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Abstract— This paper is about robust filtering/prediction of
nonlinear discrete-time systems with rational dependence on
the state or uncertainty vectors. The problem is dealt with in
a set-membership context, in that the system initial condition,
the uncertainties, as well as the noises affecting the dynamics
and the measurements are unknown but bounded. A new
recursive approach to the prediction of confidence ellipsoids
enclosing the state vector at each sampling time is proposed,
based on the reformulation of the system model as a Recursive
Algebraic Representation. The solution is expressed as a convex
optimization problem under Linear Matrix Inequality (LMI)
constraints. The method is assessed on some examples.
Keywords: Set-membership filtering/prediction; Nonlinear ra-
tional systems; Recursive Algebraic Representations; Linear
Matrix Inequalities.

I. INTRODUCTION

Two main paradigms underly the state estimation of a

dynamic system in the presence of disturbances. One of

them consists in formulating the problem in a stochastic

context. Given a known system, a probabilistic description of

its initial condition and of the noises affecting its dynamics

and measurements, Bayesian filters aim at computing the

posterior probability density function of the state vector

conditioned on the measured output trajectory. Within this

class of estimators, the celebrated Kalman filter [1] pro-

vides a closed-form solution for linear Gaussian systems.

The problem gets significantly more difficult in the nonlin-

ear/nonGaussian cases, and approximations are sought for.

Linearizing the system model around its estimated trajectory,

as done in the extended Kalman filter algorithm, can lead to

biased and/or unconsistent estimates [2]. As an alternative,

the Unscented Kalman filter [3] provides an approximation

of the true posterior mean and covariance with a sound

theoretical analysis of performance. Nevertheless, for high

nonlinearities and/or multimodal posterior pdfs, one must

return to Monte Carlo methods [4].

While H2 (Kalman) filters, based on a deterministic

or stochastic least-squares criterion, have led to real-time

implementations in a wide range of applications—ranging

from navigation systems to economics, signal processing

applications, robotics, etc.—they assume a perfect model

of the system and a complete characterization of distur-

bances. To obtain estimators with guaranteed behaviors even

if disturbances are not perfectly known, the “worst-case”

H∞ framework has been developed [5]. Robust H2 and H∞

filtering for linear sytems affected by parametric uncertainty

and for some classes of uncertain nonlinear systems is still

an active field of research, see for instance [6][7][8].

An alternative paradigm to filtering relies on guaran-

teed state estimation. Given a prior set-membership—or

unknown-but-bounded—description of the system initial con-

dition and of the disturbances affecting it, the aim is to

propagate over time confidence sets enclosing the realizations

of the state vector which are consistent with the measure-

ments [9]. Results have been obtained considering several

shapes of confidence sets, e.g. based on interval analy-

sis [10] or ellipsoidal calculus [11]. Guaranteed state filtering

presents the advantage of being effective even if stochastic

assumptions cannot be strictly justified. Its potential pitfalls

are the complexity of the involved computations and the

conservativeness of the computed confidence sets. The ap-

plications are also many, e.g. signal processing applications,

robots localization, fault detection, etc.

Significant work has been done towards the guaranteed

state estimation of uncertain systems. Among the most ad-

vanced solutions, ellipsoidal confidence ellipsoids have been

obtained in [12][13] for discrete-time linear systems with

linear fractional parametric uncertainty. Thanks to a quadratic

outer approximation of the uncertainty, the authors turn the

problem into a convex optimization program under Linear

Matrix Inequalities (LMI) constraints [14], which enjoys

nice tractability properties. After embedding nonlinearities

or Taylor expansion residuals into uncertainty, this strategy

has been successfully applied to practical problems entailing

the state estimation of nonlinear uncertain systems, e.g. the

visual-based pose estimation of a camera in [15] and the

localization of mobile robots in [16]. In [15], the visual

interactions are modeled through state and output equations

with rational dependence on the state. The versatility of such

so-called nonlinear rational models has been acknowledged

for long in order to tackle the control of many physical

devices, e.g. power generators [17], visual servos [18] or

chemical reactors [19], to cite few.

This paper attempts to propose a new LMI approach to the

prediction of confidence ellipsoids for uncertain nonlinear

rational systems. It is organized as follows. The problem

is first formulated in Section II. A recursive approach is
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then developed in Sections III and IV, based on the re-

formulation of the system model as a Recursive Algebraic

Representation. Also, some remarks and further extensions

are discussed. Numerical experiments on two case studies

constitute Section V. Some conclusions and prospects end

the paper.

II. PROBLEM STATEMENT

A. Notation

The notation is standard. A column vector is denoted by

an underlined lowercase letter, e.g. v, and its entries have

the form v1,v2, . . .. Capital letters are used for matrices,

e.g. M. The zero vector is termed 0, while I and O stand

for the identity and zero matrices. These vectors/matrices

may be subscripted by their dimensions—e.g. 0n, In, On×m—

but these are omitted whenever they can be inferred from

the context. The transpose operator is represented by ′. The

symbol ei denotes the canonical column vector of appropriate

dimensions whose ith entry is 1 and other entries are 0. Last,

the notation M > 0 (resp. M ≥ 0) means that M is symmetric

and positive definite (resp. positive semidefinite.)

As for sets, the notation V (Xk) stands for the set of

vertices of a polytope Xk. The operator × performs the

Cartesian product of two sets.

B. The considered problem

Consider the following discrete-time uncertain nonlinear

system

xk+1 = A(xk,δ k)xk +Bw(xk,δ k)wk +Bu(xk,δ k)uk

y
k
= C(xk,δ k)xk +Dw(xk,δ k)wk +Du(xk,δ k)uk

(1)

where k terms the time index, and the vectors x ∈ R
nx ,

δ ∈ R
nδ , w ∈ R

nw , y ∈ R
ny , u ∈ R

nu respectively gather the

states, uncertainties, noises, outputs and control inputs. The

system (1) is said rational iff the matrix functions A(., .),
Bw(., .), Bu(., .), C(., .), Dw(., .), Du(., .) are rational in their

arguments. The uncertainty vector is assumed to be time-

varying and to lie in a given convex polytope ∆k ⊂ R
nδ at

time k. The matrix functions involved in (1) are assumed

well defined on Xk ×∆k, with Xk a given convex polytope

of R
nx .

A confidence ellipsoid Ek enclosing the state vector at

time k being given, together with a set-valued description

of the noise vector wk and the knowledge of uk and y
k
, the

aim is to compute an optimized confidence ellipsoid Ek+1

surrounding the state vector xk+1 at next time k +1. This is

a nonlinear prediction problem in a set-membership context.

More precisely, Ek inside Xk is assumed to be described by

xk ∈ Ek , {x : x = x̂k +Ekz, z ∈ Zk} (2)

with Zk , {z ∈ R
nx , ||z|| ≤ 1}, (3)

where x̂k and Ek ∈ R
nx×nx respectively term Ek’s center and

“shape matrix”. Ek is supposed full-rank, or, equivalently,

the “squared shape matrix” Pk = EkE ′
k satisfies Pk > 0, so

that (2)–(3) are equivalent to

xk ∈ Ek , {x : (x− x̂k)
′P−1

k (x− x̂k) ≤ 1}. (4)

A “minimum size” ellipsoid

Ek+1 , {x : (x− x̂k+1)
′P−1

k+1(x− x̂k+1) ≤ 1} (5)

is then sought for, enclosing the values of xk+1 which

satisfy (1) upon the data of uk and y
k
, whatever xk in Ek,

δ k in ∆k, and the noise vector wk in

Wk , {w : w′Qmw ≤ 1, m = 1, . . . ,mw}. (6)

The “size” of Ek+1, henceforth denoted by f (Pk+1), is related

to its shape matrix. In the following, f (Pk+1) will be either

trace(Pk+1) or logdetPk+1, depending on whether the sum of

the squared semi-axes lengths or the volume of Ek+1 must

be minimized [14].

III. PRELIMINARY RESULTS

A. Recursive algebraic representations

In the vein of [20], which deals with the control of

continuous-time rational systems, the starting point of the

method proposed hereafter is to turn (1) into the following

Recursive Algebraic Representation

(

xk+1
y

k
0

)

=

(

A1(xk,δ k) A2(xk,δ k) A3(xk,δ k) A4(xk,δ k)
C1(xk,δ k) C2(xk,δ k) C3(xk,δ k) C4(xk,δ k)
Ω1(xk,δ k) Ω2(xk,δ k) Ω3(xk,δ k) Ω4(xk,δ k)

)

(

xk

πk(xk,δ k)
wk
uk

)

(7)

—or RAR—where πk(xk,δ k) terms a nonlinear vector func-

tion of (xk,δ k), and A1(., .), A2(., .), A3(., .), A4(., .), C1(., .),
C2(., .), C3(., .), C4(., .), Ω1(., .), Ω2(., .), Ω3(., .), Ω4(., .) are

affine matrix functions. The genuine state space model (1)

can be recovered from the RAR (7) by eliminating πk(xk,δ k)
if Ω2(xk,δ k) is column full-rank for all (xk,δ k) ∈ Xk ×∆k.

From the same arguments of continuous-time systems

[21], we can show the RAR is equivalent to the Nonlinear

Fractional Transformation (NFT) representation of [22] when

the matrices A1(.), . . . ,Ω4(.) are only parameter dependent.

Besides, the RAR can model the whole class of rational

functions with no singularities in the domain of interest and,

through suitable change of variables, some trigonometric

nonlinearities can be also modeled via the RAR framework

[21].

B. An equivalent problem

Let the function zk(.) : Xk → R
nx map xk into the

unique vector zk(xk) such that xk = x̂k +Ekzk(xk),
and η(., .) : Xk ×∆k → R

nη the vector function such

that η(xk,δ k) =
(

z′k(xk) π ′
k(xk,δ k) w′

k 1
)′

, with

nη = nx +nπ +nw +1. Then, the RAR in (7) can be written

in terms of dk+1 , xk+1 − x̂k+1 as

(

dk+1

0

)

=

(

Φ(xk,δ k)
(x̂k+1)

Ψ0(xk,δ k)

)

η(xk,δ k) (8)

where the matrix functions Φ(.,.)(x̂k+1),Ψ0(., .) satisfy

Φ(x,δ )(x̂k+1) , (A1(x,δ )Ek A2(x,δ ) A3(x,δ ) (A1(x,δ )x̂k−x̂k+1+A4(x,δ )uk))

Ψ0(x,δ ) ,

(

C1(x,δ )Ek C2(x,δ ) C3(x,δ ) (C1(x,δ )x̂k−y
k
+C4(x,δ )uk)

Ω1(x,δ )Ek Ω2(x,δ ) Ω3(x,δ ) (Ω1(x,δ )x̂k+Ω4(x,δ )uk)

)

.(9)
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Further, set N1 , e′nη
=
(

0′(nη−1) 1
)

, with N1 ∈ R
1×nη , and

N(xk,δ k)
(x̂k+1,Pk+1) ,

Φ′
(xk,δ k)

(x̂k+1)P
−1
k+1Φ(xk,δ k)

(x̂k+1)−N′
1N1.

(10)

The prediction problem at hand can then be turned into

min
x̂k+1,Pk+1

f (Pk+1) (11)

subject to Pk+1 > 0

and to η ′(xk,δ k)N(xk,δ k)
(x̂k+1,Pk+1)η(xk,δ k) ≤ 0

∀(xk,δ k,wk) ∈ Ek×∆k×R
nw s.t. wk ∈ Wk and zk(xk) ∈ Zk.

C. Towards a sufficient condition with limited

conservativeness

Define the matrices Nz ,

(

Inx Onx×(nπ +nw) 0

0′nx
0′(nπ +nw) 1

)

and

Nw ,

(

Onw×(nx+nπ ) Inw 0

0′(nx+nπ ) 0′nw
1

)

, with Nz ∈ R
(nx+1)×nη and

Nw ∈ R
(nw+1)×nη . Consequently, for all (xk,δ k) in Xk ×∆k,

one gets N1η(xk,δ k) = 1, Nzη(xk,δ k) =
(

z′k(xk) 1
)′

and

Nwη(xk,δ k) =
(

w′
k 1

)′
. Also introduce the following

matrices ϒm, m = 0, . . . ,mw:

ϒ0 ,N′
z

(

Inx 0

0′ −1

)

Nz,

ϒm ,N′
w

(

Qm 0

0′ −1

)

Nw, m = 1, . . . ,mw.
(12)

Then, wk ∈ Wk and zk(xk) ∈ Zk, with Wk and Zk specified

in (6) and (3) are equivalent to

η ′(xk,δ k)ϒmη(xk,δ k) ≤ 0, m = 0, . . . ,mw. (13)

By applying the S -procedure [14], a sufficient condition

for the decision variables x̂k+1,Pk+1 to satisfy the constraints

of (11) is as follows:

Pk+1 > 0

and ∃τ0 ≥ 0,τ1 ≥ 0, . . . ,τmw ≥ 0 such that (14)

∀(xk,δ k) ∈ Ek ×∆k,

η ′(xk,δ k)M(xk,δ k)
(x̂k+1,Pk+1,τ0, . . . ,τmw)η(xk,δ k) ≤ 0,

with M(xk,δ k)
(x̂k+1,Pk+1,τ0, . . . ,τmw) ,

N(xk,δ k)
(x̂k+1,Pk+1)−∑

mw

m=0 τmϒm.

Rather than requiring M(x,δ )(x̂k+1,Pk+1,τ0, . . . ,τmw) to be

negative semidefinite over Ek ×∆k, the bounding polytope

Xk is considered, which satisfies Ek ⊂ Xk by assumption,

and the following lemma is used, from [20][17]:

Lemma 1: Define two vectors x and δ such that (x,δ )
belongs to X ×∆, with X ⊂ R

nx and ∆ ⊂ R
nδ two given

convex polytopes. Let Σ0(., .) = Σ′
0(., .) be an affine matrix

function on X ×∆ taking its values in R
nσ×nσ . A nonlinear

vector function σ(., .) : X ×∆ −→ R
nσ being prescribed,

consider the following constraint

∀(x,δ ) ∈ X ×∆, σ ′(x,δ )Σ0(x,δ )σ(x,δ ) ≤ 0. (15)

If an affine matrix function Σ1(., .) ∈ R
mσ×nσ can be exhib-

ited such that Σ1(x,δ )σ(x,δ ) = 0 always holds on X ×∆,

the following sufficient condition to (15)—much less con-

servative than requiring Σ0(x,δ ) ≤ 0 over X ×∆—can be

drawn:

∃L ∈ R
nσ×mσ such that ∀(x,δ ) ∈ V (X ×∆),

Σ(x,δ ) , Σ0(x,δ )+LΣ1(x,δ )+Σ′
1(x,δ )L′ ≤ 0. (16)

This is a set of LMIs on L ∈ R
nσ×mσ , each one computed at

an element of V (X ×∆), i.e. at a vertex of X ×∆.

Proof: By convexity, (16) holds for all (x,δ ) in X ×∆.

Pre- and post- multiplying Σ(x,δ ) by σ(x,δ ) then leads

to (15). The sufficient condition (16) can be viewed as the

application of the Finsler’s lemma [14] to the problem of

satisfying (15) for all (x,δ ) such that Σ1(x,δ )σ(x,δ ) = 0,

by adjoining this last constraint through a matrix multiplier

L which is independent of (x,δ ).

The matrix function Σ1(., .) is termed a linear annihilator

of σ(., .), for it is affine in its arguments and because

its post-multiplication by σ(., .) gives 0. Importantly, the

conservativeness of (16) is all the less important as extra

independent lines are stacked to Σ1(., .).

In view of the above arguments, a linear annihilator

Ψη(., .) of η(., .), satisfying

∀(xk,δ k) ∈ Xk ×∆k, Ψη(xk,δ k)η(xk,δ k) = 0 (17)

must be determined so as to deduce a sufficient condition

to (14) with reduced conservativeness through Lemma 1.

Note that despite (14) entails a quadratic form on η(., .)
to be satisfied at each (xk,δ k) ∈ Ek ×∆k, to obtain tractable

conditions the outer polytope Xk is considered instead

of Ek. Indeed, from convexity arguments, if LMIs like

(16)—which depend affinely on (xk,δ k)—are satisfied for

all (xk,δ k) ∈ V (Xk ×∆k), then they also hold for all

(xk,δ k) ∈ Ek ×∆k. A straight choice is to set the matrix

function Ψη(., .) to Ψ̄η(., .) defined herebelow:

Ψ̄η(xk,δ k) ,

(

Ψ0(xk,δ k)
Ek O O (x̂k−x)

)

. (18)

Yet, less pessimistic conclusions can be drawn by selecting

Ψη(xk,δ k) =

(

Ψ̄η(xk,δ k)

Ψz(xk,δ k) O O 0

)

, (19)

where Ψz(xk,δ k) is specified as a linear annihilator of

zk(xk,δ k), e.g.

Ψz(xk,δ k)=





















z2 −z1 0 ··· 0 0
z3 0 −z1 ··· 0 0
znx 0 0 ··· 0 −z1

0 z3 −z2 ··· 0 0

...
...

...
0 znx 0 ··· 0 −z2

...
...

...
0 0 0 ··· znx −z(nx−1)





















, zi = e′iE
−1
k (xk − x̂k).

(20)

The main result can now be stated.
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IV. AN LMI SOLUTION TO SET-MEMBERSHIP

FILTERING

A. Main result

Theorem 1: The solutions x̂k+1 and Pk+1 to the following

problem also satisfy (11):

min
x̂k+1,Pk+1,τ0,...,τmw ,L

f (Pk+1) (21)

subject to Pk+1 > 0,

τ0 ≥ 0,τ1 ≥ 0, . . . ,τmw ≥ 0

and
(

−Pk+1 | Φ(x,δ )(x̂k+1)

Φ′
(x,δ )(x̂k+1) | −N′

1N1−∑
mw
m=0 τmϒm+LΨη (x,δ )+Ψ′

η (x,δ )L′

)

≤ 0

for all (x,δ ) ∈ V (Xk ×∆k),

with Φ(.,.)(.), ϒ0, ϒm introduced in (9)–(12), Ψη(., .) defined

in (19)–(18)–(12), and L a matrix of appropriate dimensions.

If f (Pk+1) = trace(Pk+1), this is a convex problem.

Proof: For all (x,δ ) ∈ Xk ×∆k, and thus for

all (x,δ ) ∈ Ek ×∆k, one has Ψη(x,δ )η(x,δ ) = 0.

Then, by Lemma 1, a sufficient condition for

η ′(x,δ )M(x,δ )(x̂k+1,Pk+1,τ0, . . . ,τmw)η(x,δ ) ≤ 0, appearing

in (14), to hold for all (x,δ ) ∈ Ek ×∆k is that there exists a

matrix multiplier L of appropriate dimensions such that

∀(x,δ ) ∈ V (Xk ×∆k),

M(x,δ )(x̂k+1, . . . . . . ,τmw)+LΨη(x,δ )+Ψ′
η(x,δ )L′ ≤ 0.

The above matrix inequality expands into

Φ′
(x,δ )(x̂k+1)P

−1
k+1Φ(x,δ )(x̂k+1)−N′

1N1 . . .

. . .−
mw

∑
m=0

τmϒm +LΨη(x,δ )+Ψ′
η(x,δ )L′ ≤ 0. (22)

This expression is turned into the last matrix inequality

of Theorem 1 by applying the Schur lemma while taking

account of the strict positive definiteness of Pk+1.

B. Comments and Potentialities of the Approach

In the above main result, all the constraints have been

expressed in terms of the vector function η(., .). Through

the incorporation by means of the S -procedure of the

quadratic functions on η(.,) under which xk+1 ∈ Ek+1 must

hold, prior to the use of the Finsler’s lemma so as to take

account of the relationships uniting the entries of η(., .),
the proposed solution has been shown to handle Recursive

Algebraic Representations involving affine matrix functions

A1(.,),A2(., .), . . . ,Ω4(., .). As the matrices ϒ0,ϒ1, . . . ,ϒmw

are constant, a straight extension to Theorem 1 can be

derived by replacing the constant multipliers τ0,τ1, . . . ,τmw

by affine scalar functions of (x,δ ), i.e. by turning each τm,

m = 0,1, . . . ,mw, into τ0
m + τ ′m,1x+ τ ′m,2δ , with τ0

m,τ ′m,1,τ
′
m,2

the new decision variables.

For each k, a minimum-size convex polytope Xk enclosing

the hypothesized ellipsoid Ek can be selected which edges are

aligned with the principal axes of Ek. Noticeably, Xk can be

easily deduced from the eigendecomposition of Pk.

A first potentiality is left for impending research. The-

orem 1 is a convex optimization program when the size

criterion is the trace of the shape matrix. Although the

nonlinearities and uncertainties are dealt with in a different

way compared to [12][13], the approach developed in these

last references entails an LMI constraint which is fairly

similar to the ones to be computed at V (Xk ×∆k) in (21). It

will be checked if, in nearly the same vein as [12][13], Pk+1

and x̂k+1 can be computed through decoupled recursions. The

aim would be to also get a problem with reduced complexity,

where both the trace and the log-determinant of the shape

matrix can be used as size criteria.

A second very interesting potentiality is to propagate over

time non-ellipsoidal confidence sets of the form

xk ∈ Ck ,

{

x :
[

θ(x− x̂k)
]′

P−1
k

[

θ(x− x̂k)
]

≤ 1
}

, (23)

with θ(·) a prescribed rational vector function of its argu-

ments. Defining non-quadratic Lyapunov functions in a con-

trol context was indeed proved to be workable in [20][21],

by handling quadratic forms into higher-dimensional vectors

and defining linear annihilators accordingly. The aim would

be to adapt this to the considered filtering problem.

V. CASE STUDIES

The proposed approach has first been assessed in the

simple numerical example used as a benchmark in [12] and

in some references cited therein. So, the following uncertain

discrete-time system has been considered

xk+1 =

(

0 −0.5
1 1+0.3δ k

)

xk +0.02

(

−6 0

1 0

)

wk

y
k
=
(

−100 10
)

xk +0.02
(

0 1
)

wk,

(24)

where δ k lies in ∆k , [−1;+1] and wk is defined by (6)

with mw = 2, Q1 =
(

1 0
0 0

)

, Q2 =
(

0 0
0 1

)

. The given confidence

ellipsoid E0 at initial time k = 0 is centered on x0 =
(

0 0
)′

and its shape matrix is set to E0 = 3I2.

Theorem 1 has been recursively applied so as to predict

confidence ellipsoids at time k +1 upon their knowledge at

time k and given the measurement y
k
. The results, reported

on Figure 1 for the estimated first entry of the state vector,

perfectly match the conclusions which would be obtained

through the method developed by El Ghaoui and Calafiore

in [12]. Importantly, the quadratic embedding of the uncer-

tainty underlying their approach is tight in this case, so that

the S -procedure is their only source of conservativeness.

Getting similar confidence sets is thus a good point.

Further, the proposed approach has been assessed on a

second example of significantly higher complexity. It is

declined into two cases, depending on the output equation.

xk+1 =

(

α1 0

1−α1 α2

)

xk +

(

20 0

0 10

)

wk +

(

β1 0

0 β2

)

uk

y
k
=
(

1 1
)

xk (Case A) (25)

or y
k
=
(

0 1−α2

)

xk (Case B)
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Fig. 1. Assessment of the method on the benchmark cited in [12] in a
random “limiting” case (see k = 4): projection of the predicted confidence
ellipsoids on the x1 axis over time.

with

α1 =
1

200
(0.2+

e′1δ k

20
)(100+ e′1xk) β1 =

200+ e′1xk

400

α2 =
1

200
(0.2+

e′2δ k

20
)(100+ e′2xk) β2 =

200+ e′2xk

400
.

(26)

Here, δ k lies in ∆k , [−0.1;+0.1]× [−0.1;+0.1] and wk is

defined by (6) with mw = 2, Q1 =
(

100 0
0 0

)

, Q2 =
(

0 0
0 100

)

.

In (Case A) the initial confidence ellipsoid E0 is defined by

x0 =
(

90 80
)′

and E0 = 2I2. The input signal is constant,

with uk =
(

80 −20
)′

. Figures 2(a)-(b) show the evolution

of the second entry of x along time, as well as the cor-

responding guaranteed prediction. In Figure 2(a), random

values of the noises and uncertainties are simulated, and the

prediction looks somewhat pessimistic. Yet, in Figure 2(b),

the noises and uncertainties switch between the boundaries

of their admissible sets, so as to get a less helpful scenario.

In spite of this, the quality of the estimation looks fairly

unaltered—i.e. the predicted values remain into reasonable

limits—and the conservatism seems acceptable.

In (Case B) the initial confidence ellipsoid E0 is defined

by x0 =
(

62 38
)′

and E0 = I2. The input signal has the

form uk =
(

80+ sin(2π ∗ k/20) −30
)′

. Figure 2(c) displays

the time history of the first entry of the state vector and of

its prediction. It can be observed that the nonlinear mapping

between the state and output vectors degrades the quality

of the prediction. Nevertheless, the true state lies into the

computed confidence sets. The pessimism seems fairly small,

as at some times the true state entry reaches the vicinity of

its guaranteed predicted boundaries (about 5% of these).

VI. CONCLUSION

This paper has proposed a technique to robust filter-

ing/prediction of nonlinear discrete-time systems with ratio-

nal dependence on the state and uncertain parameters. The

proposed approach is devised in a set-membership context,

in that the system initial condition, the uncertainties, as well

as the noise affecting the dynamics and the measurements

are unknown but bounded by given sets. The prediction

is based on a recursive estimation of confidence ellipsoids

enclosing the state vector at each sampling time, based
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Fig. 2. Assessment of the method on another nonlinear uncertain case
study: projection of the confidence ellipsoids on the x2 axis over time. The
red circles represent the center of the predicted ellipsoids.

on the reformulation of the system model as a Recursive

Algebraic Representation. The solution is expressed as a

convex optimization problem under Linear Matrix Inequality

(LMI) constraints through the S -Procedure and Finsler’s

lemma. Numerical experiments have demonstrated the po-

tential of the proposed approach as a tool for state estima-

tion/prediction of uncertain nonlinear discrete-time systems.

Future research is concentrated on extending the approach to

confidence sets defined by means of non-quadratic functions

of the state vector.
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