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Abstract— In this paper we design coordination policies for
a routing problem requiring human-assisted classification of
targets through analysis of information gathered on-site by
autonomous vehicles. More precisely, we consider the following
problem: Targets are generated according to a spatio-temporal
Poisson process, uniformly in a region of interest. It is desired
to classify targets as friends or foes. In order to enable human
operators to classify a target, one of the vehicles needs to travel
to the target’s location and gather sufficient information. In
other words, the autonomous vehicles provide access to on-site
information, and the human operator provide the judgment
capabilities necessary to process such information. The objective
of our analysis is to design joint motion coordination and
operator scheduling policies that minimize the expected time
needed to classify a target after its appearance. In addition, we
analyze how the achievable system performance depends on the
number of autonomous vehicles and of human operators. We
present novel coordination policies between the vehicles and
operators and compare the performance of these policies with
respect to asymptotic performance bounds.

I. INTRODUCTION

One of the prototypical missions involving Uninhabited

Aerial Vehicles (UAVs), e.g., in environmental monitoring,

security, or military setting, is wide-area surveillance. In such

a mission, low-altitude UAVs must provide coverage of a

region and investigate events of interest as they manifest

themselves. In particular, we are interested in cases in which

close-range information is required on targets detected by

high-altitude aircraft, spacecraft, or ground spotters, and the

UAVs must proceed to the locations to provide a target-

specific service, possibly enabling further action under direct

operator supervision. Possible services can include tasks like

gathering on-site information (such as video or still images),

target classification, localization, etc.

The vehicle routing formulation that we adopt in this

paper was originally proposed in the name of the Dynamic

Traveling Repairperson Problem (DTRP) in [1]. Variations of

problems falling in that class have been studied by numerous

researchers recently, e.g., see [2], [3], [4]. However, all of

the prior work assumes that UAVs are perfectly autonomous

and do not require any supervision from a human operator

at any time during the mission. Even though one can foresee

UAVs to have completely automated guidance and navigation

modules in the near future, the role of human operators

will be indispensable when the servicing of targets involves

on-site decision making that require high level of cognitive

capabilities provided only by a human. In particular, the role

of a human operator becomes critical in decision making

processes where the penalty for taking a wrong decision is

Ketan Savla, Tom Temple and Emilio Frazzoli are with the Laboratory
for Information and Decision Systems at the Massachusetts Institute of
Technology, {ksavla,ttemple,frazzoli}@mit.edu

substantial. For instance, incorrectly identifying an unknown

object in a surveillance mission can have dire consequences.

In this paper, we consider a binary decision task, loosely

inspired by the US Air Force COUNTER program [5],

where it is desired to classify these targets as, e.g., friends

or foes. In order to enable human operators to classify a

target, one of the vehicles needs to travel to the target

location and gather sufficient information. In other words, the

autonomous vehicles provide access to on-site information,

and the human operator provide the judgment capabilities

necessary to process such information. The objective of our

analysis is to design joint motion coordination and operator

scheduling policies that minimize the expected time needed

to classify a target after its appearance; in addition, we

want to analyze how the achievable system performance

depends on the number of autonomous vehicles and of

human operators.

The inspiration for the problem setup of this paper can

be traced to the field of human supervisory control, e.g.,

see [6], [7], where the idea is to allocate mundane tasks to

the automation system and leave complex tasks for human

supervisors. The scenario that we consider in this paper is

also related to the one considered in [8]. The architecture

discussed in this paper for the classification task is also

reminiscent of a simple queuing network [9] with two

components in series, first of which is a spatial queue with

vehicle as servers and the second is a conventional queue

with human operator as servers. The human decision-making

process suitable for the binary task considered in this paper

has been studied in the form of a two-alternative forced-

choice task, e.g., see [10], [11], where the task for a human

to choose between two alternatives, under time pressure and

with uncertain information has been studied.

The contributions of this paper are threefold. First, we

formulate a novel vehicle routing problem requiring human

decision making and provide a framework for studying such

problems. Second, we propose novel joint coordination and

task allocation strategies between vehicles and human oper-

ators for the dynamic target classification task and third, we

provide an analysis for the dependence of the classification

time on the number of vehicles and human operators for

meaningful scenarios.

Due to space limitations, the proofs are either briefly

sketched or completely omitted and will be presented in a

future extended version.

II. PRELIMINARIES

A. Notations

Let Q ⊂ R
2 be a convex, compact domain on the plane,

with non-empty interior; we will refer to Q as the environ-

ment. Let A be the area of Q. A Poisson process generates
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targets over time, which are associated to points in Q, with

finite time intensity λ > 0. Furthermore, the points are

sampled from an absolutely continuous spatial distribution

described by the density function ϕ : Q → R+. The spatial

density function ϕ is normalized such that
∫

Q
ϕ(q) dq = 1.

In this paper we concentrate on the case in which the targets

are generated uniformly in Q, i.e., ϕ(q) = 1/A.

This process can be thought of as a collection of functions

{P : R+ → 2Q such that, for any t > 0, P(t) is a random

collection of points in Q, representing the targets generated

in the time interval [0, t), and such that

• the total number of targets generated in two disjoint

time-space regions are independent random variables;

• the expected number of targets generated in a measur-

able region S ⊆ Q during a time interval of length ∆t
is given by:

E[card ((P(t + ∆t) − P(t)) ∩ S)] = λ∆t · Area(S)

A .

The dynamically arriving targets are assumed to be ho-

mogeneous. These dynamically arriving targets are to be

classified as friends or foes. The classification task is to be

carried out by a team composed of m autonomous vehicles

and n remotely located human operators. The team is clearly

heterogeneous, and each class of agent provides a unique

capability: the vehicles provide access to on-site information,

and the human operators provide the judgment capabilities

necessary to process such information. In order to collect

information about a target, one of the m vehicles needs

to travel to the target location; the amount of information

gathered is proportional to the amount of on-site time spent

by the vehicle at the target location. The vehicles move with

speed v, are identical and have unlimited capacity.

B. Human Decision Making

We now describe a state-space model for human decision

making in the context of the classification task of this paper.

We associate a real valued classification state xi(t) with

the classification status of target i at time t, and let the

evolution of the classification state in presence of information

be described by a stochastic differential equation which is

written in Langevin form as follows

ẋi(t) = f(xi(t), Ti, C) xi(0) = 0 for every target i,

where C denotes the set of cognitive parameters associated

with the decision making process for the human operators.

We assume that ẋi(t) = 0 in absence of any external infor-

mation, i.e., the operator does not engage in any cognitive

task related to the classification of a target in absence of

any information about it. The observable1, yi(t) ∈ {0, 1}
is the actual classification status of target, where yi(t) = 1
implies that the classification of target i has been completed

by time t and yi(t) = 0 implies otherwise. The relation

between yi(t) and xi(t) is described as follows: an operator

sets yi(t) = 1 when xi(t) crosses a threshold, e.g., it can

classify the target i as friend when xi crosses 1 for the first

1The classification status of the target is observable in the sense that an
operator can notify the system as soon as it thinks that it has classified a
target, for example by pressing appropriate button on its console, etc.

time or classify it as foe when xi crosses −1 for the first time.

Even though the classification state xi(t) is not observable by

the system, we assume that it can be shared perfectly among

the operators. This is possible, for example, by tagging a

target with information representative of its classification

state which can be deciphered by any operator to extract the

classification state. This assumption allows the possibility of

an operator finishing or continuing classification of a target

that was left incomplete (for instance, due to lack of sufficient

information at that time) without any loss of information

from the past.

The amount of information required by the human opera-

tors for classification of a target is a random variable, which

we denote by s. Let s and σ2
s be the mean and the variance

of this random variable. We assume that these quantity are

independent of the type of the target, i.e., it being a friend or

a foe, and that the SS has knowledge about the distribution

of s, e.g., from data collected from previous missions, etc.

Example: Drift Diffusion Models for Decision Making

We now give an example for a human decision making

model which fits our requirements as stated in the earlier

section. In the following, we briefly describe the Drift

Diffusion Models (DDM) for modeling decision making

process of humans when faced with choosing between two

alternatives, under time pressure and uncertain information.

In the following, we have adopted the description of DDM

from [11] to fit into our framework.

In DDM, one accumulates the difference between the

amounts of evidence supporting the two hypotheses, which

in our case are classifying the target as a friend or a foe. Let

xi(τ) denote the accumulated value of this difference on the

basis of τ amount of external information and assume that

xi = 0 represents equality in the amounts of integrated evi-

dence. In the pure DDM, one starts with unbiased evidence,

i.e., xi(0) = 0, and accumulate according to

dxi = Adτ + cdW, xi(0) = 0,

where dxi denotes the change in dxi as a result of additional

dτ amount of information, which is comprised of two parts:

the constant drift Adτ represents the average increase in

evidence supporting the correct choice per unit amount of

information. The second term, cdW , represents white noise,

which is Gaussian distributed with mean 0 and variance c2dτ .

Hence, xi grows at rate A on average, but solutions also

diffuse due to accumulation of noise. In the free-response

paradigm, the decision is made when xi reaches one of the

two fixed thresholds, each corresponding to a hypothesis. If

both the alternatives are equally probable, the thresholds are

symmetric. The value of τ at the first cross-over point, i.e,

the point at which the xi crosses one of the two thresholds

for the first time represents the total amount of information

required for target classification.

C. Support System Architecture

We propose an automation Support System (SS) to fa-

cilitate the cooperation between vehicles and the human

operators. The overall architecture of the SS is depicted

in Figure 1, where we show the interaction between the
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Fig. 1. Support System Architecture

SS, vehicles and the operators for the scenario where the

target information is in the form of video. The detailed

interaction between the vehicles, human operators and the

SS is described in the following.

The target locations are assumed to be transmitted to the

SS instantaneously with their generation. Before the start of

the mission, the SS assigns loitering stations to the vehicles,

i.e., locations where the vehicles wait when they do not have

any targets alloted to them. During the course of the mission,

the SS allocates target locations in batches to each vehicle. In

addition, it also specifies the mode of information collection

for each of those target locations. There are two modes of

information collection: online and offline. Roughly speaking,

the online mode involves collecting information under the

direct supervision of an operator and the offline mode implies

autonomous information collection by the vehicle which

would be later used by the operator. While specifying offline

mode for a particular target, the SS also specifies the amount

of time the vehicle should spend collecting information at

that location. Note that the SS could, on recommendation

from the operator, also add further specifications in the

offline mode, e.g., collecting video from a particular view

angle, etc. However, we assume that, for a given amount of

time over which sensor data are collected, the information

content of the data is independent of other factors.

Every vehicle deals with the batches in the order that

they are received. For each batch of target locations assigned

to it, the vehicle determines the shortest tour through them

starting with its current location. We assume that each vehicle

navigates autonomously along straight line paths between

two locations. Hence, the shortest tour for the vehicle over

a collection of target locations would be the Euclidean

Traveling Salesperson tour over those target locations. For

every target, once the vehicle has reached its location, it

does the following:

(i) if the mode of information collection for that target is

online, the vehicle issues an attention request to the SS

and waits until it gets attention of a human operator.

Once it gets attention from a human operator, it collects

information under the supervision of the operator until

asked by the SS to stop,

(ii) if the mode of information collection for that target

is offline, the vehicle collects information for the

specified amount and concurrently transmits that in-

formation to the SS.

The SS schedules these attention requests and offline

information from the vehicles to the human operators. In

addition, the SS also keeps track of the notes from earlier

classification rounds. While allocating a human operator to a

particular target, it also supplies that operator with the notes

(if any) of that target.

For every task assigned by the SS, a human operator

deciphers the notes for that target (if any) and does the

following:

(i) If the task is attending an attention request from a

vehicle, the operator processes the information online,

i.e., as it is being collected by the vehicle until it makes

a classification, at which point it notifies the SS about

the classification,

(ii) If the task involves offline processing of information,

the operator notifies the SS if he/she has classified the

target after or at any time while processing the infor-

mation. We assume that the amount of time required

to process information by an operator is same as the

amount of time required to collect it.

The classification of a target is finished as soon as an

operator notifies the SS about it. If an operator has not

classified a target after processing a given segment of of-

fline information, that target is retained as unclassified and

it needs additional information. As mentioned before, the

UAVs navigate autonomously and do no require assistance

from the SS or human operators for the same. In summary,

a typical control policy for the SS consists of:

(i) assigning loitering locations for the vehicles, forming

batches of unclassified targets and allocating them to

the vehicles while specifying the mode of information

collection at those targets, and

(ii) scheduling and allocating incoming attention requests

and offline information from the vehicles to the oper-

ators

In the course of this paper, we would be interested in

designing control policies for the SS that yield a desired

quality of service.

D. Problem Formulation

Let the set D(t) ⊂ Q represent the demand, i.e., the targets

whose classification is outstanding at time t, and we define

n(t) = card(D(t)). Let π be a typical control policy of the

SS. The objective is the design of a policy that allows the

timely classification of the targets. A policy π for the SS is

said to be stabilizing if, under its effect, the expected number

of outstanding unclassified targets, nπ , does not diverge over

time, i.e., if

nπ = lim
t→∞

E [n(t) : SS executes π] < ∞.

Intuitively, a policy is stabilizing if it facilitates cooperation

between the team of vehicles and the human operators in

such a way that the rate of classification of targets is, on

average, at least as fast as the rate at which new targets

are generated. Let Tj be the time elapsed between the

generation of the j-th target, and the time it is classified.

If the system is stable, then the following balance equation

(also known as Little’s formula [12]) holds: nπ = λTπ ,
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where Tπ := limj→∞ E[Tj ] is the system time under policy

π, i.e., the expected time a target must wait before being

classified, given that the SS implements the policy π. Note

that the system time Tπ can be thought of as a measure of

the quality of service collectively provided by the SS.

At this point we can finally state our problem: we wish

to design a policy for the SS that is (i) stabilizing, and (ii)

yields a quality of service (i.e., system time) achieving, or

approximating, the theoretical optimal performance given by

T opt = inf
π stabilizing

Tπ.

In the following, we are interested in designing computa-

tionally efficient control policies that are within a constant

factor of the optimal, i.e., policies π such that Tπ ≤ κT opt

for some constant κ.

III. LOWER BOUNDS

In this section, we provide various lower bounds on the

average classification time. These results will then be used

as a standard to compare performances of the algorithms for

asymptotic working conditions. To define these asymptotic

working conditions for the vehicles and the operators we

define the vehicle load factor ρv := λs/m to be the fraction

of time spent by the vehicles collecting on-site information

about the targets. Similarly, we define ρh := λs/n to be the

fraction of time spent by the human operators processing the

information provided by the vehicles. Using these definitions,

one can immediately see that that a necessary condition for

stability is that ρv ≤ 1 and ρh ≤ 1. We would say that

human operators are working under light load conditions if

ρh is close to zero and that they are working under heavy

load conditions when ρh is close to one. We define light and

heavy load conditions for vehicles in a similar fashion.

Before stating our first lower bound, we briefly review a

problem from geometric optimization. Given a set Q ⊂ R
2

and a set of points p = {p1, p2, . . . , pm} ∈ Qm, the expected

distance between a random point q, sampled from a uniform

distribution over Q, and the closest point in p is given by

Hm(p,Q) := E

[

min
i∈{1,...,m}

‖pi − q‖
]

=

m
∑

i=1

∫

Vi(p)

‖pi − q‖dq,

where V(p) is the Voronoi partition of the set Q discussed

earlier. The function Hm is known in the locational opti-

mization literature as the continuous multi-median function;

see, for example, [13] and references therein.

The m-median of the set Q is the global minimizer

p∗m(Q) = argmin
p∈Qm

Hm(p,Q).

We let H∗
m(Q) = Hm(p∗m(Q),Q) be the global minimum of

Hm. We will not pursue the issue of computation of the m-

median and of the corresponding H∗
m(Q), but will assume

that these values are available.

We now state our first lower bound on the average classi-

fication time.

Theorem 3.1: The classification time T opt satisfies the

following lower bound.

T opt ≥
H∗

m(Q)

v
+ s.

The lower bound in Theorem 3.1 is obtained by assuming

that, at the time of generation of every target: (i) there are

no other outstanding targets (ii) the vehicles know the exact

time of generation of the target but do not know its location;

they position themselves to minimize the expected distance

from the target location to the nearest vehicle, and (iii) the

human operators are idle. Theorem 3.1 is useful to compare

performances of proposed policies when the vehicles and the

human operators are performing under light load conditions.

Next, we state a lower bound which is inspired by a lower

bound on the system time for the multi-vehicle DTRP in [1].

Theorem 3.2: There exists a constant γ̄ ≈ 0.07 such that

the classification time satisfies the following lower bound.

T opt ≥ γ̄
λA

m2v2(1 − ρv)2
− s(1 − 2ρv)

2ρv
.

The lower bound in Theorem 3.2 is obtained by assum-

ing that a human operator is always available to process

information. We then use lower bound for the system time

for the DTRP from [1]. Theorem 3.2 is useful to compare

performances of proposed policies when the human operators

are performing under light load conditions and the vehicles

are working under high load conditions. Finally, we state a

lower bound on the classification time for the case when the

human operators are working under heavy load conditions.

Theorem 3.3: The classification time satisfies the follow-

ing lower bound under heavy load conditions.

T opt ≥
λσ2

s

2n2(1 − ρh)
+ s, as ρh → 1.

This lower bound is obtained by assuming that, at the time

of generation of every target: (i) there is at least one vehicle

which is idle and is present at the target location, (ii) more-

over, this vehicle knows the exact amount of information

required by a human operator to classify that target, and (iii)

the vehicle acquires that information instantaneously. These

assumptions are then used results along with results for the

system time for a G1/G/n queue [9] to arrive at the lower

bound.

Remark 3.4: We believe that the lower bound obtained in

Theorem 3.3 is overly conservative since it is obtained by

assuming that the target information does not incur any delay

from the moment of the target generation to the moment it is

broadcast to the SS and that the inter arrival time of the target

information to SS has zero variance. We conjecture that one

can obtain a tighter lower bound by proper consideration of

these two factors in the classification time:

T opt ≥
λ(c/λ2 + σ2

s/n2)

2(1 − ρh)
+ s, as ρh → 1,

for some c < 1.

After stating numerous lower bounds in this section, we now

proceed to the next section where we design control policies

for the SS and compare their performances to these lower

bounds.
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IV. ALGORITHMS AND UPPER BOUNDS

The first policy, the Median Based Assignment Policy, that

we propose assigns a depot for each vehicle and schedules

the operators in such a way that every target is classified in

the online mode. The policy is formally described as follows.

The Median Based (MB) Assignment Policy

The loitering locations for the vehicles are the m median

locations for the region Q. The SS forms batches of one

target each and assigns it to the vehicle whose loitering

location is closest to the target location. The mode of

information collection is set to online for all the targets. The

incoming attention requests from the vehicles are assigned

to the human operator on a first come first serve basis.

Let T MB be the system time obtained by implementing

the median based assignment policy. We now analyze the

performance of this policy first for the case when both the

vehicles and the human operators are operating under light

load conditions.

Theorem 4.1: The classification time obtained by imple-

mentation of the MB policy satisfies the following upper

bound under light load conditions.

T MB =
H∗

m(Q)

v
+ s as ρv → 0 and ρh → 0.

The proof of Theorem 4.1 is obtained by realizing that

for a given m, n, ρh → 0 implies λ → 0. Under these

conditions, there exists a finite time when all the vehicles

are positioned at their depots and all the human operators

are idle.

Remark 4.2: (i) Theorem 3.1 and Theorem 4.1 show

that the MB policy gives the optimal performance

when the vehicles as well as the human operators are

operating under light load conditions.

(ii) Theorem 4.1 also implies that when the rate of gen-

eration of targets is so low that the vehicles and the

vehicles and human operators are idle most of the

time, adding or removing some of the human operators

would not have any effect on the classification time as

long as a human operator is always available when

required. However, it is interesting to note that even

when the vehicles are idle most of the time, the average

classification time can be affected by changing the

number of vehicles. This is because the term H∗
m(Q)

in the expression of the average classification time in

Theorem 4.1 is of the order 1/
√

m.

In the last scenario, we observed that when the human

operators are idle most of the time, the classification time is

independent of the number of human operators.

We now propose a policy, the Median Team Based (MTB)

assignment policy. This policy is an adaptation of the MB

policy and is better suited for scenarios where the vehicles

are under light load and the operators are under heavy load.

For simplicity of exposition, we let m to be an integral

multiple of n.

The Median Team Based (MTB) Assignment Policy

Form teams of vehicles with n vehicles in each team.

All the vehicles in the same team share the same loitering

location. The loitering locations for the teams are the m/n

median locations of Q. The SS forms batches of one target

each and assigns it to the team whose loitering location is

closest to the target location. Among the vehicles in the team,

the target is assigned to an available vehicle that is closest to

the target location. The mode of information collection is set

to online for all the targets. The incoming attention requests

from the vehicles are scheduled to match the order in which

targets were generated and they are assigned to the human

operators on a first come first serve basis.

Let T MTB be the system time obtained by implementing

the MTB policy. The following theorem states an upper

bound on T MTB.

Theorem 4.3: When m is an integral multiple of n, the

classification time given by the MTB policy is upper bounded

as follows:

T MTB ≤ λ(1/λ2 + σ2
s/n2)

2(1 − ρh)
+ 2H∗

m/n(Q) + s.

Remark 4.4: (i) Although we assumed m to be an

integral multiple of n, the policy can be implemented

for any values of n and m and one could state a result

similar to Theorem 4.3 at the expense of additional

terms.

(ii) Theorem 4.3 implies that, when m/n → ∞ (i.e., when

the number of vehicles per operator is large), the upper

bound on the classification time is of the order (1 −
ρh)−1.

(iii) When m/n → ∞, i.e., ρv/ρh → 0 and ρh → 1,

Theorems 3.3 and 4.3 imply that the MTB policy is

within n2/(λ2σ2
s) factor of the optimal. However, the

conjecture in Remark 3.4, once proven, will establish

that the MTB policy is within 1/c factor of the optimal

as ρv/ρh → 0 and ρh → 1.

We now propose an another policy which is inspired by a

similar policy for the multi-vehicle DTRP in [1]. This policy

is best suited for scenarios where both the vehicles and the

human operators are working under heavy load conditions.

The Equipartition Based (EB) Assignment Policy

Select a location q̄ in Q arbitrarily and let this be the

loitering location for all the vehicles. For some fixed integer

l ≥ 1, divide Q into l sub-regions of equal area using radial

cuts centered at q̄ (i.e., form l wedges of area A/l). As the

targets are generated, form batches of k/l targets each, with

targets in each batch coming from the same sub-region. Once

a batch is formed, deposit them in a queue. The batches are

assigned to the first available vehicle in a First Come First

Serve (FCFS) basis. Optimize over k and l. The mode of

information collection is set to online for all the targets. The

incoming attention requests from the vehicles are assigned

to the human operator on a first come first serve basis.

Let T EB be the system time obtained by implementing the

equipartition based assignment policy.

Theorem 4.5: There exists a constant β̄ ≈ 3.66 such that

the classification time given by the EB policy satisfies the

following relations.

(i) For ρh ≤ ρv ,

T EB

T opt

≤ β̄ as ρv → 1, and
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W ∼ λ
n2(1−ρh)2

W ∼ 1√
m

of ρh for ρh ≤ ρv

W independent

1

0

W ∼ λ
m2(1−ρv)2

ρh =
λs̄
n

ρv =
λs̄
m

1

Fig. 2. A ρh − ρv chart showing dependence of average wait time for a
target, on the number of humans n and number of vehicles m for a given
target generation rate λ and average information required for classification
per target is s.

(ii) For ρv < ρh,

T EB

T opt

≤ β̄

(

ρh

ρv

1 − ρv

1 − ρh

)2

as ρh → 1.

Remark 4.6: Note that the EB policy utilizes at most m
human operators (even when n ≥ m). Part (i) of Theo-

rem 4.5, along with Theorem 3.2, implies that the EB policy

gives a β̄ factor approximation to the optimal.

V. CONCLUSION

Our goal in this paper was to formulate and study a novel

routing problem requiring human decision and design coordi-

nation policies for the vehicles and human human operators.

We considered a problem where the autonomous vehicles

provide access to on-site information, and the human oper-

ator provide the judgment capabilities necessary to process

such information. We designed joint motion coordination and

operator scheduling policies and proved that they performed

within a constant factor of the optimal for relevant asymptotic

cases. The summary of the results is depicted in Figure 2,

where we have shown the dependence of the average wait

time W := T opt − s̄.

There are many outstanding issues within the scope of the

problem formulated in this paper. It is worth pointing out that

none of the policies in this paper utilized the offline mode of

information collection. This is primarily because analyzing

policies with offline information collection mode and re-look

lead to open problems in queuing theory. However, the fact

that the online mode based policies are optimal under certain

conditions even under the possibility of offline mode also

shows the futility of the offline mode in those conditions.

We intend to investigate the performance of offline mode

based policies for other problem conditions through means

of extensive numerical experiments. Other open problems of

interest include extending this framework to include routing

under constraints on capacity, fuel, communication, sensing

range and vehicle motion. The architecture proposed in

this paper does not necessarily get the most out of human

participation in the policy making. Specifically, we assume

that the operators are unable to share the classification state

xi(t) with the SS. In the future, we intend to consider

different architectures which allow greater participation from

the human operators at different levels depending upon the

advantages that it brings along. This type of architecture

would allow for much more sophisticated policies including,

for instance, a scouting mission upon which a larger plan is

based.

Another ongoing extension is to model human perfor-

mance based upon his or her utilization history. This allows

for a much more accurate model of performance and pre-

liminary work has been reported in [14]. Finally, we intend

to extend the framework introduced in this paper to other

cooperative tasks involving human decision making.
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