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Abstract— This paper describes an underwater glider motion
control system intended to enhance locomotive efficiency by
reducing the energy expended by vehicle guidance. In pre-
vious work, the authors derived an approximate analytical
expression for steady turning motion by applying regular
perturbation theory to a realistic vehicle model. The analysis
results suggested the use of a well-known time-optimal path
planning procedure developed for the Dubins car, an often-
used model of a wheeled mobile robot. For underwater gliders
operating at their most efficient flight condition, time-optimal
glide paths correspond to energy-optimal glide paths. Thus, an
analytically informed strategy for energy-efficient locomotion is
to generate sequences of steady wings-level and turning motions
according to the Dubins path planning procedure. Because the
turning motion results are only approximate, however, and
to compensate for model and environmental uncertainty, one
must incorporate feedback to ensure convergent path following.
This paper describes the dynamic modelling of the complete
multi-body control system and the development and numerical
implementation of a motion control system. The control system
can be combined with a higher level guidance strategy involving
Dubins-like paths to achieve energy-efficient locomotion.

I. INTRODUCTION

Underwater gliders are highly efficient, winged au-

tonomous underwater vehicles (AUVs) which locomote by

modulating their buoyancy and their attitude. Applications

include long-term, basin-scale oceanographic sampling and

littoral surveillance. The first generation of underwater glid-

ers includes Slocum [13], Seaglider [4], and Spray [11].

These “legacy gliders” have proven their worth as efficient,

long-distance, long-endurance ocean sampling platforms.

They can be deployed for months and travel thousands of

kilometers. The exceptional endurance of underwater gliders

is due to their reliance on gravity (weight and buoyancy)

for propulsion and attitude control. Our aim is to develop

implementable, energy-efficient motion control strategies that

further improve the inherent efficiency of these vehicles.

Outcomes will include more intelligent behaviors for existing

vehicles and improved design guidelines for future underwa-

ter gliders. Having already characterized the existence and

stability of steady wings-level and turning motions [9], on-

going research focuses on exploiting the properties of these

steady motions to obtain real-time, nearly energy-optimal

motion planning and control. A complete multi-body vehicle

dynamic model, which includes actuator magnitude and rate

limits, is used to develop and validate a motion controller

that can be used to obtain the (approximate) steady motions

predicted by analysis. These steady motions can then be

concatenated to achieve compatible guidance objectives, such
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as waypoint following. Section II develops a general dynamic

model for an underwater glider. Section III reviews the

conditions for wings-level gliding flight given in [6] and the

approximate conditions for steady turning flight developed in

[9]. In Section IV, it is recognized that the special structure

of the approximate solution given in Section III suggests

the use of existing optimal path planning results for planar

mobile robots. The control design is presented in Section V.

Simulation results for the Slocum model given in [1] are

presented in Section VI. Conclusions and a description of

ongoing research are provided in Section VII.

II. VEHICLE DYNAMIC MODEL

The glider is modeled as a rigid body (mass mrb) with

two moving mass actuators (mpx
and mpy

) and a variable

ballast actuator (mb). The total vehicle mass is

mv = mrb +mpx
+mpy

+mb,

where mb can be modulated by control. The vehicle dis-

places a volume of fluid of mass m. Let m̃ = mv −m. If

m̃ > 0, the vehicle is heavy in water and tends to sink while

if If m̃ < 0, the vehicle is buoyant in water and tends to

rise. Figure 1 shows the simplified model for the underwater

glider actuation system. The variable mass is represented by

a mass particle mb located at the origin of a body-fixed

reference frame. The vehicle’s attitude is given by a proper

rp

rrb

i1

i2

i3

y

rpxmpx

mb

mpy

Fig. 1. Illustration of point mass actuators.

rotation matrix RIB which maps free vectors from the body-

fixed reference frame to a reference frame fixed in inertial

space. The body frame is defined by an orthonormal triad

{b1, b2, b3}, where b1 is aligned with the body’s longitudinal

axis. The inertial frame is represented by an orthonormal

triad {i1, i2, i3}, where i3 is aligned with the local direction

of gravity. Following standard vehicle modeling convention,
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we parameterize RIB with three Euler angles: the roll angle

φ, the pitch angle θ, and the yaw angle ψ. To define the

rotation matrix explicitly, let

e1 =





1
0
0



 , e2 =





0
1
0



 , and e3 =





0
0
1





represent the standard basis for R
3. Also, let the character

·̂ denote the 3 × 3 skew-symmetric matrix satisfying âb =
a × b for 3-vectors a and b. Then RIB = ece3ψece2θece1φ.

Let v = [u, v, w]
T

represent the translational velocity and

let ω = [p, q, r]
T

represent the rotational velocity of the

underwater glider with respect to inertial space, where v and

ω are both expressed in the body frame. If x represents the

position of the body frame origin with respect to the inertial

frame, the vehicle kinematic equations are

ẋ = RIBv (1)

ṘIB = RIBω̂. (2)

The dynamic equations relate external forces and moments

to rates of change of velocity. Accordingly, following [14],

define the mass, inertia, and inertial coupling matrices for the

combined rigid body/moving mass/variable ballast system as

Irb/p/b = Irb −mpx
r̂px

r̂px
−mpy

r̂py
r̂py

Mrb/p/b = mv1

Crb/p/b = mrbr̂rb +mpx
r̂px

+mpy
r̂py

where 1 represents the 3 × 3 identity matrix. As indicated

in Figure 1, the mass particle mpx
is constrained to move

along the longitudinal axis while the mass particle mpy
is

constrained to move along the lateral axis:

rpx
= rpx

e1 and rpy
= rpy

e2.

The rigid body inertia matrix Irb represents the distribution

of mass mrb. The added mass matrix Mf , the added inertia

matrix If , and the added inertial coupling matrix Cf account

for the energy necessary to accelerate the fluid around the ve-

hicle as it rotates and translates.It is notationally convenient

to compile the various inertia matrices into the generalized

inertia matrix shown in the table below, See [14].

Inertia I

0

B

B

@

Irb/p/b + If Crb/p/b + Cf mpx r̂pxe1 mpy r̂pye2

CT
rb/p/b

+ CT
f

Mrb/p/b + Mf mpxe1 mpye2

−mpxeT
1 r̂px mpxeT

1 mpx 0

−mpyeT
2 r̂py mpyeT

2 0 mpy

1

C

C

A

Let psys represent the total linear momentum of the

vehicle/fluid system and let hsys represent the total angular

momentum. Let ppx
and ppy

represent the total translational

momentum of the moving mass particles, and let ppx
=

e1 · ppx
and ppy

= e2 · ppx
represent their components

along their respective axes of controlled motion. Defining the

generalized velocity η =
(

ωT vT ṙpx
ṙpy

)T
and the

generalized momentum ν =
(

hTsys pTsys ppx
ppy

)T
,

we have

ν = Iη (3)

In writing the dynamic equations, it is convenient to define

the “tilt” vector ζ = RT
IBi3, which is simply the body frame

unit vector pointing in the direction of gravity. The dynamic

equations, with buoyancy control and moving mass actuator

dynamics explicitly represented, are:

ḣsys = hsys × ω + psys × v + Tvisc

+(mrbgrrb +mpx
grpx

+mpy
grpy

) × ζ

ṗsys = psys × ω + m̃gζ + Fvisc (4)

ζ̇ = ζ × ω

ṗpx
= e1 · (ppx

× ω +mpx
gζ) + ũpx

ṗpy
= e2 ·

(

ppy
× ω +mpy

gζ
)

+ ũpy

ṁb = ub

The forces ũpx
and ũpy

can be chosen to cancel the remain-

ing terms in the equations for ṗpx
and ṗpy

, so that

ṗpx
= upx

ṗpy
= upy

.

These inputs may then be chosen to servo-actuate the point

mass positions for attitude control, although with inherent

limits on point mass position and velocity. (Physically, these

actuators might each consist of a large weight mounted on a

lead screw that is driven by a servomotor.) The mass flow rate

ub is chosen to adjust the vehicle’s net weight, again with

inherent control magnitude and rate limits. These actuator

limits are significant for underwater gliders and must be

accounted for in control design and analysis.

The viscous forces and moments are expressed in terms

of the hydrodynamic angles

α = arctan
(w

u

)

and β = arcsin
( v

V

)

where V = ‖v‖. Following standard modeling conventions,

Fvisc = −e−ce2αece3β





D(α, β)
Sββ + Sδrδr

Lαα





Tvisc = Dωω +





Lββ
Mαα

Nββ +Nδrδr





The various coefficients, such as Lα and Nβ , depend on

the vehicle’s speed, its geometry, and the Reynolds number.

The matrix Dω contains terms which characterize viscous

angular damping (such as roll, pitch, and yaw rate damping).

See [5], for example. Equations (4) are written in mixed

velocity/momentum notation. To design a control system,

we convert these into a consistent set of state variables by

computing

η̇ = I
−1ν̇ − I

−1
İ I

−1ν. (5)
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III. STEADY FLIGHT

In wings-level, gliding flight the vehicle has no angular

velocity (ω = 0), no lateral velocity component (v = 0, so

that β = 0), and no roll angle (φ = 0). Also, rpy
= 0 and

δr = 0 (if the vehicle has a rudder). Following the analysis

presented in [6], one may compute the required CG location

(rrb) and the required net mass m̃0 for balanced gliding

flight at a specified speed and glide path angle. Let γ denote

the glide path angle; in wings-level flight, γ = θ − α. For

steady wings-level flight at a specified speed V0 and glide

path angle γ0 = θ0 − α0,

rrb =
1

mrbg



Mv0 × v0 +





0
Mαα0

0







 × ζ0 + ̺ζ0

m̃0 =
1

g
(cos (γ0)Lαα0 − sin (γ0)D(α0, 0)) .

In the equation for rrb, v0 = V0 [cosα0, 0, sinα0]
T

, ζ0 =
[− sin θ0, 0, cos θ0]

T
, and ̺ is a free parameter related to

the vehicle’s “bottom-heaviness” in the given flight condition

[6]. (Note that, in determining a nominal wings-level glide

condition, we assume that rpx
= 0. That is, the nominal

gravitational moment is due entirely to rrb.) Analysis of turn-

ing (helical) flight using a sophisticated underwater glider

model is challenging. In [9], the problem was formulated as

a regular perturbation problem in the turn rate, as represented

by a small, non-dimensional turn rate parameter ǫ. In seeking

a first order solution for turning flight, it was assumed that

the pitch angle remains at its nominal value (θ0) for wings-

level flight. Polynomial expansions for rpy
, m̃, φ, V , α, and

β in terms of ǫ were substituted into the nonlinear algebraic

equations for steady turning flight. Solving the coefficient

equation for ǫ1 gives approximate equilibrium values for rpy
,

m̃, φ, V , α, and β, to first order in ǫ. Letting the subscript 1
represent these first order approximate values, it was found

in [9] that

V1 = 0

α1 = 0

m̃1 = 0

β1 = β1(α0, θ0, m̃0; δr1) (6)

φ1 = φ1(α0, θ0, m̃0;β1, δr1)

rpy1
= rpy1

(α0, θ0, m̃0; δr1)

Equations (6) represent the first order approximate conditions

for steady turning motion. Details, including explicit expres-

sions for β1, φ1, and rpy1
as derived for a realistic vehicle

model, are given in [9]. To assess stability of the true steady

turning motion, one may linearize about the approximate

equilibrium conditions and compute the eigenvalues of the

state matrix. Because these eigenvalues depend continuously

on the matrix parameters, stability of the true equilibrium

may be inferred from stability of the approximate equilibrium

provided (i) the equilibrium is hyperbolic and (ii) ǫ is

small relative to the magnitude of the real part of each

eigenvalue. (See Section 1.7 of [7] for a brief discussion

and further references.) The approximate solution indicated

in (6) shows that V , α, and m̃ remain constant to first

order in ǫ. This suggests that the primary contributors to

steady turning motion are lateral mass deflections (rpy
) and

rudder deflections (δr) and that these deflections have no first

order effect on speed or angle of attack. This is fortunate;

in practice, it is considerably more costly to change the

vehicle’s net mass m̃ than to shift its CG. As discussed in the

next section, these observations suggest a natural approach

to path planning for underwater gliders.

IV. PATH PLANNING

With approximate analytical expressions for wings-level

and turning flight in hand, a logical next step is to develop

a procedure for planning efficient paths which makes use of

these results. A reasonable objective is to concatenate the

approximate equilibrium motions in order to minimize the

time of transit from a given initial point to a given final point

with a specified initial and final heading. A fortunate conse-

quence of the structure indicated in (6) is that, to first order in

turn rate, the horizontal and vertical components of velocity

remain constant. Projecting the vehicle’s motion onto the

horizontal plane, glider equilibrium motions correspond to

constant-speed straight and circular paths. So, to first order in

turn rate, the minimum time control problem is equivalent to

the Dubins car problem [12], [3]. The minimum time control

policy is the concatenation of three motions: a left or right

turn at maximum rate, a straight transit or a second turn at

maximum rate, and a final turn at maximum rate. The optimal

path can be determined through simple geometry, making

it easily implementable in real-time control applications.

For an underwater glider flying at maximum efficiency, this

minimum time “Dubins path” corresponds to a minimum

change in depth. Since an underwater glider propels itself

using the force of gravity, minimizing the change in depth

(potential energy) is equivalent to minimizing the energy

expenditure. This is another appealing feature of Dubins

paths, given that underwater gliders are specifically designed

for locomotive efficiency.

V. CONTROL DESIGN

The vehicle guidance and control system is depicted

conceptually in Figure 2, where the vector field f(x,u)
represents the system dynamics, and the vector field f̃(x,u)
notionally represents their first order approximation in turn

rate. The block at the upper left in Figure 2 takes a com-

manded speed, glide path angle and turn rate and generates

the corresponding equilibrium values of m̃, rpx
and rpy

,

as predicted by perturbation analysis. Because these values

are only approximate, though, and because of modeling and

environmental uncertainty, the commanded values of m̃, rpx

and rpy
are augmented using feedback compensation. This

section focuses on the design of the feedback compensator.

A. Servo Controller Design

In designing the control system, it is convenient to replace

the velocity v, as expressed in the body reference frame, with
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0= ~f(xeq;ueq)0= ~f(xeq;ueq)0= ~f(xeq;ueq)

Vd; °d; _ÃdVd; °d; _Ãd

+

V; °; _Ã

Compensator

+ ¡

e

+

++

V; °; _ÃV; °; _Ã

Compensator

++ ¡¡

ee

++
_x = f(x;u(x;¹d))_x = f(x;u(x;¹d))

¹d
z }| {

~md; rpxd
; rpyd

¹d
z }| {

~md; rpxd
; rpyd

Fig. 2. The speed/glide path angle/turn rate control system.

speed, angle of attack, and sideslip angle (V, α, β). Thus,

v = e−ce2αece3β(V e1)

v̇ = e−ce2αece3β





1 0 0
0 0 V
0 V cosβ 0









V̇
α̇

β̇



 .

The change of variables is well-defined for β ∈ (−π
2
, π

2
).

Define the system state and control vectors

X =
[

φ, θ, V, α, β, p, q, r, rpx
, vpx

, rpy
, vpy

]T

U =
[

upx
, upy

, ub

]T

The equations of motion can then be written in the form

F(Ẋ,X,U) = 0

To design a servo-controller for the moving mass actuators

and the variable ballast actuator, we linearize the dynamic

equations and compute the transfer function for the input-

output channel of interest. Let U denote one of the available

input signals U ∈
{

upx
, upy

, ub

}

and define a corresponding

output Y (X). With these definitions, we obtain the perturba-

tion equations

△Ẋ = A△X + B△U (7)

△Y = C△X (8)

where

A = −

[

(

∂F

∂Ẋ

)

−1 (

∂F

∂X

)

]

eq

B = −

[

(

∂F

∂Ẋ

)

−1 (

∂F

∂U

)

]

eq

C =

[

∂Y

∂X

]

eq

1) Moving Mass Servo Design: The first objective is to

choose an input up ∈ {upx , upy} such that the position of

the longitudinal moving mass rp ∈ {rpx , rpy} asymptotically

tracks a desired trajectory rpd
∈ {rpxd , rpyd }. With U = up

and Y = rp in equations (7) and (8), the scalar CAB is

nonzero. One may choose

up =
1

CAB
(r̈p − CA

2△X + [ω2
n 2ζωn]e)

where e = [e, ė]
T

and e = rpd
− rp and where ωn ∈

{ωnx , ωny} and ζ ∈ {ζx, ζy} are control parameters. The

trajectory tracking control law requires that the reference

trajectory rpd
be twice differentiable. To ensure this, we

define a linear reference model with the same relative degree.

Let rpd
= [rpd

, ṙpd
]
T

and define, for each servoactuator, the

reference model dynamics

ż =

(

0 1
−ω2

r −2ζrωr

)

z +

(

0
ω2

r

)

r(t)

rpd
=

(

1 0
)

z

where r(t) ∈ {rx(t), ry(t)} is the (possibly discontinuous)

reference command to be filtered. The reference model

parameters may be chosen to accommodate magnitude and

rate limits on the moving mass actuator. In physical im-

plementations, the servo-actuation system is self-contained

and there is no need for controller design. We include this

element explicitly, though, in order to account for the full

complexity of the multi-body mechanical system model, and

in order to allow careful study of issues such as actuator

magnitude and rate saturation which are important effects

for underwater gliders.

2) Buoyancy Control Design: Next, we design an input

ub such that the net mass m̃ asymptotically tracks a desired

value m̃d. The simplest approach is to choose

ub = −kb (m̃− m̃d)

where the constant kb is chosen to accommodate the rate

limit on ub.

B. Feedback Control Design

The objective here is to design single-input, single-output

PID control loops to control the vehicle speed V , glide

path angle γ, and heading rate ψ̇. Let G(s) represent the

transfer function for a particular control channel and let

Gc(s) represent the PID controller:

Gc(s) = Kp(1 +
1

Tis
+ Tds)

The proportional gain Kp, the integrator time Ti and the

derivative time Td are parameters to be tuned by the control

designer. In the time domain, the control signal is

u(t) = Kpe+Ki

∫ t

t0

e(τ)dτ +Kdė

where Ki = Kp/Ti and Kd = KpTd. The error signal e(t)
measures the difference between the actual and commanded

value of the output. Speed and glide path angle are inherently

coupled for underwater gliders, just as they are for airplanes.

For a fixed glide path angle, speed can be directly mod-

ulated by changing the net mass m̃. However, changing m̃
requires pressure-volume work which is relatively expensive,

especially at depth. In practice, it is best to modulate m̃ as

infrequently as possible. Here, we focus on controlling the

glide path angle γ by modulating the longitudinal moving

mass position rpx
. Let eγ(t) = γd − γ(t), where γd = γ0

is the nominal value of the glide path angle as computed
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for wings-level equilibrium flight. The longitudinal moving

mass reference signal is

rx = Kpγeγ +Kiγ

∫ t

t0

eγ(τ)dτ +Kdγ ėγ .

The channel from lateral mass position rpy
to turn rate

ψ̇ is non-minimum phase, with a single zero in the right

half plane. In principle, this non-minimum phase zero limits

performance (closed-loop bandwidth). In practice, though,

closing the loop from turn rate to lateral mass location

is quite effective, provided the performance limitations are

acknowledged in control parameter selection. Let eψ̇(t) =

ψ̇d − ψ̇(t), where ψ̇d is the desired turn rate. The lateral

moving mass control signal is

ry = Kp
ψ̇
eψ̇ +Ki

ψ̇

∫ t

t0

eψ̇(τ)dτ +Kd
ψ̇
ėψ̇.

With the glide path and turn rate PID controllers so defined,

the first step is to tune these controllers for the linearized

system dynamics. Having done so, the next step is to re-

tune the controllers as necessary for the nonlinear dynamics

through simulation.

VI. SIMULATION RESULTS

A reasonably sophisticated model of the Slocum glider

given in [1] was linearized about the following equilibrium

flight condition, which corresponds to wings-level, descend-

ing flight:

V0 = 0.77 m/s, α0 = 4.3◦, θ0 = −8.4◦,

γ0 = −12.7◦ and m̃0 = 0.63 kg.

The moving mass values are mpx
= mpy

= 9 kg. The servo-

actuator parameter values are

ωnx
= 20 rad/s ζx = 0.001 ωrx = 0.8 rad/s ζrx = 1

ωny
= 20 rad/s ζy = 0.01 ωry = 0.8 rad/s ζry = 1

The PID control parameter values are

Kpγ = −0.5 m Tiγ = 2.3 s Tdγ = 2 s

Kp
ψ̇

= 0.2 m/(rad/s) Ti
ψ̇

= 0.65 s Td
ψ̇

= 0.39 s

Figures 3 through 7 compare the results of simulations using

open- and closed-loop control. Figure 3 shows the lateral

mass location in response to a command sequence that is

intended to effect a right turn, a straight segment, and left

turn (viewed from above). In the open-loop case, the moving

mass is simply commanded to move to the (approximate)

equilibrium value corresponding to a desired heading rate

ψ̇d. In the closed-loop case, however, the heading rate is

directly commanded, with the lateral moving mass actuator

responding as necessary. The resulting path is depicted in

Figure 4. This path is reminiscent of a Dubins path, although

the vehicle and actuator dynamics effectively result in a turn

acceleration limit, in addition to the assumed turn rate limit.

Time-optimal paths for a Dubins car with acceleration limits

are discussed in [8] and [10], where it is recognized that

extremal paths comprise sequences of straight, clothoidal,

and circular segments. In reference to these results, we call

such paths “suboptimal Dubins paths.”

Figures 5 and 6 show desired, open-loop, and closed-
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Fig. 3. Lateral moving mass location (open- and closed-loop).
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Fig. 5. Glide path angle response to command sequence.

loop value of the vehicle’s glide path angle and turn rate. As

expected, the deviation between the open-loop values and the

desired values is significant. In Figure 6, the small spikes at

the end of each segment likely correspond to reaction forces

due to the movement of the lateral mass within the vehicle.

We note that the turn rate magnitudes are of the same order

as turn rates seen in glider operations. The Slocum glider, for

example, can achieve a 20-30 meter turn radius at speeds on
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Fig. 7. Variation in longitudinal moving mass position from nominal.

the order of half a meter per second. A shallow-water variant

of Slocum, which includes a movable rudder, can perform

turns with a 7 meter radius [2]. Figure 7 shows the location

of the longitudinal moving mass, which must move in order

to regulate the glide path angle.

It must be stressed that the final guidance loop has not

been closed, at this point. That is, we have not developed

a control law to make the vehicle track a commanded path,

such as a suboptimal Dubins path. Rather, we have designed

the underlying motion control system over which a guidance

loop might be imposed.

VII. CONCLUSIONS AND FUTURE WORK

A multi-body dynamic model was developed for an un-

derwater glider that includes both longitudinal and lateral

actuators as well as the buoyancy actuator. Building on

prior results in glider steady motion analysis, a motion

control system was developed to control glide path angle

and turn rate. The control system includes model reference

controllers for the servo-actuators, to allow saturation effects

to be easily incorporated. The glide path angle and turn

rate controllers are single-input, single-output PID loops.

The control parameters were tuned using a nonlinear sim-

ulation that includes actuator magnitude and rate limits. The

controller’s effectiveness was demonstrated in simulation.

Although the motion control system developed here allows

one to implement general guidance strategies, our aim is

to enable closed-loop tracking of time-suboptimal glider

paths that can be generated in real time using existing

results for nonholonomic mobile robots. These Dubins-like

paths accommodate turn rate and turn acceleration limits,

which are essential aspects of underwater glider motion. For

underwater gliders travelling at constant speed and maximum

flight efficiency, minimum arclength paths are minimum

energy paths. Closed-loop guidance, such as a line-of-sight

strategy, is required because only approximate solutions for

steady turning motion are available and because model and

environmental uncertainty is inevitable. The motion control

system developed here is a necessary step toward convergent

path following.
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