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Abstract— This paper considers a Lyapunov stability analysis
for continuous-time systems described by high order difference-
algebraic equation from the viewpoint of the semidefinite
programming (SDP) duality. In the behavioral system theory,
a Lyapunov function is described by a quadratic differential
form (QDF) and equivalently characterized by a two-variable
polynomial matrix. We first develop the SDP duality to the non-
negativity and positivity of two-variable polynomial matrices.
Using the duality, we derive an alternative stability condition
in terms of the two-variable polynomial matrix equation and
QDFs as a main result.

I. INTRODUCTION

The Lyapunov stability theory plays an important role in
the stability analysis of a dynamical system. In this paper,
we derive an alternative stability condition based on the
semidefinite programing duality in the behavioral framework.

In the behavioral approach, a quadratic differential form
(QDF) is used for describing a quadratic functional such as
a storage function, supply rate and Lyapunov function which
play important roles in the dissipation theory and Lyapunov
theory [13]. Since there is an one-to-one correspondence
between a QDF and a two-variable polynomial matrix, a
QDF is useful as an algebraic tool.

Previous works on the behavioral approach to stability
analysis of dynamical systems are as follows. Willems and
Trentelman [13] proved a generalized Lyapunov stability
theorem for a one-dimensional (1-D1) continuous-time sys-
tem based on QDFs. Indeed, in [13], a Lyapunov function
is characterized in terms of a QDF which is obtained
by solving a two-variable polynomial Lyapunov equation
(TVPLE). This condition was developed to 2-D systems as
a sufficient stability condition in terms of QDFs and four-
variable polynomial Lyapunov equation.

We point out the problems of the above works as follows.
• Based on the QDF conditions in [13], there have been

derived necessary and sufficient stability conditions in
terms of linear matrix inequalities (LMIs) constructed
from the TVPLE [3][4][6]. These LMI conditions can
check the stability of a given behavior exactly. But,
since we restrict our attention to the systems described
by high-order differential algebraic equations, these
condition need complex transformations of polynomial
matrices in order to describe the condition in terms of
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1We call the system which has one independent variable as one-
dimensional (1-D) system. On the other hand, the system that depend on
n-variables (n ≥ 2) is called n-dimensional (n-D) system.

LMIs. Hence, it is hard to check the stability by using
these LMI conditions in the case where the physical
parameters have uncertainties [10].

• In the sufficient stability condition in [5], there exists
a stable behavior which does not satisfy the condition,
since the condition is a sufficient condition, The reason
is that the polynomial matrix which induces a kernel
representation has infinite number of zeros. Hence, this
indicates the it may be difficult to derive a necessary
and sufficient condition for n-D systems.

The above observations suggest the necessity of a condition
which assures that the system is not asymptotically stable if
it satisfies the condition for the systems which are difficult
to deal with.

Under the above observation, we focus our attention on the
idea of the semidefinite programming (SDP) [2] which are
known as a numerical framework in the optimization theory.
As one of the results related to the system and control theory,
Balakrishnan, Vandenberghe [1] derived an alternative stabil-
ity condition which gives a exact decision for the stability
based on the SDP duality. They also developed the stability
result to a new interpretation to the optimal regulator problem
and a new proof of the Kalman-Yakubovich-Popov lemma.
Recently, there have been derived the dual stability results
for nonlinear systems and algorithmic approach based on the
theorem of alternative for the computation of the certificates
of infeasibility [7][9][11].

In order to overcome the abate difficulties, we focus on the
SDP from a theoretical viewpoint. Moreover, the SDP duality
has not been studied in the system theory so far. Hence, we
formulate the SDP duality in the behavioral framework. As a
main result, we will derive an alternative stability condition
in terms of the two-variable polynomial matrix equation and
QDFs for some behavior.

The organization of the paper is as follows. In Section II,
we review some basic definitions and results of linear
continuous-time systems, QDFs and Lyapunov theory in
the behavioral approach. We develop the SDP duality to
the nonnegativity and positivity of two-variable polynomial
matrix in Section III. Based on the duality, we give a main
result which gives an alternative stability condition using
the two-variable polynomial matrix equation and QDFs in
Section IV.

II. PRELIMINARIES

In this section, we will review the basic definitions and
results from the behavioral system theory.
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A. Linear Continuous-Time System

In the behavioral system theory, a dynamical system is
defined as a triple Σ = (T,W,B), where T is the time axis,
and W is the signal space in which the trajectories take their
values on. The behavior B ⊆ WT is the set of all possible
trajectories. In this paper, we will consider a linear time-
invariant continuous-time system whose time axis is T = R
and signal space is W = Cq . Such a Σ is represented by a
system of linear differential-algebraic equation as

R0w +R1
d

dt
w + · · · +RL

dL

dtL
w = 0 (1)

where Ri ∈ Cp×q (i = 0, 1, · · · , L) and L ≥ 0. The variable
w ∈ C∞(R,Cq) is called the manifest variable. We call the
representation of (1) a kernel representation of B. A short
hand notation for (1) is

R

(
d

dt

)
w = 0, (2)

where R(ξ) := R0 + R1ξ + · · · + RLξ
L ∈ Cp×q[ξ]. Then,

the behavior is given by

B =
{
w ∈ C∞(R,Cq)

∣∣∣∣ R
(
d

dt

)
w = 0

}
. (3)

For the above Σ with B in (3), we define the dual system
of Σ by Σ′ = (R,Cp,B′). This is formulated as the system
whose behavior B′ has the kernel representation

R

(
d

dt

)∗
v = 0, v ∈ C∞(R,Cp), (4)

where R(ξ)∗ denotes the Hermite conjugate of R(ξ), i.e.
R(ξ)∗ := R∗

0 +R∗
1ξ + · · · +R∗

Lξ
L. Then, B′ is given by

B′ =
{
v ∈ C∞(R,Cp)

∣∣∣∣ R
(
d

dt

)∗
v = 0

}
. (5)

We call B′ as the dual behavior of B.
We define the autonomy and asymptotic stability of a

behavior B.
Definition 1: [8]

(i) A behavior B is said to be autonomous if

w1(t) = w2(t) (t < 0) =⇒ w1 = w2

holds for all w1, w2 ∈ B.
(ii) A behavior B is said to be asymptotically stable if

w ∈ B =⇒ lim
t→∞w(t) = 0.

The autonomy of B is a necessary condition for the asymp-
totic stability of B.

We give the definition of the zero of a polynomial matrix
and its Hurwitzness.

Definition 2: [13] Let R ∈ Cp×q[ξ] be given.
(i) A complex number λ ∈ C is called the zero of R(ξ) if

rankR(λ) < rankR.
(ii) A polynomial matrix R(ξ) is called Hurwitz if rankR =

q and rankR(λ) = q for all λ ∈ C such that Re λ ≥ 0.
The behavior (3) is autonomous if and only if rankR = q
holds [12]. Moreover, B in (3) is asymptotically stable if
and only if R(ξ) is Hurwitz.

B. Quadratic Differential Forms

Consider the two-variable polynomial matrix in
Cq1×q2 [ζ, η] described by

Φ(ζ, η) =
N1∑
i=0

N2∑
j=0

Φi,jζ
iηj , (6)

where Φi,j ∈ Cq1×q2 (i = 0, 1, · · · , N1; j = 0, 1, · · · , N2)
and N1, N2 ≥ 0. For this Φ(ζ, η), we define Φ� ∈ Cq×q[ζ, η]
by Φ�(ζ, η) := Φ(η̄, ζ̄)∗.

We call Φ(ζ, η) Hermite if Φ�(ζ, η) = Φ(η, ζ) (implying
q1 = q2 =: q and N1 = N2 =: N ). In this case, Φ(ζ, η)
induces a quadratic differential form (QDF)

QΦ(�) :=
N∑

i=0

N∑
j=0

(
di�

dti

)∗
Φi,j

dj�

dtj
.

Define the rate of change of the QDF QΦ(�)(t) by

∇QΦ(�) :=
d

dt
QΦ(�).

It follows immediately that it is also a QDF. Let ∇Φ ∈
Hq×q[ζ, η] denote the two-variable polynomial matrix which
induces ∇QΦ(�), namely ∇QΦ(�) = Q∇Φ(�). Then,
∇Φ(ζ, η) is expressed as

∇Φ(ζ, η) = (ζ + η)Φ(ζ, η).

We define the nonnegative and positive definiteness of
two-variable polynomial matrices.

Definition 3: [13] Let Φ ∈ Hq×q[ζ, η] be given.
(i) A two-variable polynomial matrix Φ(ζ, η) is called

nonnegative definite, denoted by Φ ≥ 0, if QΦ(�) ≥ 0
holds for all � ∈ C∞(R,Cq).

(ii) A two-variable polynomial matrix Φ(ζ, η) is called
nonzero nonnegative definite, denoted by Φ � 0, if
Φ ≥ 0 and Φ(ζ, η) �= 0q×q.

(iii) A two-variable polynomial matrix Φ(ζ, η) is called
positive definite, denoted by Φ > 0, if Φ ≥ 0, and
if QΦ(�) = 0 implies � = 0.

The nonnegative and positive definiteness of a two-
variable polynomial matrix are extended to the case where
the trajectory is constrained in a behavior.

Definition 4: [13] Let Φ ∈ Hq×q[ζ, η] be given.
(i) A two-variable polynomial matrix Φ(ζ, η) is called

nonnegative definite along B, denoted by Φ
B≥ 0, if

QΦ(w) ≥ 0 holds for all w ∈ B.
(ii) A two-variable polynomial matrix Φ(ζ, η) is called

nonzero nonnegative definite along B, denoted by Φ
B

�

0, if Φ
B≥ 0 and Φ(ζ, η) �= 0q×q.

(iii) A two-variable polynomial matrix Φ(ζ, η) is called

positive definite along B, denoted by Φ
B
> 0, if Φ

B≥ 0,
and if QΦ(w) = 0 implies w = 0.

We introduce the equivalence of two-variable polynomial
matrices along a behavior.
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Definition 5: [13] Two-variable polynomial matrices
Φ1 ∈ Hq×q[ζ, η] and Φ2 ∈ Hq×q[ζ, η] are equivalent along
B if

QΦ1(w) = QΦ2(w) ∀ w ∈ B.

We denote this by Φ1
B= Φ2.

The equivalence along B is characterized by the polyno-
mial matrix which induces the kernel representation of B.

Lemma 1: [13] Let R ∈ Cp×q[ξ] induce the kernel rep-
resentation of B. Let Φ1,Φ2 ∈ Hq×q[ζ, η] be given. Then,
Φ1

B= Φ2 holds if and only if there exists a Y ∈ Cp×q[ζ, η]
satisfying

Φ2(ζ, η) = Φ1(ζ, η) +R(ζ)∗Y (ζ, η) + Y �(η, ζ)R(η).

C. Stability condition using QDFs

In this section, we review necessary and sufficient con-
ditions for continuous-time behaviors using QDFs from the
reference [13].

Lemma 2: [13] Let R ∈ Cp×q[ξ] induce the kernel repre-
sentation of B. Let Φ ∈ Hq×q[ζ, η] be an arbitrary two-

variable polynomial matrix satisfying Φ
B
< 0. Then, the

following statements (i), (ii), (iii) and (iv) are equivalent.
(i) The behavior B is asymptotically stable.

(ii) There exists a two-variable polynomial matrix Ψ ∈
Hq×q[ζ, η] satisfying

Ψ
B≥ 0 and ∇Ψ

B
< 0. (7)

(iii) There exists a two-variable polynomial matrix Ψ ∈
Hq×q[ζ, η] satisfying Ψ

B≥ 0 and

∇Ψ B= Φ.

(iv) There exist two-variable polynomial matrices Ψ ∈
Hq×q[ζ, η] and Y ∈ Cp×q[ζ, η] satisfying Ψ

B≥ 0 and the
two-variable polynomial Lyapunov equation (TVPLE)

∇Ψ(ζ, η) = Φ(ζ, η) − Y �(η, ζ)R(η) −R(ζ)∗Y (ζ, η).
(8)

The QDF QΨ(w) satisfying the equation (7) is called a
Lyapunov function for B. In fact, if we regard QΨ(w) as
the energy function of B, the condition in (7) states that the
energy settles to its steady-state value as time goes to infinity
(t→ ∞).

Remark 1: From Lemma 2, we can check the stability
of B by finding the solution Ψ(ζ, η) and Y (ζ, η) to the
TVPLE (8). But the similar method becomes difficult in 2-D
systems, which is one of the motivation of this paper. It is
explained as follows.

In the reference [5], Kojima and Takaba proposed a
sufficient stability condition in terms of the four-variable
polynomial Lyapunov equation which is a generalization of
the TVPLE (8) to 2-D systems. But it often happens the case
that there does not exist the upper bound of the degree of
the solutions to the equation. This fact makes the stability
checking of the system quite difficult.

III. SDP DUALITY OF TWO-VARIABLE POLYNOMIAL
MATRICES

In Section II-B, we introduced the nonnegativity and
positivity of two-variable polynomial matrices. We establish
the SDP duality [1] to this property in this section. The
duality will be used when we derive an alternative stability
condition in the next section. Please see the reference [1] for
the detail of the SDP duality.

Suppose that Hq×q[ζ, η] is a space of block diagonal
Hermite two-variable polynomial matrices with some given
dimensions, namely

Hq×q[ζ, η]
= Hq1×q1 [ζ, η] × Hq2×q2 [ζ, η] × · · · × HqK×qK [ζ, η].

We define the inner product over Hq×q[ζ, η] by

〈diag (A1, A2, · · · , AK) , diag (B1, B2, · · · , BK)〉

=
K∑

i=1

trace (Ai(ζ, η)Bi(ζ, η)) ,

where Ai, Bi ∈ Hqi×qi [ζ, η] (i = 1, 2, · · · ,K). We can
discuss the nonnegativity and positivity of the inner product
of two-variable polynomial matrices by regarding it as a two-
variable polynomial.

Consider a linear mapping

A : CK [ζ, η] → Hq×q[ζ, η]

defined by2

A(x) = x1A1 + x2A2 + · · · + xKAK , (9)

where Ai ∈ Hq×q (i = 1, 2, · · · ,K) and x ∈ CK [ζ, η] is a
two-variable polynomial vector defined by

x(ζ, η) := col (x1(ζ, η), x2(ζ, η), · · · , xKζ, η)) ,
xi ∈ C[ζ, η] (i = 1, 2, · · · ,K).

Since A(x) in (9) can be regarded as a Hermite two-variable
matrix in Hq×q[ζ, η], we can formulate the nonnegativity and
positivity A(x) in the context of Section II-B.

We introduce the adjoint mapping of A which plays a
crucial role in this paper. The adjoint mapping of A is
defined by

Aadj : Hq×q[ζ, η] → CK [ζ, η],

〈A(x),Ψ′〉 =
〈
x,Aadj(Ψ′)

〉
.

As we will see in the above definition, the superscript “ ′ ”
means that the two-variable polynomial matrix is defined in
the “dual” domain.

We give a following proposition about the SDP duality to
the positivity and nonnegativity of two-variable polynomial
matrices.

Proposition 1: Let A(x) ∈ Hq×q[ζ, η] be defined by (9).
Let Φ0 ∈ Hq×q[ζ, η] be given.

2We omit the indeterminates ζ and η in (9) for the simplicity of the
notation.
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(i) Exactly one of the following statements (a) and (b)
holds.
(a) There exists an x ∈ CK [ζ, η] satisfying

A(x) + Φ0 > 0. (10)

(b) There exists a Ψ′ ∈ Hq×q[ζ, η] satisfying

Ψ′ � 0, Aadj(Ψ′) = 0 and 〈Φ0,Ψ′〉 ≤ 0 (11)

(ii) At most one of the following statements (c) and (d)
holds.
(c) There exists an x ∈ CK [ζ, η] satisfying

A(x) + Φ0 ≥ 0

(d) There exists a Ψ′ ∈ Hq×q[ζ, η] satisfying

Ψ′ ≥ 0, Aadj(Ψ′) = 0 and 〈Φ0,Ψ′〉 < 0

Moreover, if Φ0 = A(x0) for some x0 ∈ CK , then
exactly one of the statements (c) and (d) holds.
Proof: For the proof, see Appendix A.

IV. STABILITY CONDITION BASED ON THE SDP
DUALITY

In this section, we will derive an alternative condition for
the asymptotic stability based on the the SDP duality.

We suppose that a kernel representation of B is induced
by the square polynomial matrix R ∈ Rq×q[ξ] throughout
this section. Moreover, we assume that the two-variable
polynomial matrix Φ ∈ Hq×q[ζ, η] satisfies Φ < 0 which

is stronger assumption than Φ
B
< 0.

From Lemma 2 (iv), B is asymptotically stable if and only
if there exist a Ψ ∈ Hq×q[ζ, η] and Y ∈ Cq×q[ξ] satisfying

Ψ
B≥ 0 (12)

and the TVPLE

∇Ψ(ζ, η) = Φ(ζ, η) − Y (ζ, η)�R(η) −R(ζ)�Y (ζ, η).
(13)

It follows from Lemma 1 that (12) is equivalent to the
existence of X ∈ Cq×q[ζ, η] satisfying

Ψ(ζ, η) +X�(ζ, η)R(η) +R(ζ)∗X(ζ, η) ≥ 0. (14)

Moreover, (13) is equivalently rewritten by

−(ζ + η)Ψ(ζ, η) − Y �(ζ, η)R(η) −R(ζ)∗Y (ζ, η)
= −Φ(ζ, η)
> 0 (15)

In order to rewrite (14) and (15) in the form of (9), we
express Ψ(ζ, η), X(ζ, η) and Y (ζ, η) in the form

Ψ(ζ, η) :=
K∑

i=1

ψi(ζ, η)Si,

X(ζ, η) :=
q2∑

i=1

xi(ζ, η)Ei, Y (ζ, η) :=
q2∑

i=1

yi(ζ, η)Ei,

(16)
ψi ∈ H[ζ, η] (i = 1, 2, · · · ,K),

xi, yi ∈ C[ζ, η] (i = 1, 2, · · · , q2)

where Si ∈ Sq×q (i = 1, 2, · · · ,K;K := q(q+1)
2 ) and Ei ∈

Rq×q (i = 1, 2, · · · , q2) span the bases for Sq×q and Rq×q ,
respectively. Substituting (16) into (14) and (15), we obtain
the positivity of two-variable polynomial matrix A(ψ, x, y)
given by

A(ψ, x, y) > 0, (17)

A(ψ, x, y) :=
[A1(ζ, η) 0

0 A2(ζ, η)

]
, (18)

A1(ζ, η) := Ψ(ζ, η) +X�(ζ, η)R(η) +R(ζ)∗X(ζ, η)
A2(ζ, η) :=−(ζ+η)Ψ(ζ, η)−Y �(ζ, η)R(η)−R(ζ)∗Y (ζ, η),

where ψ ∈ HK [ζ, η] and x, y ∈ Cq2
[ζ, η] are defined by

ψ(ζ, η) := col (ψ1(ζ, η), ψ2(ζ, η), · · · , ψK(ζ, η)) ,
x(ζ, η) := col

(
x1(ζ, η), x2(ζ, η), · · · , xq2 (ζ, η)

)
,

y(ζ, η) := col
(
y1(ζ, η), y2(ζ, η), · · · , yq2(ζ, η)

)
,

respectively. Thus, we get the following stability condition
in terms of the positive definiteness of A(ψ, x, y).

Proposition 2: Let R ∈ Cq×q[ξ] be square and given.
Then, the behavior B in (3) is asymptotically stable if and
only if there exist two-variable polynomials ψi ∈ H[ζ, η]
(i = 1, 2, · · · ,K) and xi, yi ∈ C[ζ, η] (i = 1, 2, · · · , q2)
satisfying (17).

Proof: The solvability of (17) is equivalent to the
solvability of (12) and (13). Hence, the proof follows im-
mediately by applying Lemma 2,

From Propositions 1, 2, we obtain an alternative stability
condition based on the SDP duality as a main result.

Theorem 1: Let R ∈ Cq×q[ξ] be square and given. Then,
exactly one of the following statements (a) and (b) holds.
(a) The behavior B in (3) is asymptotically stable.
(b) There exist Φ′,Ψ′ ∈ Hq×q[ζ, η] and Z ∈ Cq×q[ζ, η]

satisfying

diag (Φ′,Ψ′) � 0,
∇Ψ′(ζ, η) = Φ′(ζ, η) − Z(ζ, η)R(η)∗ − R(η)Z�(ζ, η)

(19)
Proof: The statement (a) holds if and only if there

exist two-variable polynomial matrices Ψ ∈ Hq×q[ζ, η] and
X,Y ∈ Cq×q[ζ, η] satisfying (17). Hence, it is sufficient
to compute the adjoint mapping from Proposition 1 with
Φ0(ζ, η) = 0q×q .

We express Ψ′,Φ′ ∈ Hq×q[ζ, η] and Zi ∈ Hq×q[ζ, η] (i =
1, 2) similar to Proposition 2 as

Ψ′(ζ, η) =
K∑

i=1

ψ′
i(ζ, η)Si, Φ′(ζ, η) =

K∑
i=1

φ′i(ζ, η)Si,

where ψ′
i, φ

′
i ∈ H[ζ, η] (i = 1, 2, · · · ,K). Moreover, observe

that there hold the properties

〈∇Ψ(ζ, η),Ψ′(ζ, η)〉 = trace {(ζ + η)Ψ(ζ, η) · Ψ′(ζ, η)}
= trace {Ψ(ζ, η) · (ζ + η)Ψ′(ζ, η)}
=

〈
Ψ(ζ, η),∇Ψ′(ζ, η)

〉
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where Ψ,Ψ′ ∈ Hq×q[ζ, η]. We also have

trace {Y (ζ, η)R(η) · Z(ζ, η)}=trace {Y (ζ, η) ·R(η)Z(ζ, η)}
for Y, Z ∈ Cq×q[ζ, η]. Hence, we obtain the adjoint mapping
of A(ψ, x, y) expressed as

Aadj : HK [ζ, η] × Cq2
[ζ, η] × Cq2

[ζ, η],

→ HK [ζ, η] × HK [ζ, η] × Cq2
[ζ, η] × Cq2

[ζ, η]

Aadj(φ′, ψ′, z1, z2)
:= Φ′(ζ, η)−(ζ + η)Ψ′(ζ, η)+Z1(ζ, η)R(η)∗+R(η)Z�

1 (ζ, η)
− Z2(ζ, η)R(η)∗ −R(η)Z�

2 (ζ, η),

where Zi ∈ Cq×q[ζ, η] and zi ∈ C[ζ, η] (i = 1, 2) are
defined by

Zi(ζ, η) : =
q2∑

j=1

zi,j(ζ, η)Ej ,

zi(ζ, η) : = col
(
zi,1(ζ, η), zi,2(ζ, η), · · · , zi,q2(ζ, η)

)
zi,j ∈ C[ζ, η] (i = 1, 2; j = 1, 2 · · · , q2).

Define Z ∈ Cq×q [ζ, η] as

Z(ζ, η) := Z1(ζ, η) − Z2(ζ, η),

then the adjoint mapping is rewritten by

Aadj(φ′, ψ′, z1, z2)
= Φ′(ζ, η) − (ζ + η)Ψ′(ζ, η) + Z(ζ, η)R(η)∗ + R(η)Z�(ζ, η).

Hence, the statement of the theorem follows from Proposi-
tions 1 and 2.

Remark 2: The above theorem gives a necessary and
sufficient condition that B is not asymptotically stable.

Remark 3: In Proposition 2 of [1], an alternative stability
condition was proved for the behavior Bstate whose kernel
representation is expressed as the state-space equation.

Bstate =
{
w ∈ C∞(R,Cq)

∣∣∣∣ d

dt
w = Aw, A ∈ Cq×q

}

(20)
Namely, exactly one of the following statements (a) and (b)
holds.
(a) The behavior Bstate in (20) is asymptotically stable, i.e.

there exists a P ∈ Sq×q satisfying

A∗P + PA < 0 and P > 0.

(b) There exist P ′, Q′ ∈ Sq×q satisfying

diag (P ′, Q′) � 0 and P ′A∗ +AP ′ −Q′ = 0.

The alternative condition in Theorem 1 recovers this condi-
tion due to [1]. It is explained as follows. By setting

R(ξ) = A− ξIq, Ψ′(ζ, η) = Z(ζ, η) = P ′, Φ′(ζ, η) = Q′.

in (19), then we get

(ζ + η)P ′ = Q′ − P ′ (A∗ − ηIq) − (A− ζIq)P ′.

Substituting ζ = −ξ and η = ξ, the above equation is
rewritten by

P ′A∗ +AP ′ −Q′ = 0.

Since diag (P ′, Q′) � 0 is clear from Theorem 1 (b), we
obtain the statement (b).

The next theorem gives an another alternative condition in
terms of QDFs for the dual behavior.

Theorem 2: Let R ∈ Cq×q[ξ] be square and given. Let B′

be described by the kernel representation (4). Then, exactly
one of the following statements (a) and (b) holds.
(a) The behavior B in (3) is asymptotically stable.
(b) There exist Ψ′ ∈ Hq×q[ζ, η] satisfying

Ψ′ B′

� 0 and ∇Ψ′ B′

� 0.
Proof: The proof follows immediately from Theorem 1

and Lemma 1.
Remark 4: If we regard the QDF QΨ′(v) (v ∈ B′) as the

energy function for the dual behavior B′, the condition (b)
in Theorem 1 shows that the energy diverges as time goes to
infinity (t → ∞). This means that B′ is not asymptotically
stable.

V. CONCLUSIONS

In this paper, we have derived an alternative condition for
the asymptotic stability of a behavior described by a high-
order differential-algebraic equation (kernel representation)
based on the SDP duality. This condition gives a necessary
and sufficient condition that the behavior is not asymp-
totically stable using the two-variable polynomial matrix
equation and the QDFs for the dual behavior. Note that this
condition recovers an alternative stability condition due to
[1] in the sense that the behavior is described by the kernel
representation. Since such a study has not been considered so
far in the behavioral system theory, our result gives another
theoretical knowledge.

As future works, we need to develop our results the
dissipation theory and the optimal control in the behavioral
framework. Moreover, it should be noted that the set of our
dual analyzes must be extended to the Lyapunov stability
analysis in n-D systems.
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NOTATIONS

• Sq×q: the set of q × q real symmetric matrices
• Hq×q: the set of q × q Hermite matrices
• C[ζ, η]: the set of complex coefficient polynomials in

the indeterminates ζ and η
• H[ζ, η]: the set of complex coefficient Hermite polyno-

mials in the indeterminates ζ and η
• Cq[ζ, η]: the set of q-dimensional complex coefficient

polynomial vectors in the indeterminates ζ and η
• Hq[ζ, η]: the set of q-dimensional complex coefficient

Hermite polynomial vectors in the indeterminates ζ and
η

• Cp×q[ξ]: the set of p×q complex coefficient polynomial
matrices in the indeterminate ξ

• Cp×q[ζ, η]: the set of p × q complex coefficient poly-
nomial matrices in the indeterminates ζ and η

• Hq×q[ζ, η]: the set of q×q Hermite polynomial matrices
in the indeterminates ζ and η

• WT: the set of maps from T to W
• C∞(R,Cq): the set of infinitely differentiable functions

from R to Cq

• col(A1, A2, · · · , An) := [A�
1 A�

2 · · · A�
n ]�

• diag(A1, A2, · · · , An): q × q (block) diagonal matrix
with (block) diagonal elements {A1, A2, · · · , An}

• rankR: the rank of polynomial matrix R(ξ)
• rankR(λ): the rank of constant matrix R(λ)

APPENDIX

A. PROOF OF PROPOSITION 1

(i) From the statements of (i), we obtain the following
inequalities.

0 < 〈A(x),Ψ′〉
=

〈
x,Aadj(Ψ′)

〉
+ 〈Φ0,Ψ′〉

= 〈Φ0,Ψ′〉
≤ 0,

Note that the first inequality follows from (10) and the second
inequality of (11). Hence, one of the statements (a) and (b)
is true at most.

To complete the proof, we show that if the statement (a)
does not hold, then the statement (b) must be true. Consider
the set H ⊂ Hq×q[ζ, η] defined by

H :=
{

Υ ∈ Hq×q[ζ, η]
∣∣∣∣ A(y) + Υ > 0

for some y ∈ Cq[ζ, η]

}
.

Suppose that the statement (a) holds, i.e. Φ0(ζ, η) /∈ C. Since
H is open, nonempty and convex, there exists a nonzero
Ψ′ ∈ Hm×m[ζ, η] satisfying

〈Φ0,Ψ′〉 < 〈Υ,Ψ′〉 (21)

for all Υ ∈ C. This implies that Ψ′(ζ, η) must satisfy
Ψ′(ζ, η) �= 0q×q and

〈Φ0,Ψ′〉 < 〈−A(y) +X,Ψ′〉
= − 〈

y,Aadj(Ψ′)
〉

+ 〈X,Ψ′〉 (22)

for all X > 0 and y ∈ Cm[ζ, η].
Suppose that Aadj(Ψ′) �= 0 holds in (22), then the first

term − 〈
y,Aadj(Ψ′)

〉
in the right hand is unbounded below

as a function of y(ζ, η). On the other hand, if Aadj(Ψ′) = 0
holds, then we have

− 〈
y,Aadj(Ψ′)

〉
= 0

Therefore, if Ψ′(ζ, η) satisfies (21), it must satisfy
Aadj(Ψ′) = 0. Also, in (22), the second term is unbounded
below as a function of X > 0 if Ψ′ � 0 holds. This yields
a second condition Ψ′ ≥ 0. If Ψ′(ζ, η) satisfies the both
conditions, the right-hand side of (22) is positive definite for
all X(ζ, η) and y(ζ, η), and can take values arbitrary close to
0. Hence, the inequality holds for all y(ζ, η) and all X > 0
if

〈Φ0,Ψ′〉 ≤ 0.

is satisfied. Therefore, Ψ′(ζ, η) satisfies

Ψ′ � 0, Aadj(Ψ′) = 0, 〈Φ0,Ψ′〉 ≤ 0.

This completes the proof of (i).
(ii) It is straightforward to see that the statements (c) and
(d) contradict each other from the following inequalities.

0 ≤ 〈A(x) + Φ0,Ψ′〉 = 〈Φ0,Ψ′〉 < 0

Hence, one of the statements (c) and (d) holds at most.
It is sufficient to show that one of the statements (c) and

(d) is true at least. This is the case, if Φ0 = A(x0) for
some x0(ζ, η), then the statement (c) holds with x(ζ, η) =
−x0(ζ, η) and the statement (d) is false. This concludes the
proof.
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