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Abstract— We describe a distributed algorithm for solving the
rendezvous problem based on consensus protocols. We extend
our previous work by considering the case when the evolution
of the system is affected by measurement noise. The consensus
formulation allows us to derive conditions for convergence of the
system towards a ball with a finite radius. We derive an upper
bound on the radius of the ball and show how it depends on the
magnitude of the noise. We also present examples showing that
the bound is tight and can be in fact achieved, but that typically
the convergence is much better than the bound suggests.

I. INTRODUCTION

In robotic networks, rendezvous refers to the task of
controlling agents in a formation towards a common lo-
cation without active communication among them. Several
distributed algorithms for solving the rendezvous problem are
currently available in the literature. Originally presented in
[1], the problem has been extended to both synchronous [2]
and asynchronous [3], [4] cases. The proposed algorithms are
all distributed in the sense that each robot takes the decision
based only on the information it can gather from a certain
subset of the rest of the agents in the formation.

Parallel to this work, there has been much research in
the control community on consensus algorithms. Originally
described in [5] and applied to parallel computing [6], [7],
consensus protocols were brought to the control community
by [8]–[10] and have been since extensively studied. Varia-
tions of the consensus protocol have also been studied. For
instance the so called gossip algorithms by the computer net-
work community [11], also known as aggregation protocols
[12], are examples of such alternative formulations.

Observe that if the agents move freely in Rn, then achiev-
ing rendezvous for the agents is equivalent to them achieving
a consensus on their locations in Rn. This relationship
between consensus and rendezvous has not been unnoticed to
researchers [13]–[15]. Nonetheless, an explicit description of
the nature of such relationship was not presented until [16].
In that work, we show that a broad family of rendezvous
algorithms can be seen as an application of the consensus
protocol, thus inheriting the well-studied convergence prop-
erties of this family of protocols.

Most existing studies of the rendezvous assume that the
evolution of the system is deterministic: there are no random
influences on the measurements and the evolution of the
state. This assumption is difficult to justify in real life
applications, where both measurements and the evolution of
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the system have some degree of uncertainty. Some studies
[17], [18] have analyzed the effect of noise for a particular
version of the consensus protocol, and [19] considers the
effect of uniformly distributed measurement noise for a
particular class of rendezvous algorithms. We generalize
these results and study a general class of the consensus (and
rendezvous) algorithms, where the only assumption on the
noise is that it is zero-mean and bounded.

In this work, we show how noisy rendezvous can be
reduced to noisy consensus (for which the general solution
still is, to the best of our knowledge, an open problem). We
show that in the presence of bounded noise, the consensus
is almost attained, meaning that the agents will converge
to some finite ball. We then discuss how the radius of the
ball can be reduced given that the robots can only traverse
finite distances in finite time. We conclude the paper with
simulation results showing that our bounds are tight, but that
they are typically conservative.

II. PRELIMINARIES AND NOTATION

A. Consensus algorithms

Consensus protocols were introduced by Tsitsiklis in 1984
[5], and then re-discovered independently by the control
community with the work of Jadbabaie et al. [8]. Subsequent
research inspired by this work led to the continuous time
version of the protocol [9], and was generalized in [10].
We refer the interested reader to the survey [20] and the
references therein. For purposes of this paper, we will focus
on the discrete time consensus algorithm.

Let x0 ∈ Rn be a vector, and let A ∈ Rn×n be a square
matrix with the following properties:

1) A is primitive, i.e. there is a positive integer k such
that Ak has all its entries positive, and

2) A is stochastic, i.e. all its entries are non-negative, and
the sum of the entries in each column is equal to 1.

It follows from Geršgorin’s circle theorem [21] and the
Perron-Frobenius Theorem for primitive matrices [22] that
A has all but one of its eigenvalues in the interior of the
complex unit circle and that the remaining eigenvalue is
equal to 1 and has 1, the vector in Rn which has all its entries
equal to 1, as its associated eigenvector. From here it follows
that the discrete time linear system given by xm = Amx0

is stable, and converges to an equilibrium point which is
a scalar multiple of 1, the eigenvector associated with the
eigenvalue 1 [23]. We call such matrix A a consensus matrix.

It is shown, among others in [5], [10], that if {Ai}i∈N ⊂
Rn×n are all consensus matrices, and the matrix Ai is such
that its positive entries are uniformly bounded below by a
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positive real number α (i.e., independently of i), then

lim
m→∞

m∏
i=1

Ai =
1
n
11T . (1)

The following lemma is taken from [22].
Lemma 1: Let A, B ∈ Rn×n be two non-negative matri-

ces. If both A and B have its zero and positive entries in
the same positions, then either both matrices are primitive, or
none of them is. I.e., for non-negative matrices the condition
of being primitive depends only on the profile of the matrix.

B. Proximity graphs

The concept of proximity graph can be used to introduce
the notion of neighbor which will be fundamental for our
algorithm. We assume the reader is familiar with the basic
concepts of graph theory, as presented for instance in [24],
[25]. During this section we will be following the presenta-
tion in [2].

Let F (Rn) be the set of finite point sets in Rn. We denote
by P = {p1, . . . , pm} ⊂ Rn a typical element of F (Rn),
where p1, . . . , pm are distinct points. Let G (Rn) be the set
of undirected graphs whose vertex set belongs to F (Rn).

A proximity graph function G : F (Rn) → G (Rn) is a
map that assigns to each element P ∈ F (Rn) an undirected
graph with vertices given by the elements of P , and with
the set of edges E being defined by the function EG :
F (Rn)→ F (Rn × Rn) contained in P×P\diag (P), where
diag (P) = {(p, p)|p ∈ P}.

We say that AG ∈ Rn×n is the matrix induced by the
proximity graph G (P) if its entries are non-negative, has
non-zero diagonal terms, and the entry aij 6= 0 if and only
if (pi, pj) ∈ E . In the case that the proximity graph is
undirected, then (pi, pj) ∈ E ⇒ (pj , pi) ∈ E . In an abuse of
notation, we will denote the edges of the graph G by either
E or the function EG that defines the set.

Lemma 2: If G (P) is connected, then AG is primitive.
Proof: By Lemma 1 it is enough to show the result

when the positive entries of the matrix AG are equal to 1.
Observe that the (i, j) entry in the product Ak

G is given
by
∑

(l1, l2, ...lk−1)⊆{1, ..., n}k ail1al1l2 . . . alk−1j , which will
be positive if and only if it is possible to arrive from position
pi to position pj , passing by at most k different vertices (the
entry in the position (i, j) will be the number of ways of
doing so). Since G (P) is connected, the result follows.

C. Contraction rate for a consensus matrix

Let C ∈ Rn×n be a consensus matrix. If the matrix
represents a connected graph, and its positive entries are
bounded below by ε > 0, we characterize the set Cnε that
describes the elements of such matrices as

Cnε = Bnε ∩ Snε ∩ Pnε ∩ Dnε , (2)

where for 1 ≤ i, j ≤ n

Bnε = {ai, j : ai, j ∈ {0} ∪ [ε, 1]},

Snε = {ai, j :
n∑
k=1

ai, k = 1},

Pnε = {ai, j :
n∑

l1,...,ln−1=1

ail1al1l2 . . . aln−1j ≥ εn},

Dnε = {ai, j : ai, i ∈ [ε, 1]},

The set Cnε characterizes all the consensus matrices we are
interested in. Observe that since Cnε is the finite intersection
of closed sets, it is closed. Since ai, j ∈ {0} ∪ [ε, 1], which
is a bounded set, so is Cnε . Hence this set is compact.

For a particular C ∈ Cnε , we denote its n eigenvalues (not
necessarily distinct) by λ1, . . . , λn, where |λ1| ≤ · · · ≤
|λn−1| < λn = 1. As a consequence of Rouché’s theorem
and the inverse mapping theorem for analytic functions
[26], the roots of a polynomial are continuous functions of
its coefficients. Since the coefficients of the characteristic
polynomial of a matrix are a continuous function of its
entries, the set of eigenvalues λi for the family of consensus
matrices we are interested in is a continuous function on Cnε
which is compact. Henceforth, there exists ρ < 1 such that
|λn−1| ≤ ρ, for every C ∈ Cnε .

Let vi be the eigenvector associated to the eigenvalue λi.
If λi has multiplicity greater than 1, we let vi be its extended
eigenvector of the multiplicity of its eigenvalue. The set V =
{vi}ni=1 is linearly independent, hence span (V ) = Rn.

Let ∆ = span (1) be the diagonal on Rn. Given C ∈ Cnε ,
we denote by ∆C

C the complement of ∆ which is invariant
under the action of C; i.e. ∆C

C = span (V \ {1}). Note that
C acts as the identity on ∆.

Recall that Rn = ∆ ⊕ ∆C
C. Let v ∈ Rn. Write v =

v∆ + v∆C
C

. Observe that for the elements of v to be in
consensus, we need v∆C

C
= 0. If vi, vj denote the i and j

entries of v, then

|vi − vj | =

∣∣∣∣((v∆)i +
(
v∆C

C

)
i

)
−

(
(v∆)j +

(
v∆C

C

)
j

)∣∣∣∣
=

∣∣∣∣(v∆C
C

)
i
−

(
v∆C

C

)
j

∣∣∣∣ ≤ ∣∣∣(v∆C
C

)
i

∣∣∣ +

∣∣∣∣(v∆C
C

)
j

∣∣∣∣
≤
√

2
∥∥∥v∆C

C

∥∥∥ . (3)

Given v, its norm in ∆C
C is a continuous function of C ∈ Cnε .

Since Cnε is compact, there is a matrix C? ∈ Cnε for which
the norm of v in ∆C

C? is maximum. Let r ∈ ∆C
C. Since ∆C

C

is invariant under C, then we can restrict the norm ‖ · ‖ in
Rn to a norm in this invariant subspace. We will denote such
norm as ‖ · ‖∆C

C
. Observe that

‖Cr‖∆C
C
≤ ‖C‖ · ‖r‖∆C

C
≤ ρ‖r‖∆C

C
. (4)

Therefore, if v′ = Cv, from (3) and (4) we obtain∣∣∣(v′)i − (v′)j
∣∣∣ ≤ √2 ‖(Cv)‖∆C

C
≤
√

2ρ
∥∥∥v∆C

C?

∥∥∥ . (5)

This gives us a uniform bound for the decay rate between
any two elements in v. In particular, we have this bound
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for the elements that attain the diameter of v (the ones that
maximize the left-hand side in 3). This allow us to establish
the following result:

Theorem 3: The rate of convergence to consensus under
matrices in Cnε is at least exponential of rate ρ.

This result is well known in the literature on consensus
algorithms, and for some particular matrices tighter con-
vergence bounds have been obtained in the past. Some
partial results on the convergence of the algorithm when
the topology of the graph changes were first proposed in
[27], [28]. More recently, [29] establishes better bounds for
convergence. For the case when noise is present, in [18]
some convergence rates are derived, but the authors exploit
a very particular configuration of the evolution matrix they
are considering in their work.

III. MODEL

Let R be a robotic network as defined in [30]. Let {ai}Ni=1

denote the set of agents and let {qi}Ni=1 ∈ F (Rn) be their
positions with respect to a fixed coordinate frame Q. In an
abuse of notation, we will denote the set of points, with
respect to the frame Q, simply as R. We will assume that
the agents have no knowledge about Q.

We assume that each one of the robots is capable of
identifying those agents that satisfy a certain criteria C, which
induces the relationship ∼ that defines the edges in the
proximity graph G (R) : (pi, pj) ∈ EG(R) if pi ∼ pj ; i.e. if
pj satisfies the criteria C with respect to pi1. Observe that ∼
is not necessarily a symmetric relation. For each agent ai,
we denote the set of all the agents aj , j 6= i that satisfy the
criteria C by Ni :== {aj ∈ R|ai ∼ aj} .

We will refer to this set as the set of neighbors of ai, or
simply as the neighbors when the agent ai is clear from the
context. Some examples of C are being closer than certain
distance d or being neighbors in the sense of Voronoi. In [16]
we assumed that each agent ai was able to correctly estimate
the positions of its neighbors with respect to an arbitrary
coordinate frame Qi defined by itself at each time instant.
We showed that convergence to rendezvous was independent
of such reference frame. In this paper, we focus on the
case when if ai ∼ aj , then the position pj of agent aj is
estimated by agent ai as pi, j = pj + ni, j where ni, j is
some measurement noise. We will show that when ni, j is
small, then convergence to almost rendezvous is guaranteed.

Based on the information the agents gather from the ob-
servations of their neighbors they will update their position,
with respect to the coordinate frame Q, as

qi[m+ 1] = qi[m] + ui[m], (6)

where the control law ui for the motion of agent ai is based
on distributed consensus and is described next.

IV. CONSENSUS-BASED RENDEZVOUS

1We will either say pi ∼ pj or ai ∼ aj to denote this relation.

Algorithm 1 Consensus-Based Rendezvous
Require: Agent ai at time m

1: Identify the set of neighbors Ni ={
ai1 , ai2 , . . . , airi(m)

}
.

2: Evaluate the position pi, ij , 1 ≤ j ≤ ri(m) of each
neighbor, and its own position pi, i0 with respect to an
arbitrary coordinate frame Qi.

3: Compute pi =
∑ri(m)
j=0 λi, jpi, ij , where λi, j > ε > 0

and
∑ri(m)
j=0 λi, j = 1.

4: Set ui[m] = % (pi − pi, i0), where 0 < % < 1.

Algorithm 1 is the Consensus-Based Rendezvous (CBR) as
presented in [16] when no noise is present in the measure-
ments. The main change in the algorithm would be that if
noise is present in the estimation, then line 3 would become

pi =
ri(m)∑
j=0

λi, jpi, ij +
ri(m)∑
j=0

λi,jni, j , (7)

where ni,i = 0. The only assumption we will make about
the noise is that it is zero mean and it has bounded support.

As in [16], we can show that in the noisy scenario the
updates can be made invariant with respect to the coordinate
frame that each agent chooses. The proof is analogous to
Lemma 3 in that paper, hence omitted. The orthonormality
in the matrix that defines the change of coordinates implies
that the noise levels remain invariant.

Lemma 4 (Lemma 3 in [16]): The evolution of each
agent is independent of the local frame Qi it chooses to
implement the CBR algorithm.

Due to this lemma, we can stack together the equations
for each agent, and write the evolution of the system in a
matrix form as q[m + 1] = I q[m] + U[m] + N[m], where
I ∈ RN×N is the identity matrix, q ∈ RN×n, U ∈ RN×n
and the noise matrix N[m] ∈ RN×n. Under the assumption
that the proximity graph G (R) is connected, then the induced
matrix AG , where the entry ai, j = λi, j , is a consensus
matrix. This makes U[m] = % (AG − I) q[m], % ∈ (0, 1)
and thus we can rewrite the discrete time system as

q[m+ 1] = [(1− %)I + %AG ] q[m] + N[m], (8)

Since the matrix [(1− %)I + %AG ] = CG [m] is also a
consensus matrix, we rewrite (8) as

q[m+ 1] = CG [m]q[m] + N[m], (9)

Remark: Observe that although the derivation of (9) is
made under the assumption of a uniform % for each agent, it
is possible to derive an equivalent formulation if each robot
has its own %i.

For simplicity in the notation, we are going to drop the
dependency on the proximity graph G. Under the action of
C, the evolution of the formation can be viewed as the joint
evolution of n individual consensus systems in RN , all of
them sharing the same consensus matrix. From now on, we
will consider a single vector in RN , knowing that the results
extend trivially to RN×n.
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Suppose that at time m + 1, the system will evolve
according to the matrix C ∈ CNε . Let ∆ be the diagonal
in RN and let ∆C

C be the complement of ∆ invariant under
the action of C. Since RN = ∆⊕∆C

C

q[m+ 1]∆ = (C[m]q[m])∆ + N[m]∆,
q[m+ 1]∆C

C
= (C[m]q[m])∆C

C
+ N[m]∆C

C
.

Observe that for the purpose of reaching the consensus,
the norm ‖ · ‖∆C

C
indicates how far the formation is from

consensus, so is enough to focus on this subspace. We say
that the formation reaches δ-consensus if ‖q‖∆C

C
< δ. For

purposes of reaching consensus, the effects of N[m]∆ are
negligible. Since ∆C

C is invariant under C, we can thus
concentrate only on

q[m+ 1]∆C
C

= (C[m]q[m])∆C
C

+ N[m]∆C
C
. (10)

For simplicity in the notation, we will drop the index ∆C
C,

although from now on we restrict ourselves to this subspace.
Consider Cq[m] + N[m]. From (4) we have that

‖q[m+ 1]‖ ≤ ρ‖q[m]‖+ ‖N[m]‖. (11)

Thus we have the following lemma:
Lemma 5: If at time m it is true that

‖N[m]‖ < (1− ρ)‖q[m]‖, (12)

then ‖q[m+ 1]‖ < ‖q[m]‖.
We now show a stronger result: as long as the noise is

bounded (uniformly in time), the formation will converge
to a finite ball. This assumption is quite natural since the
noise is the result of the measurement errors due to imperfect
sensors, which have a finite range.

Theorem 6: Suppose that the noise is uniformly bounded
by σ, i.e. ‖N[m]‖ ≤ σ < ∞ for every time m. Then, as
long as ‖q‖ > σ/(1 − ρ), ‖q‖ will be decreasing, and the
formation will converge to σ/(1− ρ)-rendezvous.

Proof: This follows from Lemma 5.
Note that Theorem 6 guarantees that the formation will

converge to a ball if it is not already inside it; once inside,
it can escape, but it will be then driven back into the ball.
We will elaborate on this in Section VI.

If we assume that the locations of the neighbors are
estimated correctly when they are closer than some threshold
r, from (3), by making r =

√
2σ/(1−ρ)+ε for any ε > 0, we

can guarantee perfect observations among all the agents in
the formation after some finite time T . We will show that this
bound for r can be actually improved if physical constraints
on the motion of the agents are taken into account.

V. ROBUSTNESS OF THE ALGORITHM WITH RESPECT TO
THE PROXIMITY GRAPH

So far we assumed that the proximity graph G (R),
induced by the formation at time m, m ≥ 0, is always
connected and that each agent is always capable to estimate
the locations of all the neighbors up to a certain error. We
will now focus on what happens when the agent occasionally

fails to detect one or more of its neighbors, possibly making
the induced graph by the matrix C disconnected.

We will denote the state of the formation R at time m by
R[m]. We will denote the proximity graph induced at time
m by G (R) [m], and its set of edges by EG [m].

We define the real proximity graph of the formation R
at time m as the graph which vertices are the agents in the
formation, and which edge set E ′G [m] ⊆ EG [m] contains the
pair (ai, aj) if and only if the agent ai does identify the
agent aj as one of its neighbors. Since communication is
not allowed among the agents, the fact that agent ai misses
aj does not imply that aj also misses ai even when the
relationship ∼ happens to be symmetric. Observe that in case
all neighbors are correctly detected the real proximity graph
will coincide with G (R) [m].

We say that the formation is strongly connected if there
exists a positive integer K such that, for every m > 0, the
graph with vertices induced by R, and edge set defined by
the union E =

⋃K−1
i=0 E ′G [m+ i], is connected.

Note that the matrix C[m] having its entry ci,j = λi, j ,
the weight assigned by agent ai to the position of agent aj
by the CBR algorithm (Algorithm 1), is always stochastic.
Under the assumption that the underlying graph for R (i.e.
the real proximity graph) is strongly connected, we can state
the following lemma:

Lemma 7: Assume the formation is strongly connected.
Let m > K. Then

K∏
j=1

C[m− j] = C?[m] ∈ CNεK . (13)

Proof: The result follows from the assumption on the
formation to be strongly connected.

Our intuition is that if we focus on the evolution of our
system each K time instants, grouping the partial noises into
a new noise component N′, we should obtain a new system
which is equivalent to the one we studied before. We now
proceed to formalize this point.

Let l ≥ 0. Consider the evolution of the system between
times lK+1 and (l+1)K. We will keep denoting the matrix
that represents the evolution of the system at time m by
C[m] although the induced graph might not necessarily be
connected. From (9) we have

q[lK + 1] = C[lK]q[lK] + N[lK]
q[lK + 2] = C[lK + 1]q[lK + 1] + N[lK + 1]

...
...

...
q[(l + 1)K] = C[(l + 1)K − 1]q[(l + 1)K − 1] +

+N[(l + 1)K − 1],

so

q[(l + 1)K] = C?[(l + 1)K]q[lK]+

+
K−1∑
j=1

j∏
r=1

C[(l+1)K−r]N[(l+1)K−j−1]+N[(l+1)K−1]
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or, equivalently,

q[(l+1)K] = C?[(l+1)K]q[lK]+N′[(l+1)K−1]. (14)

Observe that ‖N′[(l + 1)K − 1]‖ ≤ Kσ and has bounded
support. If we make v[m + 1] = q[(m + 1)K], B[m] =
C?[(m + 1)K] and η[m] = N′[(m + 1)K − 1], we can
rewrite (14) as

v[m+ 1] = B[m]v[m] + η[m], (15)

which is equivalent to (9). The convergence analysis above
thus carries over to this scenario.

Clearly, if the proximity graph is not induced by a strongly
connected formation, we cannot guarantee that all the agents
would converge to rendezvous but we do have analogous
claims for each of the strongly connected components.

VI. REDUCTION OF σ

Although we obtain δ-consensus as a function of ‖N‖, if
ρ is close to 1, then σ/(1 − ρ), although finite, might be
large. We can actually reduce this bound by considering the
physical constrains on the system.

For agent ai, consider its next location pi as defined in
(7). Since we are dealing with physical agents with an upper
bound on how fast they can move, there is a d so that ‖qi[m+
1]− qi[m]‖ ≤ d for every m. This means that, although the
point pi obtained in (7) might satisfy |pi − qi[m]| > d, the
maximum velocity constraint of the agent will take it as far
as d units away from where it started in a single time interval.
Let |pi − qi[m]| = D > d. The point qi[m+1] that the agent
reaches is then at most qi[m+1] = qi[m]+d (qi[m]− pi) /D,
or (1−d/D)qi[m]+(d/D)pi. In particular, this implies that
the noise N[m]i =

∑ri(m)
j=0 λini, j will be, in ∆C

C, reduced at
least by a factor of d/D < 1.

Intuition here indicates that the smaller the time interval
and the slower the robots are, the smaller the d and the
more robust the system will be with respect to noise. In
particular, considering again the case that the neighbors are
located exactly when they are closer than some threshold
r, we observe that for the noise in the neighbor location
estimate to affect pi, the neighbor needs to be further away
than r. If we allow only pairwise updating between the agents
(similar to what happens in the aggregation algorithm [12]),
the results in the previous section and the discussion above
suggest that noise will only affect the system when D >√

2σ/(1 − ρ), and therefore its effect in the update will be
bounded by d

Dσ <
d√

2σ/(1−ρ)σ = d(1 − ρ)/
√

2 < d/
√

2 <
d, which, surprisingly, is independent from σ.

We can pursue this even further: if the perfect localization
threshold is r = kσ, for the agent ai to obtain a noisy
estimate of the position of agent aj , their distance D needs
to be larger than kσ, and thus the norm of the noise observed
is bounded by d

Dσ <
d
kσσ = d

k .

VII. SIMULATIONS

The previous equation, and Theorem 6 show that our
results are only affected by a scaling factor when choosing

the unit of length. For simplicity, we thus omit such unit in
the following discussion.

For the simulations we present here, we first implemented
our algorithm by deploying 30 agents uniformly distributed
in a square region of side 12. We assumed a uniform noise
distribution between [−9, 9] for the relative measurements
between the agents (i.e. the ni, j in (7) rather than the
N[k]), which is actually quite large compared to the size of
the region. We chose the uniform distribution for the noise
because among all the distributions with a given bounded
support, this is the one that provides the least information
about the process. We ran the system by setting d = .1, 1
and 100 and assumed a proximity graph induced by an r-disk
graph with r = 6.

Figure 1 shows the evolution of the diameter for the same
noise level and different values of d. As can be seen from
the figure, for typical realizations our bound is not tight.
The reason is that we derived the bound for the worst case
scenarios in both the magnitude ρ of the largest eigenvalue in
(0, 1), and the bound of the particular realization of the noise
at each time instant. A conservative estimate for ρ would be
ρ > 2/3, in which case we obtain, as in Theorem 6, a value
of r = σ/(1 − ρ) > 27. Nonetheless, the simulation shows
that the formation converges to a δ-rendezvous with δ < r, as
observed in Figure 1.a. As expected, the δ-rendezvous level
depends on d but, unlike our bound in (??), which gives a
linear dependency, the relationship appears to be superlinear.

In Figure 2 we present a particular realization for which
the bound in Theorem 6 is almost achieved. For the case
in Figure 2.a, our bound is approximately 47.08 and for
Figure 2.b it is approximately 5.23. The consensus matrix
was constant (the proximity graph does not change over
time), and the realization of the noise was the same for every
time m. This shows that there are indeed situations in which,
even though the measurement noise is small, the convergence
radius of the formation is rather large.

VIII. CONCLUSION

We show that for the Consensus-Based Rendezvous (CBR)
algorithm proposed in [16], under the effect of noise uni-
formly bounded in time, there is a finite δ such that the for-
mation achieves δ-rendezvous. Furthermore, the rendezvous
is achieved exponentially under the assumption of connect-
edness of the proximity graph induced by the formation. We
showed that when the noise is bounded the formation always
converges to δ-rendezvous and we derived the bound on δ.
Simulations suggest that the bound is conservative for typical
realizations, however we provide an example that shows that
the bound can be achieved. Further work includes deriving
probabilistic performance guarantees that can better describe
typical simulation runs.
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