

Kp > r2vb +
1

2
γ−1σ2

n

it follows by Theorem 2, that the closed loop system is

SGUBE.

IV. SIMULATION EXAMPLES

In this section, we illustrate the advantages of the simu-

lated annealing and gain scheduling controller.

Example 1: (Baseline and Simulated Annealing Con-

troller: Performance Comparison). We first compare the

baseline and simulated annealing controller. This is shown

in Fig. 5. In the top panel, we plot the performance with

respect to tracking a step input. We observe that the baseline

controller has a large steady state error. The error in this

case is due to the fact that the weight has converged to

the local minimum around v = 2. This is shown in the

bottom panel. The simulated annealing controller is able to

‘escape’ from the local minima due to the temperature scaled

Brownian motion. Once out of the local minimum, both the

performance error and the weight estimate converge to the

correct solution.
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Fig. 5. Nominal and Simulated Annealing Controller

Example 2: (Baseline, Simulated Annealing - only,

Gain Scheduling - only, and Simulated Annealing and Gain

Scheduling Controller: Performance Comparison). In Exam-

ple 1, the simulated annealing controller was able to get out

of the local minimum and converge to the global minimum.

This is the main point of simulated annealing. However, as

pointed out earlier, this may not be the case if the initial

conditions are such that the weights begin in flat regions,

or if the initial error in performance drives the weights to

a flat region. There are numerous ways in which weights

may end up in “flat” regions. Hence, the potential to become

practically stuck is an important limitation of using simulated

annealing alone. In this example, we initialize the weight in

a “flat” region at v(t0) = 8. The simulation is shown in Fig.

6 where the evolution of the performance and weights under

the various control scenarios are depicted in the top and bot-

tom panel, respectively. Here, the landscape is very flat, and

hence it’s gradient is very small. We observe that the baseline

controller has converged to a practical local minimum in

the sense that it would take an impractical amount of time

to converge. Furthermore, even if it did converge, it would

converge to the local minimum, and not the global minimum.

The simulated annealing controller also does not converge. In

the bottom panel, we observe the weight bouncing around in

the flat region. The performance is similar to the baseline

controller as the saturation effect of the nonlinearities in

this region makes the contribution to the plant dynamics

nearly identical. The gain scheduling controller is able to

overcome the “flat” region, but becomes stuck in the local

minima. The performance is slightly better than the baseline

and simulated annealing controllers. Finally, the combined

simulated annealing and gain scheduling controller is able to

not only escape the “flat” region, but also the local minimum

as well. We observe that the weight converges to the global

minima, and the performance error tends to zero. Notice the

coupled error and weight dynamics as the weight begins to

descend down to the global minimum. There are times for

which v = v∗ yet it does not remain there. The reason is

due to the effective time constant of the error dynamics that

drives the Brownian motion process.

V. DISCUSSION

It is well known that local minima present significant

challenges in the control of uncertain nonlinear systems with

large scale, multi-layer neural networks. Similarly, “flat”

regions, which arise due to the properties of commonly

used activation functions such as sigmoids, can significantly

degrade performance relegating online neural network con-

trollers to an impractical solution. The model we chose is the

simplest in the following sense. The simplest possible neural

network is a one parameter net with an activation function.

The simplest possible plant is a first order plant. Despite

its simplicity, we have shown that standard neural network

control methods in this situation will fail. The reason why

they fail is due to the fact that the weights become stuck in

the local minima and “flat” regions.

The simulated annealing and gain scheduling controller

combined the best of both controllers described above. We

showed that not only would the controller escape from

the flat region, but also would escape the local minima

and converge to the global minima. The performance was

shown to be far superior to the baseline case. Furthermore,
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LEARNING METHOD Solves Local Minima? Solves “Flat” Regions?
Guarantees

Boundedness?

Simulated Annealing yes no no

Gain Scheduling no yes no

Regularization no no yes

Proposed Method yes yes yes

TABLE I

COMPARISON OF METHODS
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Fig. 6. Performance Comparison of (1) Baseline, (2) Simulated Annealing,
(3) Gain Scheduling, and (4) Simulated Annealing and Gain Scheduling
Controllers: For cases (1)-(4), we plot the plant performance in the top
panel, and the evolution of the weights under the various learning schemes
in the bottom panel.

all the methods proposed were encompassed by rigorous

stability proofs which are not common in the neural networks

literature. It is often the case that neural nets are trained

offline, and the resulting network is then fixed and used in

the control of a plant. However, in this case, we seek a neural

net controller implemented online that has the ability to track

time varying or abrupt changes in the plant parameters. This

added complexity requires the use of Lyapunov like stability

proofs that guarantee the combined dynamics result in a

stable system.

Up to this point, we have not discussed regularization. This

technique is often employed in neural networks when there

exists prior information. In control, this technique is used

to overcome the requirements of persistence of excitation.

We note that regularization is very different than the gain

scheduling method proposed earlier. In all of the proposed

controllers, the regularization term was given as −γκ‖q̃‖v.

This has the effect of driving the weights to the origin for

non-zero q̃. Note that this is independent of the gradient.

On the other hand, the gain scheduling term ‘kicks in’ when

the weights become large, thus preventing drift in a ‘flat’

region. However, it does not necessarily drive the weights

to the origin. Note that it is possible that the regularization

term can lead to an incorrect solution. On the one hand, it

ensures boundedness of the weights, but on the other can

drive them to an incorrect value resulting in bounded, but

poor performance. These observations are summarized in

Table I.

APPENDIX

Uniform Bounds on the Product: It can be shown that
∥

∥

∥

∥

∥

[

∂f1

∂v

]−2

[aσ′
1(vqd) + bσ′

2(vqd)] qd

∥

∥

∥

∥

∥

≤ Cf1
‖qd‖2 (14)

where

Cf1
= a

[

e−12 + 2 3
3

2

α2

1

e−
3

2 + 5
5

2

α4

1

e−
5

2

]

+b

[

1 + 2
(

2
α1

)2

e−2 +
(

4
α1

)4

e−4

]
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