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Abstract—This paper describes the modeling of the Acrobot
composed of 2 links with a curved contour and the continuous
rolling motion control for this Acrobot. The outer contour of
each link is shaped from the arc whose radius is different
by the tip and the sidepiece of the link. The model differs
according to the contact point between the Acrobot and the
ground. Therefore, it is difficult to control the whole motion
via common control strategy. From an intuitive analysis based
on the Acrobot’s energy while the Acrobot rolls with a certain
constant relative angle, control strategy is constructed in two
phases. The phases are when the Acrobot rolls with lower-
ing(downward phase) and raising(upward phase) the center of
the gravity. As the control in upward phase needs to lower
the COG of the Acrobot, a collision between the Acrobot and
the ground becomes unavoidable. Therefore, analysis of this
collision phenomenon is also conducted. At last, by selecting
the output functions that can achieve the control objective at
each phase and applying Output Zeroing control, continuous
rolling motion is realized in numerical simulation.

I. INTRODUCTION

The Acrobot is two-link underactuated robot. Because the

Acrobot is underactuated, it is very interesting from the

nonlinear control point of view. Therefore, there are many

researches about motion control of the Acrobot. For example,

swing up control problem[1][2] which is the most famous

problem, and hopping gait control problem[3] are dealt with

in past researches.

The purpose of this paper is to achieve continuous rolling

motion for the Acrobot shown in Fig. 1. Nakakuki et

al. realized rolling motion with three links serial robot

in numerical simulation and experiment[4][5]. Because the

Acrobot has less input than Nakakuki’s system, it is more

difficult problem. Furthermore, to realize rolling motion of

the Acrobot, we need to deal with rolling constraint and

switching of models. Therefore we think there is a room for

the further research about the Acrobot.

This paper is organized as follows. In Section II, a model

of the Acrobot to realize rolling motion is explained. First,

we explain a structure of the link of the Acrobot. Next, we

explain models to realize rolling motion and derive dynamic

equation. In Section III, intuitive analysis and control of

rolling motion is explained. First, we divide the rolling

motion into three phases and analyze the energy of the

Acrobot for each phase. Next, from this intuitive analysis,

we set control objective for each phase and propose control

strategy to achieve each control objective which we set

previously. In Section IV, we show continuous rolling motion

by numerical simulation result. Finally in Section V, we

conclude this paper.

impact

Fig. 1. rolling motion with impact

Fig. 2. rounded link

II. MODEL OF THE ACROBOT WITH ROUNDED LINKS

A. Robot model

The rounded link of the Acrobot is shown in Fig. 2. As

physical parameters, a radius of the tip of the link is r, a

radius of the sidepiece of the link is R, and an angle of

link’s side arc is 2α.

The model of the Acrobot to realize rolling motion differs

with contact point between the ground, and it can be divided

into five models as follows.

• model-1 (Fig. 3)

the model during the arc of the tip of link1 contacts

with ground.

• model-2 (Fig. 4)

the model during the arc of the sidepiece of link1

contacts with ground.

• model-3 (Fig. 5)

the model during the arc between link1 and link2

contacts with ground.

• model-4 (Fig. 6)

the model during the arc of the sidepiece of link2

contacts with ground.

• model-5 (Fig. 7)

the model during the arc of the tip of link2 contacts

with ground.
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Fig. 3. model-1
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Fig. 4. model-2
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Fig. 5. model-3
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Fig. 6. model-4
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Fig. 7. model-5

θ1 shows the absolute angle of link1 and θ2 shows the

relative angle of link2. (xc, yc) show rotational center of

rolling motion. Physical parameters are listed in TABLE I.

By geometric relation, rolling angle φ is defined as TABLE

II.

B. Equation of motion

By Lagrange’s method, an equation of motion for each

model is derived in the same form as follows.

Mf (qf )q̈f + Cf (q̇f , qf ) + G(qf ) = Efu + JT
c λc (1)

TABLE I

DEFINITION OF PHYSICAL PARAMETERS

M1, M2 : mass of each link
2L1, 2L2 : length of each link

(gravity point is at center of the link)
J1, J2 : moment of inertia of each link

L0 : length from the rotational center of rolling motion
to joint between link1 and link2

L12, L22 : length from the rotational center of rolling motion
to COG of each link

TABLE II

DEFINITION OF ROLLING ANGLE φ

model-1 : φ = π − α − θ1

model-2 : φ = α − θ1

model-3 : φ = −α − θ1

model-4 : φ = α − (θ1 + θ2)
model-5 : φ = −α − (θ1 + θ2)

where qf = [θ1 θ2 xc yc]
T ∈ R

4 is a generalized coordinate

vector, Mf ∈ R
4×4 is an inertia matrix, Cf ∈ R

4 is a

Coriolis and centrifugal force, Gf ∈ R
4 is a gravity term,

Ef = [0 1 0 0]T ∈ R
4 is an input coefficient vector, and

u ∈ R is torque input which works at the joint between link1

and link2. Mf , Cf and Gf are different in each model. The

rolling constraint of each model is shown as follows.

Nc(qf ) =

[

xc − aφ

yc − a

]

= 0 (2)

where

a =

{

r (model − 1, 3, 5)
R (model − 2, 4)

(3)

Consequently, the Jacobian Jc ∈ R
2×4 and constraint force

λc ∈ R
2 are calculated as follows.

Jc =
∂N

∂qf

=

[

∗ ∗ 1 0
0 0 0 1

]

=
[

J1 J2

]

(4)

λc = (JcM
−1

f JT
c )

{

JcM
−1

f (Cf + Gf − Efu) + J̇cq̇f

}

(5)

It is known that the equation of motion (1) can be decom-

posed into a reduced equation of motion by removing the

constraint. The reduced equation of motion is represented as

follows.

Mc(qc)q̈c + Cc(q̇c, qc) + G(qc) = Ecu (6)

where

qc =

[

θ1

θ2

]

(7)

J =

[

I2

−J1

]

(8)

Mc(qc) = JTMfJ ∈ R
2×2 (9)

Cc(q̇c, qc) = JT(Cf (q, q̇) + J̇ q̇1) ∈ R
2 (10)

Gc(qc) = JTGf (q) ∈ R
2 (11)

Ec = JTEf ∈ R
2 (12)
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Finally a state equation with the state x = [qT
c q̇T

c ]T is

derived as follows.

ẋ =

[

q̇c

−M−1
c (Cc + Gc)

]

+

[

0
M−1

c Ec

]

u

= f(x) + g(x)u

(13)

C. Impact model

To realize rolling motion like Fig. 1, we need to model

the impact between the Acrobot against the ground.

We assume that a collision of the robot and the ground is

perfectly inelastic. At the instant of impacting against the

ground, constrained impulse λI occurs. Since a variation

of both state and input is very small, it can be ignored as

compared with λI . Therefore, the equation of motion at the

instant of impact is represented as follows.

Mf (q̇f+ − q̇f−) = JT
I (qf )λI

JI(qf )q̇f+ = 0
(14)

where, q̇f+ and q̇f− are the generalized velocity of imme-

diately after and before impact respectively. Then the gener-

alized velocity immediately after impact and the constraint

force are derived from (14) as follows.

q̇f+ = q̇f− − M−1

f JT
I λI (15)

λI = (JIM
−1

f JT
I )−1JI q̇f− (16)

When the link1 impacts against the ground, constraint NI

and its Jacobian JI are represented as follows.

NI(qf ) =

»

2L2 cos(θ1 + θ2 + π) + 2L1 cos(θ1 + π) + xc

2L2 sin(θ1 + θ2 + π) + 2L1 sin(θ1 + π) + yc

–

= const.
(17)

JI =
∂NI

∂qf

=

[

JI11 JI12 1 0
JI21 JI22 0 1

]

JI11 = 2 {L1 sin(θ1) + L2 sin(θ1 + θ2)}

JI12 = 2L2 sin(θ1 + θ2)

JI21 = −2 {L1 cos(θ1) + L2 cos(θ1 + θ2)}

JI22 = −2L2 cos(θ1 + θ2)

(18)

model−1 model−2 model−3

model−5 model−4

Fig. 8. rolling motion flow

TABLE III

CONDITIONS TO SWITCH MODELS

1© φ > π − 2α ⇔ θ1 < α

2© φ > 2α ⇔ θ1 < −α, θ2 > 2α

3© φ > 2α ⇔ θ1 < −α, θ2 = 2α
4© φ > δ ⇔ θ1 + θ2 < α

5© φ > 2α ⇔ θ1 + θ2 < −α

6© 2α < θ2 < π, link1 contact with ground.

Fig. 9. when θ2 > 2α

D. Switching of model

The flow of the rolling motion and conditions to switch

models are shown as Fig. 8 and TABLE III respectively. No-

tice that when the model is model-2, to make smooth rolling

motion(without impact against ground) of the Acrobot, it is

necessary to set θ2 greater than or equal to 2α (see Fig. 9).

III. INTUITIVE ANALYSIS AND CONTROL OF ROLLING

MOTION

Our objective is to make continuous rolling motion of

the Acrobot. To achieve this objective, we carry out the

procedure to construct the control law as follows. The first,

we analyze intuitively the rolling motion where θ2 is set to

a constant value. The second, from this analysis we divide

the rolling motion in three phases and construct the control

law for each phase.

A. Characteristic of the system

To examine the characteristic of the system, we make a

intuitive analysis of the Acrobot’s energy while the Acrobot

makes the rolling motion which starts from certain standing

position with θ2 = const. like Fig. 10. Fig. 11 is time

responses of the Acrobot’s energy and COG. From Fig. 11

(a), we can see that all energy of the Acrobot is constant

during the Acrobot rolls with θ2 = const.. Furthermore while

the model changes from model-1 to model-3 via model-2, the

COG of the Acrobot goes down, and the Acrobot’s potential

energy decreases and its kinetic energy increases. On the

other hand, while the model changes from model-4 to model-

5, the COG of the Acrobot goes up, and the Acrobot’s kinetic

energy decreases and its potential energy increases.

However, when the Acrobot rolls with θ2 = const. and
the model becomes model-5, kinetic energy of the Acrobot
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Fig. 10. rolling motion when θ2 = const.
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Fig. 11. time response of rolling motion when θ2 = const.
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Fig. 12. definition of each phase

decreases and finally becomes 0. Therefore, the Acrobot

can’t continue the rolling motion to forward direction, and

begin to roll to backward direction. As a result of this

backward motion the robot repeats the same motion. To make

the Acrobot roll continuously to forward direction, we have

to keep the Acrobot’s kinetic energy high enough.

To devise the control strategy, we divide the rolling motion

into three phases as in Fig. 12. Downward phase is the

phase while the model changes from model-1 to model-3 via

model-2 and the center of the gravity of the Acrobot goes

down. Upward phase is the phase while the model changes

from model-4 to model-5 and the center of the gravity of

the Acrobot goes up. Impact phase is the phase when link1

impacts against the ground when the model is model-5. Why

the impact phase is needed becomes clear later.

From the above discussion, the energy flow of downward

and upward phase are shown as follows.

• downward phase:

potential energy → kinetic energy

(Potential energy of the Acrobot is converted into its

kinetic energy.)

• upward phase:

kinetic energy → potential energy

(Kinetic energy of the Acrobot is converted into its

potential energy.)

Therefore to keep kinetic energy of the Acrobot high, we

link2

link1

(a) output function 1

link2

link1

(b) output function 2

Fig. 13. physical interpretation of the output function in downward phase

link1

link2

Fig. 14. after impact

link1 link2

Fig. 15. physical interpretation of
the output function in upward phase

need to do as follows.

• downward phase:

To increase potential energy of the Acrobot for the sake

of increasing energy quantity which is transformed into

kinetic energy.

• upward phase:

To keep the Acrobot’s potential energy low and increase

its kinetic energy.

B. Downward phase

The control objective in the downward phase is to increase

potential energy. Moreover, to make smooth rolling motion

of the Acrobot we need to set θ2 ≥ 2α before the model

switches to model-3. Therefore, we need to achieve two

different control objective. To realize the first objective, we

set the output function as follows.

y = θ1 + θ2 − θ12d (19)

By zeroing this output function, we can control the absolute

angle of link2 to desired value θ12d as shown in Fig. 13(a).

Moreover, to realize the second objective, if θ2 becomes

θ2roll we change the output function as follows.

y = θ2 − θ2roll (20)

By zeroing this output function, we can control the angle of

link2 to desired value θ2roll as shown in Fig. 13(b). Notice

that we use these output functions after the impact phase too.

Next, we discuss how to select the value of θ12d and

θ2roll. When θ12d = π
2
, in other words when the link2 stands

vertically, the potential energy becomes maximum because

the height of link2’s COG becomes maximum. Moreover,

considering after impact phase, it is better to set θ12d < π
2

because the COG of the Acrobot comes to forward (Fig. 14)

and it makes easier to continue the rolling motion of the

Acrobot.
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Fig. 16. when θ̇2d > 0 in upward phase

C. Upward phase

The control objective in the upward phase is to keep

potential energy low and increase kinetic energy. To realize

this objective, we set the output function as follows.

y = θ̇2 − θ̇2d (21)

By zeroing this output function, we can control the angular

velocity of link2 to desired value θ̇2d as shown in Fig. 15.

Next, we discuss the value of θ̇2d. When θ̇2d > 0, the
COG of the Acrobot goes forward. If the COG is at front of

the contact point between the robot and the ground, rolling

speed becomes faster and kinetic energy increases as shown

in Fig. 16. However, when θ̇2d > 0 the collision between

the robot and the ground becomes unavoidable. Therefore,

we analyze the impact phase in the next section.

D. Impact phase

Because we assume that the collision between the robot

and the ground is perfectly inelastic, the Acrobot loses the

kinetic energy at impact phase. We analyze the impact phase

in two case. One is the case that the Acrobot impacts with

θ̇2 = 0 and the other is one that the Acrobot impacts with

θ̇2 > 0.
1) Impact with θ̇2 = 0: We define the kinetic energy ratio

of right after to just before impact phase as follows.

K+
−

=
K+

K−

(22)

where K+ is kinetic energy of the Acrobot right after impact

phase and K− is the one just before impact phase. From (16),

the relation between q̇f+ and q̇f− is shown as follows.

q̇f+ = Aq̇f−

A = I − M−1

f JT
I (JIM

−1

f JT
I )−1JI

(23)

Therefore, K− and K+ are calculated as follows.

K− =
1

2
q̇T
f−Mf q̇f− (24)

K+ =
1

2
(Aq̇f−)

T
Mf (Aq̇f−) (25)

From θ̇2− = 0, (2), (3) and TABLE II, q̇f− is shown as

follows.

q̇− =









θ̇1−

θ̇2−

ẋc−

ẏc−









=









θ̇1−

0

−rθ̇1−

0









=









1
0
−r

0









θ̇1− (26)

link1
link2

impact

Fig. 17. impact with θ̇2 > 0

TABLE IV

ENERGY RATIO OF BEFORE TO AFTER IMPACT

θ̇2 [rad/s] K+
r− K+

t− K+
−

0.0 0.73
1.19

= 0.614 2.74
2.88

= 0.949 3.46
4.07

= 0.852

0.5 0.73
1.49

= 0.490 2.77
2.71

= 1.025 3.51
4.20

= 0.835

1.0 0.73
1.84

= 0.396 2.80
2.57

= 1.090 3.53
4.41

= 0.800

Letting b = [1 0 − r 0]T, the energy ratio K+
−

is shown as

follows.

K+
−

=
bTATMfAb

bTMfb
(27)

If θ2 is fixed, θ1 has a unique value at impact phase.

Therefore, K+
−

depends only on the value of θ2 at the

moment of impact. When θ2 is larger K+
−

becomes close

to 1. In other words when the Acrobot is more bent energy

loss at impact becomes less.

2) Impact with θ̇2 > 0: When the Acrobot impacts against

the ground with θ̇2 > 0, the Acrobot kicks the ground as

shown in Fig. 17. Therefore there is a possibility that we

can increase the kinetic energy of the Acrobot after impact.

The kinetic energy of the Acrobot (28) is divided into

rotational energy (29) and translational energy (30)

K = Kr + Kt (28)

Kr =
1

2
J1θ̇

2
1 +

1

2
J2

(

θ̇1 + θ̇2

)2

(29)

Kt =
1

2
M1v

2
1 +

1

2
M2v

2
2 (30)

where v1 and v2 are a translational velocity of COG of

link1 and link2 respectively. From TABLE IV, where K+
r−

and K+
t− are rotational and translational kinetic energy ratio

of right after to just before impact phase respectively, if θ̇2

becomes larger K+
r− and K+

−
becomes less while K+

t− and

the kinetic energy right after impact become larger. This

means that if the rotational speed of link1 becomes quick

the kinetic energy right after impact becomes large but the

efficiency is down.

Considering the control in upward phase, to impact with

θ̇2 = 0 we need to stop the rotation of link1 in upward phase.

But if we stop it, the energy consumption

Econs =

∫ T

0

∣

∣

∣
θ̇2u

∣

∣

∣
dt (31)

becomes larger. In other words, the rolling motion as a whole

becomes less efficient. Therefore, we make the Acrobot

impact with θ̇2 = θ̇2d in this paper.
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TABLE V

PHYS. PARAMETERS

M1 1.0 [kg]

M2 1.0 [kg]

L1 0.5 [m]

L2 0.5 [m]

r 0.1 [m]

R 1.1 [m]

α 30.0 [deg]

TABLE VI

INITIAL VALUE

θ1 90.0 [deg]

θ2 -10.0 [deg]

θ̇1 0.0 [deg/s]

θ̇2 0.0 [deg/s]

TABLE VII

DESIGN PARAMETERS

θ12d 85.0 [deg]

θ2roll 70.0 [deg]

θ̇2d 1.65 [rad/s]

E. Input for output zeroing

1) Downward phase: Because the relative degree of the

output function is 2, the torque input for output zeroing is

obtained as follows.

u = (LgLfh)−1(v − L2
fh) (32)

where L∗ is Lie derivative, h = y and v is a new input. The

new input v is derived using LQR control.

2) Upward phase: The torque input to control θ̇2 to

desired value θ̇2d is obtained as follows.

u =
v − f2(x)

g2(x)
(33)

where θ̈2 = f2(x) + g2(x)u and v is a new input. The new

input v is derived as follows.

v = kv(θ̇2 − θ̇2d) (34)

IV. SIMULATION

By using the method stated in previous sections, numerical

simulation is carried out. Physical parameters and an initial

value for the simulation are shown in TABLE V and TABLE

VI respectively. The design parameters are chosen as in

TABLE VII considering the condition about constraint force

as follows.

λy > 0 (35)

where λy is vertical constraint force. This is the condition

to keep the Acrobot contact with the ground.

From the simulation result in Fig. 18, it turns out that the

continuous rolling motion has been performed. Fig. 19 shows

snapshots of animation of simulation.

V. CONCLUSION

In this paper, we dealt with continuous rolling motion

control for the Acrobot with collision between the Acrobot

and the ground. At first, we modeled the Acrobot composed

of rounded links to realize rolling motion. Next, we made an

intuitive analysis of the Acrobot’s energy while the Acrobot

rolls with constant relative angle. From this analysis, we

divided the rolling motion into three phases and derived the

control strategy for each phase. At last, by using the control

strategy which was devised from the previous analysis, we

realized continuous rolling motion in numerical simulation.
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