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Abstract— This paper considers the problem of deriving a
generalized Hamiltonian potential for autonomous dynamical
systems. For a given vector field, the objective is to construct
a locally defined dissipative Hamiltonian generating function
for the system. The proposed approach consists of studying the
deviation of the given vector field from a canonically defined
Hamiltonian vector field. First, we obtain a one-form by taking
the interior product of a nonvanishing two-form with respect
to the vector field. We then construct a homotopy operator on
a star-shaped region that decomposes the system into an exact
part and an anti-exact one. Equivalence between the exact part
and an exact one-form generated from a known potential is
then used to compute the locally defined dissipative potential
of the original system. An example is presented to illustrate the
method.

I. INTRODUCTION

Generalized Hamiltonian systems are an important tool
for stability studies and controller design for nonlinear
control systems [16]. In recent years, several physical
problems were studied using generalized Hamiltonian (or
pseudo-Hamiltonian) systems [3]. For example, an admis-
sible nonequilibrium thermodynamical representations was
obtained by lifting a Hamiltonian dissipative structure to the
so-called thermodynamic phase space [5]. Another example
was given recently in [15], where the stability of a closed
reaction network was studied using its pseudo-Hamiltonian
realization. One of the main drawbacks associated to the
study of nonlinear systems using Hamiltonian representation
is to derive a suitable Hamiltonian generating function for
the problem, in particular when studying non-mechanical
problems such as RLC circuits [10].
The general problem of deriving a generalized Hamiltonian
realization for a known system was considered from a
feedback equivalence point of view in [17] for control-
affine systems (see also [4] for feedback equivalence to
port-controlled Hamiltonian systems). In [2], conditions for
approximate Hamiltonian realizations were given in terms
of a normal form. Sufficient conditions and a constructive
algorithm for a generalized Hamiltonian realization for time-
invariant nonlinear systems were presented in [19]. In partic-
ular, the method proposed in [19], reviewed briefly in Section
II-A, seeks to decompose the vector field along the gradient
direction∇H(x) and the tangential direction of the equivalue
surfaces of H(x), for a regular positive-definite function
H(x). Extensions to port-controlled time-varying systems
were carried out in [8] using an error dynamic system and in
[20] using Poisson structures. The relationship between the
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concepts of Lyapunov stability and Hamiltonian with dissi-
pation was discussed in [13] using Morse theory and in [14]
using Poisson structures. Recently, following the work in [11]
and [12] which related port-controlled Hamiltonian systems
to the construction of Lyapunov functions, it was shown in
[21] how k-th degree approximate dissipative Hamiltonian
systems can be used to solve the realization problem and
how associated k-th degree approximate Lyapunov functions
can be used to study the stability of such systems.
In this paper, we propose to study the local equivalence
problem between a known autonomous vector field and a
pre-defined Hamiltonian dissipative realization, viewed as
a reference system. The method seeks to develop a local
change of coordinates resulting in a local dissipative potential
for the system. First, we obtain a one-form (which is possibly
non-closed) by taking the interior product of a nondegenerate
two-form with respect to the given vector field. Then, a
homotopy operator is constructed on a star-shaped domain
to decompose the (possibly) non-closed one-form into its
exact and anti-exact parts. Following [6], the exact part
is used to derive a dissipative potential, while the anti-
exact part is associated with a nondissipative potential that
does not contribute to the dissipative potential on the star-
shaped region. To compute the dissipative potential, we study
the equivalence problem [9] between the closed one-form
and a reference closed one-form derived from a known
dissipative Hamiltonian realization. The locally defined dis-
sipative potential for the original system is then expressed in
coordinates.
The paper is organized as follows. Section II provides
mathematical background for the problem considered, in-
cluding definitions of dissipative systems and background on
homotopy operators. The main developments of the paper
are presented in Section III. An application to a simple
dissipative dynamical system is considered in Section IV
to illustrate the method. Conclusions and future areas of
investigation are outlined in Section V.

II. MATHEMATICAL BACKGROUND
A. Generalized Hamiltonian Systems

In this section, the problem of dissipative Hamiltonian real-
ization for the time-invariant case is summarized following
[2] and [19]. First, we give the definition of a generalized
Hamiltonian realization.
Definition 2.1: A dynamical system

ẋ = f(x) (1)

with x ∈ Rn is said to have a generalized Hamiltonian
realization if there exists a suitable coordinate chart on Rn
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and a Hamiltonian function H : Rn → R such that (1) can
be expressed as

ẋ = T (x)∇H, (2)

where T (x) is an n × n matrix called the structure matrix
and ∇H = (∂H

∂x )T . If the structure matrix can be expressed
as T (x) = J(x) − R(x) with J(x) skew-symmetric, i .e.
J(x) = −JT (x), and R(x), a symmetric positive semi-
definite, then (2) is called a dissipative Hamiltonian real-
ization. Furthermore, if R(x) > 0,∀x, (2) is called a strict
dissipative realization.
As mentioned in the introduction, the procedure proposed in
this paper is related to the orthogonal decomposition used
in [19]. Their key observation is based on the following
theorem.
Theorem 2.2: [19] Consider the system (1) with f(0) = 0.
Then if there exists a function H(x) (∇H(x) 6= 0) such that
LfH(x) = 0, ∀x ∈ Rn, then the system can be expressed
as

ẋ = J(x)∇H (3)

where

J(x) =
1

‖∇H‖2
(
f(∇H)T −∇H(f)T

)
(4)

is an n× n skew-symmetric matrix.
For completeness of this review, we report the following
definition from [19].
Definition 2.3: A function H(x) is said to be a regular
positive function if (i) H(x) > 0 for x 6= 0, (ii) H(0) = 0,
(iii) ∂H

∂x |x=0 = 0 and (iv) ∂H
∂x |x 6=0 6= 0.

For a regular positive definite function H(x), it can be shown
that at any point x 6= 0, the autonomous vector field f(x)
can be decomposed as

f(x) = fgd(x) + ftd(x) (5)

where the gradient direction is given by

fgd(x) =
〈f,∇H〉
‖∇H‖2

∇H, (6)

where 〈·, ·〉 denotes the standard Euclidean inner product in
Rn. The tangential direction is then defined as

ftd(x) = f(x)− fgd(x) (7)

which is J(x)∇H from the preceding theorem. By setting
S(x) = 〈f,∇H〉

‖∇H‖2 In×n, the orthogonal decomposition Hamil-
tonian realization was given in [19] as

ẋ = (J(x) + S(x))∇H. (8)

In [3], it was shown that such function H(x) exists under
mild assumptions. Different approaches were reported in [19]
to construct H(x), for example

H(x) =
1
2

n∑
i=1

f2
i (x) (9)

in the case where the Jacobian in nonsingular.

In the present paper, we develop an approach that parallels
this development using differential forms. Our approach
uses a target dissipative realization to built the Hamiltonian
function for the system under study.

B. Exterior Calculus

In this section, basic elements of exterior calculus on Rn

are introduced. A complete account of exterior calculus can
be found in [6]. Let the tangent space at a point x ∈ Rn

be denoted by TxRn. Since the tangent space TxRn is
isomorphic to Rn, it has a natural vector space structure.
We denote a smooth vector field X ∈ Γ∞(Rn) as a smooth
map

X : Rn → TRn, X|x =
n∑

i=1

vi(x)∂xi
|x, (10)

i.e. a map taking a point x ∈ Rn and assigning a tangent
vector X|x ∈ TxRn. The cotangent (dual) space T ∗x Rn is
the set of all linear functionals on TxRn,

T ∗x Rn = {ω|x : TxRn → R} (11)

where each ω|x is linear, i.e.

(aω1|x + bω2|x)(Xx) = aω1|x(X|x) + bω2|x(X|x). (12)

The standard basis of T ∗x Rn is given by {dx1, . . . , dxn},
where dxi(∂xj

) = δi
j , δi

j being the Kronecker delta. An
element ω|x in the cotangent space T ∗x Rn can be written
as

ω|x =
n∑

i=1

ωidxi, ωi ∈ R. (13)

In the sequel, differential one-forms will be used. They are
generated the following way. A differential one-form ω on
Rn is a smooth map taking a point x ∈ Rn and assigning
an element of its dual space T ∗x Rn. We write

ω =
n∑

i=1

ωi(x)dxi, (14)

where ωi are smooth functions on Rn. The exterior (wedge)
product ∧ is defined on Ω1(Rn) × Ω1(Rn) by the require-
ments

dxi ∧ dxj = −dxj ∧ dxi

dxi ∧ f(x)dxj = f(x)dxi ∧ dxj

for all smooth functions f(x) and

α ∧ (β + γ) = α ∧ β + α ∧ γ, (15)

for all α, β, γ ∈ T ∗Rn. If α ∈ Λk(Rn), then we write
deg α = k. Notice that Λ1(Rn) = T ∗Rn and Λ0(Rn) =
C∞(Rn).
The differential operator d is the unique operator on
Λ(Rn) =

⊕n
k=0 Λk(Rn) with the following properties:

d : Λk(Rn) → Λk+1(Rn), 0 ≤ k ≤ n− 1, (16)

1. d(α + β) = dα + dβ.
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2. d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ.
3. df = (∂fxi

)dxi, ∀f(x) ∈ Λ0(Rn).
4. d ◦ dα = 0.

A k-form α is said to be closed if dα = 0. It is said to be
exact if there exists a (k − 1)-form β such that dβ = α.
The interior product y is a map

y : Γ∞Rn × Λk(Rn) → Λk−1(Rn) (17)

with the following properties ∀X ∈ Γ∞Rn and ∀f ∈
Λ0(Rn):

1. Xyf = 0.
2. Xyω = ω(X),∀ω ∈ Λ1(Rn).
3. Xy(α + β) = Xyα + Xyβ,∀α, β ∈ Λk(Rn), k =

1, . . . , n.
4. Xy(α∧β) = (Xyα)∧β+(−1)deg(α)α∧(Xyβ),∀α, β ∈

Λ(Rn).

C. Homotopy Operator

In this section, we show how to construct a homotopy
operator H, i.e., a linear operator on elements of Λ(Rn) that
satisfies the identity

ω = d(Hω) + Hdω, (18)

for a form ω ∈ Λ(Rn).
The first step in the construction of a homotopy operator is
to define a star-shaped domain on Rn following [6] (see also
[1] for an application to approximate feedback linearization).
An open subset S of Rn is said to be star-shaped with respect
to a point p0 = (x0

1, . . . , x
0
n) ∈ S if the following conditions

hold:
• S is contained in a coordinate neighborhood U of p0.
• The coordinate functions of U assign coordinates

(x0
1, . . . , x

0
n) to p0.

• If p is any point in S with coordinates (x1, . . . , xn)
assigned by functions of U , then the set of points (x +
λ(x− x0)) belongs to S, ∀λ ∈ [0, 1].

A star-shaped region S has a natural associated vector field
X, defined by

X(x) = (xi − x0
i )∂xi , ∀x ∈ S. (19)

Remark 2.4: In this paper, we will consider the case where
the star-shaped domain is centered at the origin for simplicity.
For systems where a dissipative realization exists but is not
centered at the origin (e.g., see the example considered in
[15]), we set the center at p0 : (x0

1, . . . , x
0
n), hence

X(x) = (xi − x0
i )∂xi

. (20)
For a differential form ω of degree k on a star-shaped region
S centered at the origin, the homotopy operator will be
defined, in coordinates, as

(Hω)(x) =
∫ 1

0

X(x)yω(λx)λk−1dλ, (21)

where ω(λx) denotes the differential form evaluated on the
star-shaped domain in the local coordinates defined above.
The important properties of the homotopy operator that will
be used here (see [6] for proofs) are the following:

H1. H maps Λk(S) into Λk−1(S) for k ≥ 1 and maps Λ0(S)
identically to zero.

H2. dH + Hd = identity for k ≥ 1 and (Hdf)(x) = f(x)−
f(x0) for k = 0.

H3. (HHω)(xi) = 0, (Hω)(x0
i ) = 0.

H4. XyH = 0, HXy = 0.
The first part of the right hand side of (18), d(Hω), is
obviously a closed form, since d ◦ d(Hω) = 0. Since by
property (H1), for ω ∈ Λk(S), we have (Hω) ∈ Λk−1(S),
d(Hω) is also exact on S.
We denote the exact part of ω by ωe = d(Hω) and the
anti-exact part by ωa = Hdω. It is possible to show that ω
vanishes on Rn if and only if ωe and ωa vanish together [6].
From the decomposition outlined above, we have

ω − ωa = ωe. (22)

Taking the exterior derivative on both sides and using the
fact that ωe is closed, we have

d(ω − ωa) = d(ωe) = 0. (23)

In the sequel, we will apply the homotopy operator on one-
forms. Since in our applications, ωe is an exact one-form,
(Hω) computed by homotopy is a dissipative potential. A
nondissipative potential is associated with the anti-exact part,
but on the star-shaped domain S, ωa does not contribute to
the dissipative part of the system. In other words, ωa belongs
to the kernel of H, which can be seen by applying property
(H3) from above to the definition of ωa.
In the following, we will construct a diffeomorphism that
preserves the exact one-form to derive the dissipative poten-
tial. Stability analysis for the system will be carried on using
only the one-form ωe (see [7] for a complete discussion on
Lyapunov one-forms).

III. COMPUTATION OF A DISSIPATIVE
POTENTIAL

We now present the main construction of this paper, namely
using the homotopy operator to discriminate the exact and
the anti-exact parts associated to a given autonomous system
and then computing a diffeomorphism between the exact part
and a normal form of a dissipative Hamiltonian structure to
compute a dissipative potential.

A. Homotopy Operator

Let the vector field X|x =
∑n

i=1 fi(x)∂xi
be known, i =

1, . . . , n. We assume that X is of class Ck with k ≥ 2.
It is also assumed that X has an equilibrium point at the
origin. First, we define a nonvanishing closed two-form Ω =∑

1≤i<j≤n dxi∧dxj on Rn. For example, if n = 3, we have,

Ω = dx1 ∧ dx2 + dx1 ∧ dx3 + dx2 ∧ dx3. (24)

Remark 3.1: In the present paper, the nonvanishing two-
form Ω is not necessarily defined in a canonical way, since
the objective is ultimately to compute a dissipative potential
(and not a minimal one). A method was presented in [18] to
construct sets of n− 1 nongenerate closed two-forms for n
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even. To the best of the authors knowledge, that procedure
was not extended for n odd.
Taking the interior product of Ω with respect to the vector
field X , we compute a one-form ω as follows

ω = XyΩ (25)

=
∑

1≤i<j≤n

(fidxj − fjdxi) . (26)

Given a star-shaped region centered at the origin, with
associated vector field X(x) = xi∂xi

, we have

(Hω)(x) =
∫ 1

0

(Xyω(λx)) dλ. (27)

Letting f̃i denote the values of the components of f after
integration with respect to λ, we have

(Hω)(x) =
∑

1≤i<j≤n

(
f̃i · xj − f̃j · xi

)
:= F̃ (x). (28)

Taking the exterior derivative, we have

ωe =
n∑

i=1

∂F̃

∂xi
dxi. (29)

The anti-exact form is then given by

ωa = ω − ωe

=
X

1≤i<j≤n

„
fi −

∂F̃

∂xj

«
dxj −

„
fj +

∂F̃

∂xi

«
dxi.(30)

Remark 3.2: As a special case, if one defines Ω to be the
canonical symplectic two-form and if XH is the vector
field generated by a known Hamiltonian H , ω obtained by
the interior product XHyΩ is closed, and we show that
ω = ωe = −dH , where the Hamiltonian function H is the
potential (see [7]).
Explicit expressions for (Hω) and ωe depend on the partic-
ular application. Next, we look at the equivalence problem
between ωe obtained in this section and a closed one-form
derived from a simple Hamiltonian dissipative realization.

B. Equivalence of Closed One-Forms

The objective is to compute a change of coordinates to
express the exact one-form ωe obtained above and the
dissipative function. To set the problem, we first develop
a normal closed one-form for a simple dissipative Hamil-
tonian realization of the same dimension than the original
problem following the development outline above. Consider
the system

ż = (J(z)−R(z))∇H(z) (31)

with z ∈ Rn and H , the Hamiltonian. Following the
argument given in [3], it can be shown that for f(0) = 0,
the Hamiltonian function

H(z) =
1
2

n∑
i=1

z2
i (32)

is a suitable locally defined dissipative potential for the
system. Assuming for simplicity that n is even, the simplest
form for J = −JT in suitable dimensions is

J =
(

0 −In
2×

n
2

In
2×

n
2

0

)
(33)

where I denotes the identity matrix. in the case where n is
odd, J can be complemented with an extra column and an
extra row of 0. We let R = In×n. In that particular case, it
can be shown that (Hω)(z) = −H(z) and that the closed
one-form is given as

ω̄e =
n∑

i=1

−zidzi. (34)

It can be observed that the anti-exact part for the problem
encodes the same information than the tangential component
from [19], as the anti-exact part is

ω̄a = (J∇H)dz. (35)

The problem of equivalence between the two systems, as
far as the dissipation component is concerned, consists in
finding conditions under which there exists a diffeomorphism
z = Φ(x) preserving the exact form, i .e. a diffeomorphism
between the reference exact one-form ω̄e (34) and the
exact one-form for the system of interest ωe given in (29).
Following [9], the equivalence problem is posed as follows:

Φ∗(ω̄e) = ωe (36)

Φ∗(−zT dz) = (
∂F̃

∂x

T

dx). (37)

Following the procedure exposed in [9], the first step is to
complete the coframes (where the coframes are the bases
for the cotangent spaces, in this case (dzi) and (dxi)).
To illustrate, we consider the two-dimensional case and
complete the coframes such that the determinant of the
matrices are different from 0 (except at the origin). The two
dimensional problem of equivalence is

Φ∗
(
−z1 −z2

−z2 z1

)(
dz1

dz2

)
=

(
∂F̃
∂x1

∂F̃
∂x2

−∂F̃
∂x2

∂F̃
∂x1

)(
dx1

dx2

)
. (38)

Let

Θ =
(
−z1 −z2

−z2 z1

)(
dz1

dz2

)
(39)

θ =

(
∂F̃
∂x1

∂F̃
∂x2

−∂F̃
∂x2

∂F̃
∂x1

)(
dx1

dx2

)
(40)

and take the exterior derivative on both coframes, we obtain:

dΘ =
(

0
2

)
dz1 ∧ dz2 (41)

dθ =

(
0

∂2F̃
∂x2

1
+ ∂2F̃

∂x2
2
.

)
dx1 ∧ dx2. (42)
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The result for the first line of dθ follows for the equality of
mixed partials, i .e. since ωe is closed, we have

∂2F̃

∂x1∂x2
=

∂2F̃

∂x2∂x1
. (43)

For the simple case study here (no torsion), it is therefore
possible to pick the components of the diffeomorphism to be

φi = −1
2

∂F̃

∂xi

(
2∑

i=1

∂2F̃

∂x2
i

)−1

. (44)

The example in the next section will show the application of
this transformation.

IV. APPLICATION EXAMPLE

In this section, we consider a nonlinear dynamical system.
Let the system be given by

ẋ1 = −x3
1 − x2 := f1(x) (45)

ẋ2 = x1 − x3
2 := f2(x). (46)

The vector field associated with this system is expressed as
X|x = f1(x)∂x1 + f2(x)∂x2 . Let the two-form Ω be given
by

Ω = dx1 ∧ dx2. (47)

Computing ω = XyΩ gives

ω = −f2dx1 + f1dx1. (48)

One can check that ω is not closed (i.e. dω 6= 0 since ∂f1
∂x1

+
∂f2
∂x2

6= 0). We construct the homotopy operator H centered
at the origin by letting

X|x = x1∂x1 + x2∂x2 (49)

and by evaluating the one-form ω on the star-shaped domain.
We have

(Hω)(x) =

Z 1

0

`
λ3x3

2x1 − λ3x3
1x2 − λ(x2

1 + x2
x)
´
dλ(50)

F̃ =
x1x2(x

2
2 − x2

1)

4
− (x2

1 + x2
2)

2
. (51)

The exact part ωe of the one-form ω is given by

(ωe)|x = d(Hω)|x
=

(
−x1 +

x2

4
(x2

2 − 3x2
1)
)

dx1

+
(
−x2 +

x1

4
(3x2

2 − x2
1)
)

dx2. (52)

One locally admissible dissipative potential for the system is
given by −F̃ , as noted at the end of Section II. However, the
real interest here is to use a change of coordinates to define
a potential that is easier to use, such as the one of Section
III-B. Using the construction procedure developed in the last
section based on the equivalence of the closed one-form in
two dimensions, we apply the transformation (44), with F̃

F̃ (x1, x2) =
−(x2

1 + x2
2)

2
+

x1x2(x2
2 − x2

1)
4

. (53)

We obtain:

z1 =
x3

2 − 3x2
1x2

16
− x1

4
(54)

z2 =
3x2

2x1 − x3
1

16
− x2

4
. (55)

We remark that the transformation maps the origin of
(x1, x2) to the origin of (z1, z2). As noted above, a suitable
dissipative potential for the system is given by

H(z) =
1
2
(z2

1 + z2
2). (56)

We obtain, in the neighborhood of the origin, a regular
positive function that can be used as a dissipative potential
for the system.

V. CONCLUSION

In this paper, a procedure to study autonomous systems
using local dissipative Hamiltonian realization for nonlinear
dynamical systems has been derived. Taking the interior
product of a nonvanishing two-form with respect to the
vector field defining the system, we obtained a (possibly)
non-closed one-form. Constructing a locally defined homo-
topy operator on a star-shaped domain, we showed how to
locally decompose the obtained form into an exact and an
anti-exact one-forms. Dissipative realization is studied as an
equivalence problem between the exact form and an exact
one-form derived from a known potential. The coordinate
transformation obtained enables us to explicitly write the
dissipative potential for the original system. The obtained
anti-exact form is associated to a nondissipative potential
with associated tangential dynamics that do not contribute
to the value of the dissipative potential on the star-shaped
domain. An application to a two-dimensional nonlinear sys-
tem was provided to illustrate the method. Further studies
will focus on the computation of the nondissipative potential
associated with the anti-exact form, and implications in terms
of stability, especially within the context of nonequilibirum
thermodynamics. Extensions to the problem to feedback
dissipative equivalence problem for control applications will
also be considered.
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