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Abstract—This paper explores network security as a game
between attacker and defender. In this game, the attacker
and defender both anticipate each other’s best strategy. Thus,
instead of focusing on the best response to an attack, the paper
analyzes the Nash equilibrium for the joint strategies.

The paper studies two types of problem. The first type
concerns networks where the data can be modified by an
intruder. Given the probability that such an intruder exists,
the network user decides whether to trust the data he observes.
When present, the intruder chooses how to corrupt the data. The
second type models virus attacks. The virus designer decides
how aggressive the virus should be and the defender chooses
a mechanism to detect the virus. If the virus is too aggressive,
it is easy to detect. Accordingly, there is an optimum level of
aggressiveness.

Index Terms—Security, Intrusion, Viruses, Deception, Game
Theory

I. INTRODUCTION

“Any fool can tell the truth, but it requires a man of some

sense to know how to lie well.” Samuel Butler

Security is a major concern for the Internet. Attacks range

from viruses that install programs to capture confidential

information for identity theft or programs to launch denial

of service attacks or destroy user files [1]. Phishing attacks

mimick legitimate web site to extract confidential information

[2]-[3]. Estimates of the annual security cost to business are

typically in the many tens of billions of U.S. dollars.

To understand the strategy of both the receiver and the

attacker we use game-theoretic tools to study a scenario

where a receiver has to make a decision in the possible

presence of an intruder. We model the scenario as a Bayesian

game and compute the different sets of Nash Equilibria.

Details of the game, as well as the analysis of the results

are presented in section II.

The celebrated “Love Bug” virus entices the victim to open

an email attachment “LOVE-LETTER-FOR-YOU.TXT.vbs”.

Upon opening the attachment, the virus infects the victim’s

machine and makes a number of malicious changes to the

user’s system. It also tries to propagate by sending a copy

of itself to everyone in the user’s address list. Many self-

propagating viruses (or worm in the security jargon) have

propagated across the Internet (CodeRed, Nimda, Blaster,

etc...) and many papers have been devoted to the understand-

ing of their propagation methods. A broad review of the most

popular models of virus propagation is presented in [4].

In this paper, we present a novel approach to analyze virus

and worm propagation. We consider a scenario where a virus

(worm) is trying to propagate in the presence of an intrusion

detection system (IDS). The goal of the virus is to infect as

many machines as possible. The IDS, on the other hand, is

trying to detect the virus as early as possible while limiting

false alarms. We model the scenario as a Bayesian game

between the virus designer and the IDS designer. Details of

the models, as well as the analysis of the set of equilibrium

are presented in section III.

II. THE INTRUDER PROBLEM

A. Simple Intruder Game

We consider the communication model depicted in figure

1.

p

1-p

Alice

Trudy

Bob
X Y Z

Fig. 1. Intruder Problem: the intruder Alice is present with probability p.

In this model, Alice sends a message X to Bob through

a channel. The channel is insecure because an intruder,

Trudy, might be present and able to corrupt the message.

The message X is binary (X ∈ {0, 1}) and such that

P(X = x) = π(x), x ∈ {0, 1} where π(1) = 1 − π(0) is

known to Bob and Trudy. Designate by Y the message that

Bob receives.

Trudy is present with a probability p known to both Trudy

and Bob. When Trudy is not present, Y = X . When Trudy

is present, we model her possibly randomized strategy that

modifies X into Y by the probabilities P (x, y) = P [Y = y |
X = x] for x, y ∈ {0, 1}.

Upon receiving a message Y from the channel, Bob

guesses that Alice sent the message Z. We model Bob’s

decision by the probabilities Q(y, z) = P [Z = z | Y = y]
for y, z ∈ {0, 1}.

Let C(x, z) be the cost that Bob faces when he decides

Z = z when X = x, for x, z ∈ {0, 1}. For given choices

of the probabilities P and Q, the expected cost J(P, Q) =
E(C(X, Z)) can be calculated as follows:

J(P, Q) =
∑

x=0,1

∑

z=0,1

π(x)R(x, z)C(x, z)
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where R is the matrix given by

R = [(1 − p)I + pP ]Q.

In this expression, I is the 2 × 2 identity matrix.

Trudy’s goal is to choose P to maximize J(P, Q) whereas

Bob’s goal is to choose Q to minimize J(P,Q). This scenario

is a Bayesian zero-sum game ([5],[6]).

B. Nash Equilibrium

Recall that a zero-sum game, the Nash equilibrium corre-

sponds to the max-min equilibrium ([5] Chap.2) and is a pair

(PNE , QNE) such that

J(PNE , QNE) = max
P

min
Q

J(P, Q) = min
Q

max
P

J(P, Q).

That is, neither Alice nor Bob can gain by deviating from

those choices.

To analyze the Nash equilibria of the game, we assume

that C(0, 0) = C(1, 1) = 0 and, without loss of generality,

that π(0)C(0, 1) ≤ π(1)C(1, 0). (We could interchange the

roles of 0 and 1 if the inequality was violated.)

Theorem 1: The Nash equilibria, as a function of of the

parameter p, are shown in figure 2.

r 
1 

r 
2 

Fig. 2. The Nash Equilibria of the Intruder Game.

In this figure, P1 is a set of stochastic matrices P such

that

p[π(0)P (0, 1)C(0, 1) + π(1)P (1, 0)C(1, 0)] ≥ π(0)C(0, 1)
(1)

and P2 is a set of stochastic matices P such that the previous

inequality holds and, moreover,

p[π(0)P (0, 1)C(0, 1) + π(1)P (1, 0)C(1, 0)] ≤ π(1)C(1, 0).
(2)

The values r1 and r2 are defined by

r1 = 1 − r2 =
π(0)C(0, 1)

π(0)C(0, 1) + π(1)C(1, 0)
.

The meaning of this result is as follows.

When the probability p that Trudy is present is smaller

than p1, Bob should trust that Y = X , which leads Trudy

to always corrupt the message as Y = 1 − X when she

is present. When p is larger than r1, Bob should always

ignore the message Y because it is too untrustworthy. For

this strategy to be optimal for Bob, Trudy should corrupt the

message with a high enough probability, which corresponds

to the conditions (1)-(2) on P .

To understand (1), note that the left-hand side is Bob’s

expected cost if he chooses Z = Y and the right-hand side

is his cost if he chooses Z = 1. For that range of values of

p, one can show that Bob should not choose Z = 0. Thus,

the condition means that Bob should chooses Z = 1.

Similarly, the right-hand side of (2) is Bob’s expected cost

if he chooses Z = 0. That condition implies that Bob should

not choose Z = 0 and the first condition implies that he

should not choose Z = Y , so that he should choose Z = 1,

hence ignoring the received message Y .

Proof of theorem 1: To simplify notation, we let

C(0, 1) = A, C(1, 0) = B, P (i, j) = 1 − P (i, i) = pi,

and Q(i, j) = 1−Q(i, i) = qi for i 6= j ∈ {0, 1} (which are

the probabilities of flipping).

With these new notations, the expected cost can be written

as:

J(P,Q) = π(0) ((1 − pp0)q0 + (1 − q1)pp0) A

+π(1) ((1 − pp1)q1 + (1 − q0)pp1)B(3)

= q0(π(0)A − T ) + q1(π(1)B − T )

+q0π(0)A + q1π(1)B + T (4)

where identity (4) is obtained by rearranging the terms in the

RHS of 3 and T is defined as T = p [π(0)p0A + π(1)p1B].
Minimizing the expression (4) over Q, we see that Bob’s

best response to any strategy P is to choose (q0, q1) such

that q0 = q1 = 0 if T < π(0)A, q0 = 1 − q1 = 1 if

π(0)A < T < π(1)B, and q0 = q1 = 1 if T > π(1)B.

If Q is such that T = π(0)A (resp. T = π(1)B), Bob is

indifferent and can choose any 0 ≤ q0 ≤ 1 (resp. 0 ≤ q1 ≤
1).

The corresponding costs are T , π(0)A, and π(0)A+π(1)B−
T respectively for T < π(0)A, π(0)A < T < π(1)B, and

T > π(1)B.

Thus, we find that

min
Q

J(P,Q) =






T, if T < π(0)A
π(0)A, if π(0)A ≤ T ≤ π(1)B
π(0)A + π(1)B − T, if T > π(1)B.

Trudy’s best strategy is obtained by maximizing

minQ J(P,Q) with respect to P .

For that, we let p vary, and examine how the best responses

are changing.

• If 0 ≤ p < r1, then for all values of (p0, p1), T <

π(0)A. Trudy’s best strategy is obtained by maximizing

the corresponding cost T . The optimal value is achieved

at p0 = p1 = 1, so that Y = 1 − X .

• If r1 ≤ p ≤ r2 then either T ≤ π(0)A or π(0)A <

T ≤ π(1)B. If (p0, p1) is such that T ≤ π(0)A,

then the corresponding cost is T ≤ π(0)A. If, on the
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other hand π(0)A < T ≤ π(1)B, then the cost of

π(0)A. This second strategy dominates the first, thus,

the best strategy for Trudy is to choose (p0, p1) such

that π(0)A < T ≤ π(1)B. Consequently, any P ∈ P1

and Z = 1 is a Nash equilibrium.

• If r2 < p ≤ 1, then, depending on the choice of (p0, p1),
one can have T ≤ π(0)A, π(0)A < T ≤ π(1)B, or

π(1)B < T . A similar reasoning as in the previous case

leads to q0 = 1 − q1 = 1 for Bob, so that Z = 1,

and (p0, p1) chosen such that π(0)A ≤ T ≤ π(1)B.

Thus, in this case, any P ∈ P2 and Z = 1 is a Nash

equilibrium.

Notice that at the boundary T = π(0)A, Bob can choose

any value for q0, but q1 = 0. Similarly, when T =
π(0)A, Bob can choose any value for q1, but q0 = 1.

All these choices yield to the same cost of π(0)A for

Bob.

C. Challenging the Message

Now let us consider the case where the receiver (Bob) has

the additional choice of challenging the received message by

paying a fixed cost of V and getting an acknowledgement

about the received message (see figure 3). We assume that

the intruder cannot corrupt the challenge communication. In

p

1-p

Alice

Trudy

Bob
X Y Z

Pay: V

Fig. 3. The Intruder Game with Challenge.

the case of a phishing email that pretends to come from a

bank, this challenge corresponds to the recipient of the email

making the additional effort of taking the phone and calling

the bank to verify the authenticity of the email. In general, the

challenge can be thought of as Bob being able to use a secure

side channel to ask to the source (Alice) to acknowledge the

message.

As in the previous sections, we model the problem as a

Bayesian game and study the set of Nash equilibria. We

consider the same setting as in the previous section with the

following additional features:

1) Whenever Bob receives a message, he decides whether

to challenge it or not. Challenging requires the payment

of a fixed cost of V . Let α(y) be probability that Bob

challenges a message Y = y, for y = 0, 1.

2) If he decides not to challenge the message, then Bob is

back to the decision problem considered in the previous

section: should he trust the message or not? In that

case, we model his strategy with the matrix Q.

3) If the challenged message turns out to be corrupted,

then the intruder (Trudy) is punished by having to pay

a fine V ∗.

4) If Bob challenges a received message and finds out that

it was correct (i.e. was not changed), then he looses the

challenge cost of V .

5) As before the strategies for Trudy is to decide whether

to corrupt the message before relaying it. We model

her strategy with the matrix P , as before.

For this game, Bob pays C(X, Z)1{no challenge} +
V 1{X = Y and challenge}. Accordingly, the expected value

J(P,Q, α) of Bob’s cost is given by the following expres-

sion:

J(P,Q, α) =
∑

x,y,z

π(x)C(x, z)P (x, y)Q(x, z)(1 − α(y))

+ V
∑

x,y

π(x)P (x, y)α(y)1{x = y}.

Trudy’s objective is to maximize the expected value

of her reward C(X, Z)1{no challenge} − V 1{X 6=
Y and challenge}. This expected reward K(P,Q, α) is as

follows:

K(P, Q, α) =
∑

x,y,z

π(x)C(x, z)P (x, y)Q(x, z)(1 − α(y))

− V
∑

x,y

π(x)P (x, y)α(y)1{x 6= y}.

To analyze the Nash equilibria, we assume, as before, that

π(0)C(0, 1) ≤ π(1)C(1, 0). Furthermore, in this paper we

assume that A = C(0, 1) < B = C(1, 0). These assumptions

have a slight effect in the result presented below. More

precisely, changing these assumptions will slightly change

the decision regions. However, the same approach can be

carried to compute the Nash equilibrium for the other cases.

A detailed analysis can be found in the online technical report

[7].

Theorem 2: Figure 4 shows the different decision regions

for the Nash equilibrium, and Table I shows the correspond-

ing strategies for Bob and Trudy.

In the table , β(0) = V (π(0)A−π(1)V )
π(1)(AB−V 2) , β(1) =

V (π(1)B−π(0)V )
π(0)(AB−V 2) and γ = (1−p)π(0)A

pπ(1)B .

Due to space limitation, the proof of the theorem is not

included in this paper. Interested readers are referred to [7].

The meaning of this result is as follows.

The region R0 corresponds to the case when V >

max(A,B) = B. In this case the challenge cost is too high,

and the receiver is better off to never use it. Instead, Bob will

optimally decode as if there were no challenge possibility.

This gives the same result as in section II-B.

Region R1 is the set of V that satisfies V > p
1−p

π(1)B
π(0) (or

(1 − p)π(0)V > pπ(1)B). Notice that such V also satisfies

∗Typically the punishment is larger than the challenge cost. We have
considered these costs to be equal for simplicity.
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p

V

1

B

A

Region: R0

Region: R1

Region: R2

Region: R3

Region: R4

Fig. 4. The Nash equilibria decision regions of the Intruder Game with
challenge.

Region Bob Trudy
R0 As in previous section

R1
α(0) = α(1) = 0 P = I

Z = Y

R2
α(0) = α(1) = 0 P ∈ P3

Z = 1

R3
α(0) = B/(V + B)

α(1) = 0 P (0, 1) = 1, P (1, 0) = γ
Z = Y

R4
α(0) = B/(V + B)
α(1) = A/(V + A) P (0, 1) = β(0), P (1, 0) = β(1)

Z = Y

TABLE I
NASH EQUILIBRIA STRATEGIES FOR THE INTRUDER GAME WITH

CHALLENGE.

V > p
1−p

π(0)A
π(1) (or (1− p)π(1)V > pπ(0)A) because of the

assumption π(0)A ≤ π(1)B.

The term (1 − p)π(0)V (resp. (1 − p)π(1)V ) is the cost of

challenging when a 0 (resp. 1) is sent and there is no intruder,

while the term pπ(1)B (resp. pπ(0)A) represents the average

cost of accepting a 1 while a 0 (resp. 1) was sent and the

intruder is present. The inequalities above tell that, for Bob,

in either case, the risk of challenging a message is higher

than the risk of accepting it. Thus Bob is better off ignoring

the challenge (α(0) = α(1) = 0) and to optimally decode

as if there were no challenge. Since in this region p ≤ r1,

the best decoding strategy is Z = Y (always accepting the

message as in the previous section.)

The average cost for Bob is equal to p(π(0)A + π(1)B) ≤
π(0)A.

R3 can be described as (1 − p)π(0)V < pπ(1)B and

π(1)V > pπ(0)A. In this region, the risk of challenging a

0 ((1 − p)π(0)V ) if Trudy is not present, is less than the

cost of wrongly accepting a 1 (pπ(1)B) if she is present and

happens to flip the bit. Thus, Bob is better off challenging a

received Y = 0. However, since the intruder is present only

a fraction of time, challenge should also occur a fraction

of time (α(0) = B
B+V

). When Bob does not challenge a

received Y = 0, he will trust it (Z = Y ).

With the assumption π(0)A ≤ π(1)B, the cost (risk) of

accepting a 1 is always less than the cost of not accepting it.

And, since the challenge cost is relatively high compared to

pπ(0)A, Bob is better off to never challenge 1 and to always

accept it (α(1) = 0 and Z = Y when Y = 1).

The corresponding best strategy for the intruder is to always

flip a 0, and to flip a 1 only a fraction of time γ.

The average cost for the receiver is π(0)(pA + (1− p)V ) <

π(0)A.

In region R4 the challenge risk is small enough for Bob

to challenge both messages. As a consequence, Trudy will

flip only a fraction of time (β(0), β(1)).
Interestingly, in this region, the average cost for Bob is
AB−(π(0)A+π(1)B)

AB−V 2 V < V while the average reward for

Truder is equal to zero; i.e the intruder has no incentive to

attack. Thus, by using the challenge (as a credible threat),

Bob can deter Trudy from attacking the communication.

In R2 the optimal strategy for the receiver is again

to ignore the challenge and optimally decode like

in the previous section. However, the intruder has

less degrees of freedom compared to the previous

section: the optimal strategy set is now P3 the segment

π(0)A = p(P (0, 1)π(0)A + P (1, 0)π(1)B).

Compared to the previous section, we have seen that

the challenge gives to the receiver the possibility to always

trust the channel (Y = Z) when V ≤ min{C(0, 1), C(1, 0)}
without having to pay the worst case cost of π(0)A.

Furthermore, with relatively cheap challenge, the receiver

can deter the intruder from attacking. This tells that with

a simple challenge-response scheme, one can implement a

perfect† communication over an insecure channel.

III. THE INTELLIGENT WORM PROBLEM

In this problem, we are interested in the detection of

a computer worm. We consider a worm that infiltrates a

computer at a random time. When the worm gets inside the

computer, it propagates by replicating itself, thus generating

additional traffic with rate β. An intrusion detection system

(IDS) is trying to detect the presence of the worm by

analyzing the traffic.

Specifically, the IDS buffers and counts the volume Xn

of traffic in the interval [(n − 1)T, nT ] for n = 1, 2, 3, . . . ,

where T is a design parameter. The IDS decides that the

computer is infected the first time that Xn > x and it then

flushes the buffer to prevent the virus from infecting other

systems. If the IDS finds that Xn < x, it transmits the Xn

buffered bits of traffic. We are interested in the equilibrium

of the game where the worm designer chooses β to maximize

the infection cost that the worm causes and the IDS chooses

the threshold x to minimize the inspection and infection

costs. Such detection systems are being implemented under

†This requires the channel used for the challenge to be secure itself. Also,
the meaning given to perfect is that the attacker does not have an incentive
to attack.
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(a) Worm Propagation model
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(b) Markov Chain model for the analysis

Fig. 5. Worm propagation model and the the Markov chain model.
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Fig. 6. Cost of security as a function of the virus propagation rate

the name of Intrusion Prevention System (IPS). In practice,

an IPS requires inserting a short delay into the system, say

40ms, which not all network designers might like.

A related paper is [8]. However their model is substantially

different since the virus propagation rate is known and the

computer is either infected at time 0 or never infected.

Moreover, in that paper, the IDS lets the traffic through even

when its volume exceeds the detection threshold. For such

a system, it is not difficult to show that the infection cost

increases with β so that the optimal strategy for the attacker

is to choose the most aggressive virus.

We consider a SIS (Susceptible-Infected-Susceptible) virus

spreading model ([9],[4]). In such model, a computer is first

susceptible once a new virus appears. Then, eventually, the

machine will get infected, and after cleaning it becomes

again susceptible. A discrete version of such model is shown

is figure 5(b). SIS models have been widely used in viral

epidemiology [10], and computer virus propagation [4]. Al-

though it is not always realistic (a more realistic model would

be Susceptible-Infected-Recovered SIR), SIS models offer a

nice analytical framework. Interested readers are referred to

[9].

We evaluate the infection and the inspection costs of the

model using a discrete time Markov chain model with time

step T of the security system. The states are 0 and 1 where 0

means that the computer is not infected and 1 that it is. Let

p0 = P [Xn > x| No Virus] designate the probability that

the IDS declares that the computer is infected when it is not

(false alarm) and p1 = Pr[Xn > x| Virus] the probability

that the IDS declares that the computer is infected when it

actually is (correct detection). Finally, let µ be the probability

that the computer gets infected in one time step.

Figure 5(b) shows a diagram of the Markov chain.

The transition probabilities of the Markov chain are then

P (0, 1) = µ and P (1, 0) = p1. Also, when the system is in

state 0, it generates a false alarm with probability p0 and this

false alarm has a unit cost. When the system is in state 1, it

generates an average number of viruses equal to β(1−p1) and

we assume that each released virus has an average cost equal

to γ. Thus, γ measures the likelihood that a released virus

is successful in infecting another computer. (More complex

models are certainly plausible.)

With this model, the average cost per unit of time is

C = p0π0 + γβ(1 − p1)π1

where π0 (resp. π1) is the stationary probability that the
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6µ γ β x
0.01 0.02 150 980
0.01 0.05 220 900
0.01 0.10 250 750
0.10 0.02 250 580
0.10 0.05 150 310
0.10 0.10 90 180

TABLE II
NASH EQUILIBRIUM (β, x) AS A FUNCTION OF THE PARAMETERS (µ, γ).

system is in state 0 (resp,. 1).

The stationary distribution can be computed by solving the

equations:

µπ0 = p1π1, and π0 + π1 = 1

Consequently,

C =
p0p1 + β(1 − p1)µ

p1 + µ
.

We analyze this model by assuming that Xn is uniform

in [0, α] when the computer is not infected and uniform in

[β, α + β] when the computer is infected (i.e., the virus is

introducing additional traffic of constant rate β).

We find that there is a unique Nash equilibrium (β, x) [7].

This Nash equilibrium depends on the values of µ, α, and γ.

Table II shows some representative values when α = 1000.

Next, we analyze how the infection cost depends on the

strategy of the virus. For comparison purposes, we first plot

in 6(a), the average cost of the IDS in [8] as a function of

the propagation rate of the worm. We omit the details of the

analysis and refer the reader to the paper.

As can be seen in the figure, the infection cost in an increas-

ing function of the virus’s propagation rate. This tells that the

more aggressive a worm is, the more damage it will cause to

the system the extreme case being a virus that can user the

whole channel. Of course, there are some natural limitations

to the rate at which a worm can propagate (finite channel

bandwidth but more fundamental is the random scanning

that worms use). Worms cannot get around limitations due

to finite channel bandwidth, however, other limitations (such

as random scanning) can be overcome by very sophisticated

viruses.

The infection cost, in the model described in this paper,

is shown in figure 6(b). As can be seen, with this model,

aggressive worms will cause less damage. Actually, they

will be detected at the IDS level and will not make it

through the system. We do not observe this with traditional

IDS because they essentially have an observation window,

which delays the detection time. It is during this observation

window when aggressive viruses can cause large damage

by sending at arbitrary rate. Our model overcomes this by

delaying the communication of (eventually) normal users.

This is certainly a limitation of the model. However, using

this model, one can guarantee a certain level of security

independently to how aggressive the attackers are. By setting

the threshold x equal to the Nash Equilibrium value xNE ,

the infection cost Cost(β, xNE) is always less than the NE

cost Cost(βNE , xNE).

IV. CONCLUSION AND FUTURE WORK

In this paper we analyze two game-theoretic models of

network security. In the first model, an intruder may be

present and able to corrupt the messages that the network

transports. We analyze the Nash equilibria for the intruder

and the user of the messages. We show that if the user has

the possibility of testing the messages for validity at a small

cost and punish an intruder when detected by recovering this

cost, this threat reduces the likelihood of attacks enough to

make the network trustworthy.

In the second model, we analyze the design of a virus

aggressiveness level and of an intrusion detection system.

We find that by buffering traffic before letting it propagate

and potentially infect other computers, the system forces the

virus designer to limit the virus aggressiveness, thus reducing

the infection cost.

In future work, we plan to analyze the benefits of

collaborative virus detection and more sophisticated network

protection schemes.
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