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Abstract— In this paper the problem of close target re-
connaissance by a formation of 3 unmanned aerial vehicles
(UAVs) is considered. The overall close target reconnaissance
(CTR) involves subtasks of avoiding obstacles or no-fly-zones,
avoiding inter-agent collisions, reaching a close vicinity of a
specified target position, and forming an equilateral triangular
formation around the target. The UAVs performing the task fly
at constant speeds. A decentralized control scheme is developed
for this overall task considering unidirectional sensing/control
architecture. Relevant analysis and simulation test results are
provided.

I. INTRODUCTION

Control and coordination of formations of autonomous
agents find many real life civil and defence applications in re-
cent years. The multi-agent autonomous formations can con-
sist of unmanned ground vehicles (UGVs), autonomous un-
derwater vehicles (AUVs), unmanned aerial vehicles (UAVs)
or sometimes a combination of more than one agent type.
For the special case of formations of UAVs according to [1],
a formation of UAVs needs to perform three basic tasks:
(i) not to let the aircraft hit the ground; (ii) not to fly the
aircraft beyond their limits; and, (iii) not to let each aircraft
collide with the others. Furthermore, another task that is as
important as the mentioned tasks is not to let each aircraft hit
an obstacle during its motion. When these tasks are fulfilled
the group of UAVs can accomplish its higher level task [2].
For certain tasks, e.g. identification or precise geolocation
of a target, the formation may have to spend some time
in the proximity of the target location. This task can be
accomplished by moving around the target on a desired circle
for fixed-wing UAVs flying with the same constant speed.
Along this line of research, [3] and [4] have proposed a
control framework under cyclic pursuit, causing the agents
take up an equilateral polygonal formation moving on a circle
whose center is the target.

In this paper, close target reconnaissance (CTR) using
autonomous UAV formations in the presence of obstacles
(or no-fly-zones) is considered. To accomplish the aforemen-
tioned task of CTR a two-level control scheme is presented.
The first level of control moves each agent to a vicinity of the
target of interest, and the second level acquires and maintains
an equilateral triangular formation of the three UAVs while
the UAVs are circling around the target.
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The outline of the paper is as follows. In the next section
the cooperative CTR problem is defined and the assumptions
made are presented. In Section III a decentralized control
scheme is proposed to solve the cooperative CTR problem.
In Section IV, some stability analysis is presented of the
control laws described in the Section III. Section V presents
a set of simulation results. In Section VI a potential extension
of the proposed control scheme for 3D space is presented.
Some concluding remarks and future problem directions are
presented in Section VII.

II. PROBLEM DEFINITION

In this paper we consider the task of CTR of certain targets
by a team of three UAVs, each of which is initially located
at an arbitrary position. We formally define the overall task
of CTR by the following problem definition.

Problem 1 (Close Target Reconnaissance): Three UAVs,
namely A1, A2, and A3, have to operate in an environment
ΩE ⊂ R

2, containing a stationary target of interest located
at pg ∈ R

2. Denote the position coordinate vector at time
t corresponding to Ai by pi(t) and assume that each agent
knows its current position and the target location, pg , ∀t. The
goal is (i) to move A1, A2, and A3 from scattered starting
positions, p1(0), p2(0), and p3(0) ∈ ΩE , respectively, to
the vicinity of pg and then (ii) form an equilateral triangular
formation of A1, A2, and A3 while circling around the target,
with side length l and center of mass (CM) at pg , where l is a
predefined constant, i.e. (ii) requires agent position to satisfy
‖pi − pg‖ = Lg and ‖pi − pj‖ = l for each i, j ∈ {1, 2, 3}
and i �= j, where l =

√
3Lg .

The overall task formulated in Problem 1 involves individual
motion of the UAVs towards the target, avoidance of collision
with obstacles and other UAVs, avoidance of entry to no-fly-
zones, and once a certain vicinity of the target is reached,
forming a triangular formation around the target and main-
taining this formation for a certain duration while the agents
are rotating around the target. Agents need not reach the
vicinity of the target simultaneously. Each of these subtasks
or problem subelements is described in detail in subsections
II-B and II-C.

A. Agent Models

For each agent Ai, a single integrator point agent model
is considered:

ṗi(t) = vi(t) (1)

where vi(t) is the velocity of the agent, which is used as the
control input for each agent. Furthermore, the speeds of the
three UAVs are assumed to be constant and equal, which is
typical for a fleet of three plane-type UAVs, i.e. ‖vi(t)‖ = v̄,
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∀t > 0, where v̄ > 0 is a certain constant. This constant
speed constraint which is associated with a certain type of
UAV, Aerosonde UAV [5], [6], [7], draws a distinction line
between the current paper and the other ones that deal with
similar problems [3], [4], [8], and [9].

B. Obstacles, No-Fly-Zones, and Inter-Agent Avoidance

Without loss of generality, for each agent Ai we consider
physical obstacles, no-fly-zones, and other agents as “obsta-
cles”. In addition we assume that each agent Ai detects an
obstacle within a range less than or equal to a certain limit rd,
and uses this information to update its own environment map,
Ψi(t) at time t. In order to define various subregions of each
agent’s environment map, we first introduce the following
notation:

Ω(x(t), y(t), l, w) = {(x, y)|x ≤ x ≤ x + l, y ≤ y ≤ y + w}
(2)

denotes the rectangular region on the xy-plane where
(x(t), y(t) are the coordinates of the CM of the rectangular
region at time t, l is its length parallel to the x-axis, and w
is its width parallel to the y-axis. The overall area of interest
is represented by a rectangle,

ΩE = Ω(x0, y0, L,W ). (3)

Each agent’s own environmental map Ψi(t) is a rectangular
region with the same size as ΩE with an overlaid grid
structure. A predefined grid resolution value δr is assumed,
i.e. each of x0, y0 , L, and W are assumed to be integer
multiples of δr. This area of interest defines the boundaries
of the environment map of each agent. Furthermore, each
obstacle is modeled as a union of rectangular obstacles.
The total obstacle region detected by agent Ai at time t is
represented by a sequence of Mi rectangles

ΩOij(t) = Ω(xOij(t), yOij(t), lOij , wOij) (4)

for j = 1, · · · ,Mi, fitting in with the grid structure, i.e.
xOj(t), yOj(t), lOj , and wOj are integer multiples of δr for
each j. It is assumed that ΩOij ⊂ ΩE for each j. Further
denote

ΩOi(t) =
Mi⋃
j=1

ΩOij(t) (5)

In addition ΩOij(t) is defined as
ΩOij(t) = Ω(xOij(t) − ρ, yOij(t) − ρ, lOij + 2ρ,wOij + 2ρ),

j = 1, 2, · · · ,Mi

(6)
in which ρ is a design constant. Furthermore,

ΩOi(t) =
Mi⋃
j=1

ΩOij(t) (7)

Assuming that each agent, Ai, knows the locations of any
obstacle within ΩE when its distance from the obstacle is
less than rd, the grid-map generation task, i.e. generation of
Ψi(t) can be characterized as one the coloring of each of the
(L/δr)(W/δr) grid squares of Ψi(t), i.e. each,

Ωg[k, j] = Ω(x0 + kδr, y0 + jδr, δr, δr) (8)

where k ∈ {0, 1, · · · , (L/δr) − 1} and j ∈

{0, 1, · · · , (W/δr) − 1}, with one of three colors: white,
black, and gray. For each grid Ωg[k, j] the following rule
is used for coloring:

1) if Ωg[k, j] ⊂ ΩO then color Ωg[k, j] black.
2) if Ωg[k, j] ⊂ ΩO \ ΩO then color Ωg[k, j] gray.
3) Otherwise color Ωg[k, j] white.

Remark 1: The agent only detects that part of the obstacle
within the detection radius of rd.
The aim in the above coloring is as follows: The path will
pass only through white grid squares, the agents can move
through grey and white grid squares,which because of the
extended definition of obstacles ensures collision avoidance.
This explains the reason for the definition of ΩOi(t) and
ΩOi(t). The obstacle avoidance motion algorithm to be used
by the agents is based on the above definitions and is
described in detail in section III-A.

C. Target Reconnaissance and Formation Acquisition

In order to accomplish the task of CTR the agents should
acquire a triangular formation while circling around the tar-
get. This requires a control scheme capable of guaranteeing
that the agents move to a vicinity of the target and that
they establish the desired equilateral triangular formation
while they are circling around the target. In Section III-B
we discuss the proposed control scheme for this subtask.

III. PROPOSED CONTROL SCHEME

In this section we discuss the decentralized control scheme
used to accomplish the CTR task. The control scheme is
divided into two control phases. In the first phase, the motion

towards the target phase, the control laws move each agent to
a vicinity of the target while guaranteeing obstacle avoidance
(which includes avoidance of inter-agent collision). In the
second phase, the target acquiring phase, the control laws
guarantee inter-agent collision avoidance and establishment
of the triangular formation around the target, while the agents
circle the target position.

A. Agent Motion Towards the Target

Agents move independently towards the target, taking no
account of one another unless for collision avoidance. In
order to move towards the goal position each agent Ai main-
tains its own environment map Ψi(t) at time t. Knowing this
map, a preliminary path, and a sequence of waypoints (for its
use) are computed by the agent, this preliminary environment
map is updated locally by each agent when it detects a new
obstacle, and after each detection a new waypoint sequence is
generated. Then each agent Ai moves towards each waypoint
in its generated sequence, one waypoint after another, until
it reaches the vicinity of the target, i.e. ‖pi − pg‖ ≤ D,
where D = 2l + Lg . In the following subsections the path
generation, waypoint generation and the control law which
move each agent through the sequence of waypoints are
described.
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1) Path Planning with A∗: A preliminary path using the
A∗ algorithm is generated at t = 0. The A∗ algorithm, is
a graph search algorithm that finds a path from a given
initial grid square to a given goal grid square. It was
introduced by [10], as an effective heuristic improvement
of Dijkstra’s algorithm, see [11], and it provides a better
average performance than Dijkstra’s with respect to searched
nodes when one only needs the optimum path. The optimality
here is defined with respect to traveled distance between
two nodes in a directed graph with non-negative weights
[12]. We call the path sequence generated by A∗ search, S,
where S is the set of N points that are centers of adjacent
grid squares, with Si the i-th point of the sequence position
vector (the center of i-th grid square). At each time step,
t > 0 each UAV scans its surrounding environment, to check
whether there is a newly detected obstacle or not; if there is,
it updates its map of the environment and generates a new
path sequence and waypoints. If not, it continues with its
previous path sequence. We call an obstacle a detected one
when its distance to the agent is less than the detection range,
rd. (Each environmental map,Ψi at each time step contains
the information about only those obstacles that are currently
detected.)

2) Waypoint Generation: After the generation of the path
a set of waypoints is generated using an algorithm similar
to the one presented in [13] to break the path into smaller
parts, by generating some waypoints on the path. We call the
sequence of M waypoints as W , and Wi is the i-th waypoint
position vector. This algorithm is as follows:
Algorithm 1.

1. W1 := S1

2. i := 2; j := 1
3. While i ≤ N

a) If the line connecting Wj and Si is not obstructed
by an obstacle then i := i + 1 else j := j + 1;
Wj = Si−1

4. End
Hence each agent Ai should visit each of the waypoints in
its current waypoint sequence until it reaches a vicinity of
the target.

Remark 2: Since for each agent, other agents are consid-
ered as obstacles they will not have a path going through
those agents, hence collision will not happen. Furthermore
each environmental map, Ψi at each time step contains the
information about only those obstacles that are currently
detected, so for example if A1 is detecting A2, by any change
in the position of A2, Ψ1 gets updated.

Remark 3: Agents may get stuck in deadlocks with zero
probability, because in a very few number of situations
out of infinitely many other situations a deadlock happens.
However, one may handle these situation heuristically, e.g.
increasing the avoidance region for one of the agents when
the cyclic behaviour is taking place.

3) Control Law for Agent Motion Towards the Target:

In order to reach a close vicinity of the target and avoiding
collision with the obstacles, each agent should move towards

waypoints in the order that they occur in its waypoint
sequence, W . The following vector controls the motion of
i-th agent towards its j-th waypoint, assuming it has already
visited its (j − 1)-th waypoint,

vi(t) =
Wj − pi(t)
‖Wj − pi(t)‖ v̄

j = 1, · · · ,M
(9)

When the agents enters a ball with Wj as its center and
εw as its radius it will move to the next waypoint in the
waypoint list, Wj+1. Of course, it can be that at anytime the
waypoint list requires updating due to the detection of new
obstacles. When each agent, Ai (i ∈ {1, 2, 3}), enters a ball
with the goal position, pg as its center and D as its radius
another set of control laws governs their motion. This set of
control laws is studied in the next subsection.

B. Reconnaissance in the Close Vicinity of the Target

As mentioned in Problem 1 the objective for the agents is
to circle around the target position in an equilateral triangular
formation, while keeping their distance from each other.

In what follows control laws for the three agent trian-
gular formation rotating around the goal position are pre-
sented. These only apply when the agent is inside the ball
B(pg, D) = {x ∈ R|‖x − pg‖ ≤ D‖.

It is assumed that each agent obtains an identity as soon as
it enters the ball B(pg, D). The first agent to enter is termed
A1, the second one A2, and the third one A3. In this case
A1 we call leader, A2 the first follower, and A3 an ordinary

follower, using a hierarchical formation structure similar to
[7]. Furthermore, we assume that the agents rotate around the
target in a counter-clockwise direction. For A1 we propose
the control law,

v1(t) =
vp1(t)
‖vp1(t)‖ v̄ (10)

vp1(t) = σ1(t)vr1(t) + (1 − |σ1(t)|)vt1(t) (11)

where vr1(t) and vt1(t) are, respectively, the radial and
tangential components of vp1(t) and σ1(t) ∈ [−1, 1] is a
switching term used to adjust relative ratio of these radial
and tangential components for keeping the desired distance
from the target, Lg while circling around the target at
constant speed. The variables vr1(t), vt1(t), and σ1(t) are
all continuous and are defined as follows:

σ1(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 dg1(t) > Lg + εg

(dg1(t) − Lg)
εg

Lg − εg ≤ dg1(t) ≤ Lg + εg

−1 dg1(t) < Lg − εg

(12)

vr1(t) =
pg − p1(t)

dg1(t)
(13)

vt1(t) =
[

0 1
−1 0

]
vr1(t) (14)

where dg1(t) = ‖pg − p1(t)‖ and εg is the predetermined
error tolerance on the agent distance from the target. Let
t0 = liminf{t|σ1(t) �= 1}. At t = t0, A1 comes to a distance
Lg + εg from the target. Assume that for t ≤ t0 the tasks
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of A2 and A3 are only to move towards the goal and form
the required formation, i.e. there is no obstacle left to avoid
(apart from the other agents) at time t0. For t > t0 and pi ∈
B(pg, D), the following control laws are proposed govern
the motion of A2 and A3; For i = 2, 3,

vi(t) =
vpi(t)
‖vpi(t)‖ v̄ (15)

vpi = σi(t)vai(t) + (1 − σi(t))vgi(t) (16)

where σ2, σ3, vai, and vgi are defined as follows:
σ2(t) ≡ σ2(p1(t), p2(t))

=

⎧⎪⎪⎨
⎪⎪⎩

1 d12(t) < la − εa

(d12(t) − la − εa)
−2εa

la − εa ≤ d12(t) ≤ la + εa

0 d12(t) > la + εa

(17)
σ3(t) ≡ σ3(p1(t), p2(t), p3(t))

=

⎧⎪⎪⎨
⎪⎪⎩

1 dmin
3 (t) < la − εa

(dmin
3 (t) − la − εa)

−2εa
la − εa ≤ dmin

3 (t) ≤ la + εa

0 dmin
3 (t) > la + εa

(18)

va2(t) =
p2(t) − p1(t)

d12(t)
(19)

va3(t) = α1
p3(t) − p1(t)

d13(t)
+ α2

p3(t) − p2(t)
d23(t)

(20)

αi =⎧⎪⎪⎨
⎪⎪⎩

1 di3(t) < la − εa

(di3(t) − l − εa)
−2εa

la − εa ≤ di3(t) ≤ la + εa

0 di3(t) > la + εa

i = 2, 3

(21)

vgi(t) =
pgi(t) − pi(t)

dgi(t)
i = 2, 3 (22)

where d12(t) = ‖p1(t) − p2(t)‖, dmin
3 = min{‖p1(t) −

p3(t)‖, ‖p3(t) − p2(t)‖}, di3(t) = ‖pi(t) − p3(t)‖, dgi(t) =
‖pgi − pi(t)‖, and pg2(t) and pg3(t) are points on the circle
C(pg, Lg), which can be obtained by moving p1(t) by 2π/3
and 4π/3 respectively, in clockwise direction on C(pg, Lg).
Furthermore, we choose la and εa in a way such that,
la + εa = l/2.

Remark 4: One can extend the proposed method for more
than three agents by changing the value for angular separa-
tion and introducing control laws similar to the third agent
here for all the new ones. For instance, the fourth added
agent should put itself π/2 after the third agent.

IV. ANALYSIS OF CONTROL LAWS

For the control law presented by (9) it is trivial to show
that each agent will reach a ball with its next waypoint Wi

as its center and a radius of εw. For the laws presented in
subsection III-A.3, we can state the following.

Theorem 1: Agents Ai, i ∈ {1, 2, 3} starting from points
out of the circle C(pg, Lg) and having initial inter-agent
distances larger than l converge to C(pg, Lg) while their
inter-agent distance is equal to l under the control law defined
by (10).
Theorem 1 is an immediate corollary of Lemmas 1-3, which
are presented next together with proofs or proof sketches.
The complete set of proofs will be provided in an extended
version of this paper. In the sequel, for the sake of simplicity
and without the loss of generality, we assume that pg =
[0, 0]T .

Lemma 1: Agent A1 controlled by the control law (10)-
(14) converge to C(pg, Lg).
Proof. We define a positive definite function V1(p1(t))

V1(p1(t)) =
1
4
(p1(t)T p1(t) − L2

g)
2. (23)

We have
V̇1(p1(t)) = p1(t)T v1(p1(t)T p1(t) − L2

g)

= p1(t)T (σ1(t)vr1(t) + (1 − |σ1(t)|)vt1(t))

(p1(t)T p1(t) − L2
g)K1

= −σ1(t)‖p1(t)‖(p1(t)T p1(t) − L2
g)K1(t)

where K1(t) = v̄/‖vp1(t)‖ noting that pT
1 (t)vr1(t) =

−‖p1(t)‖ and pT
1 (t)vt1 = 0. Define
Ωc � {x ∈ R

2|‖x‖ ≤ D}. (24)

Here, Ωc is the points on and inside the circle C(pg, D).
Furthermore, S1 ⊂ Ωc is

S1 � {p1 ∈ Ωc|V̇1(p1) = 0} (25)

It can be easily seen that S1 = C(pg, Lg); for p1(t) ∈
Ωc \ S1, V̇1(p1(t)) < 0, and the largest invariant subset of
S1 is itself. It can be easily seen that the system defined
by control law (10)-(14) is actually a time-invariant system,
hence we can apply LaSalle’s principle [14]. According to
LaSalle’s principle the trajectory converges to S1 as t → ∞.
�

Lemma 2: Assume that A1 is moving around the circle
C(pg, Lg) centered at target pg = [0, 0]T with constant
speed v̄ in counterclockwise direction, and consider pg2(t)
as defined in Section III. Furthermore assume that, initially
(at time t = 0) d12(t) ≥ la +εa. Then using the control laws
(15)–(17),(19),(22) for agent A2, the following hold:

(i) d12(t) ≥ la − εa, ∀ t ≥ 0.
(ii) ∀ t ≥ 0, ḋg2(t) ≤ 0 if d12(t) ≥ la + εa.
(iii) There exist T, kg2 > 0 such that dg2(t0 + T ) ≤

dg2(t0)−kg2T for any time interval t0 ≤ t ≤ t0+T
for which ‖p2(t)‖ ≥ Lg + la + εa. Therefore, there
exists a time instant tg such that ‖p2(tg)‖ ≤ Lg +
la + εa.

(iv) For any given a positive constant ε̄g , there exist
Tg, k̄g2 > 0 such that dg2(t0+Tg) ≤ dg2(t0)−k̄g2T
for any time interval t0 ≤ t ≤ t0 + Tg for which
d12(t) ≥ la + εa and ‖p2(t)‖ ≥ Lg + ε̄g .

(v) p2(t) → pg2(t), as t → ∞.
Proof Sketch. (i) Consider the positive definite function
V12(t) = 1

2eT
12(t)e12(t) = 1

2d2
12, where e12(t) = p1(t) −

p2(t). We have
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V̇12(t) = eT
12(t)(ṗ1(t) − ṗ2(t))

= eT
12(t)(v1(t) − v2(t)) (26)

If d12(t) ≤ la − εa, from (17) we have σ2(t) = 1 and
hence v2(t) = va2(t) = −v̄

d12(t)
e12(t). Substituting in (26),

we obtain

V̇12(t) = eT
12(t)v1(t) + v̄d12(t)

≥ d12(t)(v̄ − ‖v1(t)‖) = 0

Therefore, at each time t ≥ 0 either V̇12(t) ≥ 0 or d12(t) >
la − εa, which implies that d12(t) ≥ la − εa, ∀ t ≥ 0.

(ii) The result follows a procedure similar to that in part (i)
using the positive definite function Vg2(t) = 1

2eT
g2(t)eg2(t) =

1
2d2

g2 and its time derivative V̇g2(t) = eT
g2(t)(ṗg2(t)−v2(t)),

which satisfies

V̇g2(t) = eT
g2(t)ṗg2(t) − v̄dg2(t) (27)

≤ dg2(t)(‖ṗg2(t)‖ − v̄) = 0

where eg2(t) = pg2(t) − p2(t), for d12(t) ≥ la + εa. Note
here that (27) follows from the dynamics

ėg2(t) = ṗg2(t) − v̄

dg2(t)
eg2(t) (28)

(iii) (Sketch) The result follows observing that
eT
g2(t)ṗg2(t)/dg2(t) regarding (27) varies continuously

within the range [−v̄, v̄], when ‖p2(t)‖ ≥ Lg + la + εa,
dg2(t0 + T ) ≤ dg2(t0) − kg2T .

(iv) (Sketch) The reasoning is similar to the one in the
proof sketch of (iii).

(v) (Sketch) Treating (28) as a linear time varying system
and − v̄

dg2(t)
a time varying parameter, the solution to this

equation within any time interval t0 ≤ t ≤ t1 for which
d12(t) ≥ la + εa is found as

eg2(t) = e
−v̄

∫ t
t0

d−1
g2 (s)ds

eg2(t0)
+

∫ t

t0
e−v̄

∫ t
τ

d−1
g2 (s)dsṗg2(τ)dτ

(29)

Furthermore, without loss of generality, the time trajectories
of p1,pg2,ṗ1,ṗg2 in global coordinates can be written explic-
itly as

p1(t) = Lgϕ

(
v̄t

Lg

)
(30)

pg2(t) = Lgϕ

(
v̄t

Lg
− 2π

3

)
(31)

ṗ1(t) = v̄ϕ

(
v̄t

Lg
+

π

2

)
(32)

ṗg2(t) = v̄ϕ

(
v̄t

Lg
− π

6

)
(33)

where ϕ(θ) � [cos θ, sin θ]T for any θ ∈ R.
The procedure to be followed in the extended version

of this paper to establish (v) is to be based on further
exploitation of (29) together with (33) as well as the results
(i)–(iv). �

Lemma 3: Assume that A1 and A2 are moving around the
circle C(pg, Lg) centered at target pg = [0, 0]T with constant
speed v̄ in counterclockwise direction, the corresponding
positions p1(t), p2(t) = pg2(t) being given by (30),(31).
Consider pg3(t) � Lgϕ

(
v̄t
Lg

+ 2π
3

)
. Furthermore assume

that, initially (at time t = 0) d13(t), d23(t) ≥ la + εa. Then

0 5 10 15
0
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Fig. 1. The agents starting from scattered positions construct an equilateral
triangular formation around the target without colliding with any of the
obstacles or each other. The blue line is the trajectory of A1, green is the
trajectory of A2 and red is the trajectory of A3.

using the control laws (15), (16),(18),(20)–(22) for agent A3,
the following hold:

(i) d13(t), d23(t) ≥ la − εa, ∀ t ≥ 0.
(ii) ∀ t ≥ 0, ḋg3(t) ≤ 0 if dmin

3 (t) ≥ la + εa.
(iii) There exists T, kg3 > 0 such that dg3(t0 + T ) ≤

dg3(t0)−kg3T for any time interval t0 ≤ t ≤ t0+T
for which ‖p3(t)‖ ≥ Lg + la + εa. Therefore, there
exists a time instant tg such that ‖p3(tg)‖ ≤ Lg +
la + εa.

(iv) For any given a positive constant ε̄g , There exist
Tg, k̄g3 > 0 such that dg3(t0+Tg) ≤ dg3(t0)−k̄g3T
for any time interval t0 ≤ t ≤ t0 + Tg for which
dmin
3 (t) ≥ la + εa and ‖p3(t)‖ ≥ Lg + ε̄g .

(v) p3(t) → pg3(t), as t → ∞.
Proof Sketch. The proof sketch is similar to that of Lemma
2 and omitted. �

V. SIMULATIONS

In this section some simulation results are presented to
show how the control laws presented in Section III perform.
In the first simulation the agents controlled by the control
laws presented in subsections III-A and III-B are tested in
an environment ΩE in the presence of the obstacles. Fig. 1
shows the result of this simulation. In the second simulation
an environment with different obstacles, different starting
positions for the agents and the goal position is considered.
Fig. 2 show the result of these simulations.

VI. EXTENSION OF THE CONTROL SCHEME FOR 3D

In this section we consider the situation when the agents’
starting positions lies in different z-planes , i.e. they have
different starting altitudes. The agents maintain their altitude
until they enter a vertical cylinder of radius D with axis
through pg . As for the 2D case, the path planning and moving
through the waypoints is as described in subsection III-A
in each agent’s plane. When each agent enters the cylinder
described above, the following control law governs the agents
for constructing a triangular formation around the target in
an agreed plane perpendicular to z axis, i.e. z = zd plane.
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Fig. 2. The agents starting from scattered positions construct an equilateral
triangular formation around the target without colliding with any of the
obstacles or each other. The blue line is the trajectory of A1, red is the
trajectory of A2 and green is the trajectory of A3.

Fig. 3. The agents starting from different positions in in R
3 move to an

agreed plane and construct an equilateral triangular formation.

It interposes as a second stage a descend/ascend component
prior to assembly around the target.

vi(t) = vni(t)v̄ (34)

vni(t) = (vni,x(t), vni,y(t), vni,z(t)) (35)

vni,x(t) =

√
1 − α2

z

1 + (vmi,y(t)/vmi,x(t))2
.sgn(vmi,x(t)) (36)

vni,y(t) = |vni,x(t)|.|vmi,y(t)|/|vmi,x(t)|.sgn(vmi,y(t))
(37)

vni,z(t) = αz(t).sgn(vmi,z(t)) (38)

vmi(t) = ṽmi(t)/‖ṽmi(t)‖ (39)

ṽmi(t) = σzi(t)vzi(t) + (1 − σzi(t))vpi(t) (40)

σzi(t) =

⎧⎨
⎩

1 ‖zd − pi,z(t)‖ > εz

‖zd − pi,z(t)‖
εz

‖zd − pi,z(t)‖ ≤ εz
(41)

vzi(t) = (vti,x(t), vti,y(t), αz
zd − pi,z(t)
‖zd − pi,z(t)‖ ) (42)

vti,x(t) = vri,y(t) (43)

vti,y(t) = −vri,x(t) (44)

vri(t) =
pg − pi(t)
‖pg − pi(t)‖ (45)

αz =
v̄z

v̄
(46)

where v̄z is the ascend and descend speed of each agent,and
vmi,x(t) and vmi,y(t) are x and y components of vmi

respectively. A simulation result for 3D case is presented
in Fig. 3.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper the problem of CTR by a formation of
3 UAVs is addressed and a control law is presented for
the two dimensional case that all the agents remain in
same plane. In addition, the convergence of the agents to
a desired equilateral triangular formation under the control
laws based on unidirectional sensing and distance keeping
is analyzed. It should be noted that the control law can be
applied to cooperative surveillance tasks involving more than
three UAVs with only minor modifications, e.g. changing
interagent angular separations in the last part of the control
law. An extension to three dimension has been presented as
well.

Possible future works and directions include consideration
of more practical UAV models and introduction of algorithms
with less need for computational resources.
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