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Abstract— In this paper, we study the value functions asso-
ciated with the discrete-time LQR problem for switched linear
systems (DLQRS). Some important properties of the value
functions and value iterations are derived. In particular, we will
show that under some mild conditions, the family of the finite-
horizon value functions of the DLQRS problem is homogeneous
(of degree 2), uniformly bounded over the unit ball, and con-
verges exponentially fast to the corresponding infinite-horizon
value function. More importantly, the exponential convergence
rate of the value iteration is characterized analytically in terms
of the subsystem matrices. The properties derived in this paper
are not only of theoretical importance, but also crucial in the
analysis and design of various optimal and suboptimal control
strategies for DLQRS problems.

I. INTRODUCTION

Switched systems arise naturally in many engineering

fields, such as power electronics [1], [2], embedded sys-

tems [3], [4], manufacturing [5], and communication net-

works [6], etc. Incorporating the switching behavior in the

model and controller structures offers much greater free-

dom and infinitely more possibilities for capturing complex

system dynamics, achieving stabilization and improving the

overall performance of the feedback systems. On the other

hand, the generality of switched systems has also posed many

challenges in their formal analysis and design [7]. This paper

studies one of these challenges, namely, the optimal control

of switched systems.

Compared with the traditional optimal control problems, a

distinctive feature of the optimal control of switched systems

is its freedom in selecting the mode sequence and switching

instants. For a fixed mode sequence, variational approach can

usually be applied to derive certain gradient based algorithms

for optimizing the corresponding switching instants [8], [9].

However, to further find the best mode sequence becomes

a discrete optimization problem and is believed to be NP

hard in general. Recent research attention ([10], [11], [12])

has been focused on the optimal control of discrete-time

switched linear systems with quadratic cost functions, which

contains many interesting properties of the general optimal

control problems of switched systems, but at the same time

allows efficient ways for optimizing the mode sequences.

Such problems can be viewed as an extension of the classical

discrete-time LQR problems to the context of the switched

linear systems, and are thus referred to as the DLQRS
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problems. It has been proved in our previous paper [13] that

the finite-horizon value function associated with the DLQRS

problems can be written as a pointwise minimum of a finite

set of quadratic functions. This simple structure of the value

function has also inspired an efficient numerical algorithm

for solving the finite-horizon DLQRS problems. Although

the algorithm scales very well with respect to the control

horizon N , its complexity may still grow out of hand when N
is extremely large or infinite. To extend our algorithm to the

cases with large or infinite horizons, a deeper understanding

on the sequence of the value functions, generated by the

Bellman iteration of the DLQRS problem, is necessary.

The main contribution of this paper is the derivation of

various interesting and important properties of the value

functions of the DLQRS problems. In particular, it is proved

that under some mild conditions, the family of the finite-

horizon value functions of the DLQRS problem is homo-

geneous (of degree 2) and uniformly bounded over the

unit ball, and converges exponentially fast to the corre-

sponding infinite-horizon value function. More importantly,

the exponential convergence rate of the value iterations is

characterized analytically in terms of the subsystem matrices.

The convergence of the value iterations is of great importance

for developing suboptimal control strategies. If the cost

function is discounted by a constant factor strictly less than

1, the stationary policy generated by the converged value

function is suboptimal [14]. Even in the undiscounted case,

the optimal finite-horizon policy, with a sufficiently large

horizon, can be used repetitively to construct a suboptimal

infinite-horizon control strategy. The formal discussion of the

suboptimal controls will appear in the upcoming paper [15].

The properties derived in this paper provide the theoretical

foundation and preparations for the future studies of various

aspects of the large or infinite-horizon DLQRS problems.

This paper is organized as follows. The DLQRS problem

is formulated in Section II. The structure of its value func-

tions is briefly reviewed in Section III. Various important

properties of the value functions are derived in Section IV.

Some concluding remarks are given in Section V.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system defined

as:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t = 0, . . . , N − 1, (1)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThC08.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 5342



where x(t) ∈ R
n is the continuous state, v(t) ∈ M ,

{1, . . . ,M} is the discrete control or switching signal, and

u(t) ∈ R
p is the continuous control. The combination of

the two types of controls, (u(·), v(·)), will be referred to

as the hybrid control sequence. For each i ∈ M, Ai and

Bi are constant matrices of appropriate dimension, and the

pair (Ai, Bi) is called a subsystem of (1). This switched

linear system is time invariant in the sense that the set of

available subsystems {(Ai, Bi)}
M
i=1 is independent of time t.

We assume that there is no internal forced switchings, i.e., the

system can stay at or switch to any mode at any time instant.

A state feedback control strategy of system (1) at time t is a

mapping from R
n to R

p × M and is denoted by ξt(x) ,

(µt(x), νt(x)). A sequence of feedback control strategies

over the whole time horizon [0, N ] constitutes a feedback

policy: πN , {ξ0, ξ1, . . . , ξN−1}. If the system is driven by

a feedback policy πN , then its hybrid control sequence will

be given by u(t) = µt(x(t)) and v(t) = νt(x(t)).

In this paper, the terminal cost function ψ(x) and the

running cost function L(x, u, v) are assumed to be in the

following quadratic forms:

ψ(x) = xTQfx, L(x, u, v) = xTQvx+ uTRvu,

where Qf = QT
f � 0 is the terminal state weight, and Qv =

QT
v � 0 and Rv = RT

v ≻ 0 are the running weights for

the state and the control for subsystem v ∈ M, respectively.

Starting from x(0) = z, the overall objective function to be

minimized over the time horizon [0, N ] is defined as

JN (z, u, v) = ψ(x(N)) +

N−1
∑

j=0

L(x(j), u(j), v(j))). (2)

When the control horizon is infinite, the final cost will never

be incurred. Thus, the infinite-horizon objective function

under the hybrid control sequence (u, v) is defined as:

J∞(z, u, v) =
∞
∑

j=0

L(x(j), u(j), v(j)).

For a fixed switching sequence v(·) = {v(0), v(1), . . .},

system (1) becomes a linear time-varying system whose state

transition matrix from time i to time j ≥ i is given by:

φi,j(v) =







i−1
∏

k=j

Av(k), i ≥ j + 1,

In×n, i = j,

where In×n denotes the identity matrix of dimension n.

With this definition, the zero-input response with initial state

x(0) = z and switching signal v(·) is simply xzi(t; v) =
φt,0(v)z, t ≥ 0. Similarly, for a given hybrid control

sequence (u(·), v(·)) the zero-state response can be written

as

xzs(t;u, v) =

t−1
∑

k=0

φt,k(v)Bv(k)uk, t ≥ 1. (3)

With these notations, J∞ can be written as:

J∞(z, u, v) = zT





∞
∑

j=0

φj,0(v)
TQv(j)φj,0(v)



 z

+

∞
∑

j=1

xzs(j;u, v)
TQv(j)xzs(j;u, v)

+



2

∞
∑

j=1

xzs(j;u, v)
TQv(j)φj,0(v)



 z

+

∞
∑

j=0

u(j)TRv(j)u(j).

(4)

The discrete-time LQR problem for the switched linear

system (1), referred to as DLQRS problem hereby, can be

formulated as follows:

Problem 1 (DLQRS problem): For an arbitrary initial

state z and a time horizon [0, N ], with the possibility of

N being infinite, find the hybrid control sequence (u, v) that

minimizes JN (z, u, v) subject to the dynamic equation (1).

III. REVIEW OF EXISTING RESULTS

A common way of solving Problem 1 is the dynamic

programming approach. When N is finite, the value function

Vt,N : R
n → R is defined as:

Vt,N (z)= min
v(j),u(j),
t≤j≤N−1

{

ψ(x(N))+

N−1
∑

j=t

L(x(j), u(j), v(j))
∣

∣

∣

subject to eq. (1) with x(t) = z
}

, (5)

for each time t ∈ {0, 1, . . . , N}. The function Vt,N (z) thus

defined is the minimum cost-to-go starting from state z at

time t. The minimum cost of the DLQRS problem is simply

V0,N (z). Due to the time-invariant nature of the switched

system (1), its value function depends only on the number

of remaining time steps. In the rest of this paper, when no

ambiguity arises, we will denote by Vk(z) the value function

at time t = N − k when there are k time steps left, i.e.,

Vk(z) , VN−k,N (z). To emphasize its substantial difference

from the finite-horizon value function, the infinite-horizon

value function is specially denoted by V ∗(z), i.e.,

V ∗(z) = inf
u,v

J∞(z, u, v). (6)

It turns out that the value function of the DLQRS problem

has a strong connection with the Riccati equation and the

Kalman gain arising in the classical LQR problem of linear

systems. Denote by A the set of all positive semi-definite

(p.s.d.) matrices. For any matrix P ∈ A, define the Riccati

mapping ρi : A → A associated with subsystem (Ai, Bi),
i ∈ M as:

ρi(P )=Qi+A
T
i PAi−A

T
i PBi(Ri+B

T
i PBi)

−1BT
i PAi.

(7)
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Let H0 = {Qf} be an initial set consisting of only the

matrix Qf . Define the set Hk for k ≥ 0 iteratively as

Hk+1 = ρM(Hk) , {ρi(Pk) : i ∈ M and Pk ∈ Hk}. (8)

In other words, the matrices in Hk+1 are the images of

the matrices in Hk under the Riccati mappings of the M
subsystems. Denote by |Hk| the number of distinct matrices

in Hk. Then it can be easily seen that |H0| = 1 and

|Hk| ≤ Mk for any k ≥ 0. It has been proved in [13] that

the finite-horizon value function of the DLQRS problem is

a pointwise minimum of a finite set of quadratic functions

as described in the following theorem.

Theorem 1 ( [13]): When N is finite, the value function

for the DLQRS problem at time N − k, i.e., with k time

steps left, is

Vk(z) = min
P∈Hk

zTPz. (9)

Furthermore, for k ≥ 0, if we define

(P ∗
k (z), i∗k(z)) = arg min

(P∈Hk,i∈M)

zT ρi(P )z, (10)

then the optimal feedback strategy at state z and time t =
N − (k + 1) is ξ∗t (z) = (µ∗

t (z), ν
∗
t (z)), where µ∗

t (z) =
−Ki∗

k
(z)(P

∗
k (z))z and ν∗t (z) = i∗k(z). Here, Ki(P ) is the

Kalman gain for subsystem i with matrix P , i.e.,

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi. (11)

.

Remark 1: The special structure of Vk(z) is crucial in

solving the finite-horizon DLQRS problems. Although in

the worst case, |Hk| grows exponentially fast, in terms of

computing the value function (9), only a small portion of the

matrices in Hk, which give rise to the minimum of (9) for at

least one z ∈ R
n, should be kept. Thus, if we remove all the

other redundant matrices after each iteration of (8), we can

obtain a new sequence of reduced sets {Ĥk}, which can be

dramatically smaller than {Hk} but defines exactly the same

value functions {Vk(z)}. In this way, the optimal control

strategy can be efficiently computed using the reduced sets

{Ĥk}. Refer to [13] for more details about the efficient

solutions of the finite-horizon DLQRS problems.

Unlike the finite-horizon case, the explicit form of the

infinite-horizon value function V ∗(z) can not be easily

obtained. Nevertheless, as will be discussed in the next

section, many important properties of V ∗(z) can be still

inferred based on its definition (6) and (4).

IV. PROPERTIES OF THE VALUE FUNCTIONS

In this section, we will derive various important properties

of the infinite-horizon value function V ∗(z) and the family

of the finite-horizon value functions {Vk(z)}k≥0. These

properties are not only of theoretical importance, but also

crucial in developing suboptimal control strategies for large

or infinite horizon DLQRS problems.

A. Homogeneity

Lemma 1 (Homogeneity): Vk(z) and V ∗(z) are homoge-

neous in the sense that Vk(λz) = λ2Vk(z) and V ∗(λz) =
λ2V ∗(z), for any z ∈ R

n and λ ∈ R.

Proof: The homogeneity of Vk follows directly

from (9). To prove the homogeneity of V ∗(z), let λ be

an arbirary real number. By the definition of zero-state

response in (3), we have xzs(t;λu, v) = λxzs(t;u, v).
Then it follows easily from (4) that J∞(λz, λu, v) =
λ2J∞(z, u, v) (the equality still holds if one side is infinite).

Let z be an arbitrary point in R
n. If V ∗(z) = ∞, then

V ∗(λz) must also be infinite. The desired equality holds. If

V ∗(z) < ∞, then for any ǫ ∈ R, there exists a control

sequence (uz, vz) such that J∞(z, uz, vz) ≤ V ∗(z) + ǫ.
Thus V ∗(λz) ≤ J∞(λz, λuz, vz) = λ2J∞(z, uz, vz) ≤
λ2V ∗(z) + λ2ǫ. Since ǫ can be arbitrarily small, we must

have V ∗(λz) ≤ λ2V ∗(z). Let δ = λ2V ∗(z) − V ∗(λz).
If δ > 0, then there exists a control strategy (ûz, v̂z)
such that J∞(λz, λûz, v̂z) ≤ V ∗(λz) + δ/2 < λ2V ∗(z).
Hence, J∞(z, ûz, v̂z) = 1

λ2 J∞(λz, λûz, v̂z) < V ∗(z), which

contradicts the optimality of V ∗(z). Thus δ = 0 and the

desired result is proved.

The properties of the value functions presented in the

rest of this section are based on the following stabilizability

condition of the switched system (1).

(A1) At least one subsystem is stabilizable.

B. Boundedness

Proposition 1: Denote by ‖ · ‖ the 2-norm of a given

matrix or vector. Under assumption (A1), there must exist

a finite constant β such that Vk(z) ≤ β‖z‖2, for all k ∈ Z
+

and z ∈ R
n. Furthermore, if the stabilizable subsystem

is (Ai, Bi) and F is any feedback gain for which Āi ,

Ai − BiF is stable, then one possible choice of β is given

by:

β = n‖Qf‖ + ‖Qi + FTRiF‖ ·





∞
∑

j=0

‖Āj
i‖

2



 , (12)

Proof: Suppose subsystem (Ai, Bi) is stabilizable. Let

{P
(i)
k }∞k=0 be the sequence of matrices generated by the Ric-

cati mapping using only subsystem i, i.e., P
(i)
k+1 = ρi(P

(i)
k )

with P
(i)
0 = Qf . Since the switched system (1) can stay in

subsystem (Ai, Bi) all the time, its value function must be

no greater than the value function of the LQR problem with

only one subsystem (Ai, Bi), i.e., Vk(z) ≤ zTP
(i)
k z for all

k ∈ Z
+ and z ∈ R

n. Thus, it suffices to show that the β
given in (12) is an upper bound of the 2-norm of all the

matrices in {P
(i)
k }∞k=0. Let F be a feedback gain for which

Āi , (Ai −BiF ) is stable. Define {P̃
(i)
k }∞k iteratively by

P̃
(i)
k+1 =Qi+Ā

T
i P̃

(i)
k Āi+F

TRiF, with P̃
(i)
0 =Qf . (13)

In the above equation, if we let F = Ki(P̃
(i)
k ) for each

k, then P̃
(i)
k will coincide with P

(i)
k . In other words, P̃

(i)
k

defines the quadratic energy cost of using the stable feedback

gain F instead of the time-dependent optimal Kalman gain
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in the k-horizon LQR problem. By a standard result of the

Riccati equation theory (Theorem 2.1 in [16]), we have

P
(i)
k � P̃

(i)
k for all k ≥ 0. Thus, it suffices to show

‖P̃
(i)
k ‖2 ≤ β for each k ≥ 0. By (13), we have

P̃
(i)
k = P

(i)
0 +

k
∑

j=1

(P
(i)
j − P

(i)
j−1)

=P
(i)
0 +

k−1
∑

j=0

(ĀT
i )j(P

(i)
1 − P

(i)
0 )(Āi)

j

=Qf +

k−1
∑

j=0

(ĀT
i )j+1Qf (Āi)

j+1

+

k−1
∑

j=0

(ĀT
i )j(Qi −Qf + FTRiF )(Āi)

j

�(ĀT
i )kQf (Āi)

k

+
∞
∑

j=1

(ĀT
i )j(Qi + FTRiF )(Āi)

j

Thus, ‖P
(i)
k ‖ ≤ n‖Qf‖ + ‖Qi + FTRiF‖

(

∑∞

j=0 ‖Ā
j
i‖

2
)

.

Note that the geometric series formula does not apply here,

as the 2-norm of a stable matrix may not be strictly less

than 1 in general. However, by a well known fact that

limj→∞ ‖Āj‖1/j = ρ(Ā) < 1, where ρ(·) denotes the

spectrum radius of a given matrix, we know that ‖Āj
i‖ < 1

for all large j. Therefore, the sum of the series does converge

and the proposition is proved.

C. Exponential Convergence

The convergence of the value iteration cannot be guaran-

teed by only the assumption (A1). The following condition

is required.

(A2) Qi ≻ 0 for each i ∈ M.

The rest of this subsection is devoted to proving that under

assumptions (A1) and (A2), the finite-horizon value functions

Vk(z) converges to V ∗(z) exponentially fast. The result will

be proved through a series of lemmas. We first introduce

some notations used throughout the subsequent discussions.

Denote by σmin(·) and σmax(·), respectively, the smallest

and the largest singular values of a given matrix. Define

σ−
Q = mini∈M{σmin(Qi)} and σ+

A = maxi∈M{σmax(Ai)}.

For 0 ≤ j ≤ k, denote by x∗z,k(j) the optimal trajectory

originating from z at time t = N − k. Here, j denotes the

relative time during the remaining horizon [N − k,N ], i.e.,

t = j +N − k. Let (u∗z,k(j), v∗z,k(j)) be the corresponding

hybrid control sequence.

Lemma 2: Let k1 and k2 be positive integers such that

k1 > k2. For any z ∈ R
n, the following inequality holds:

Vk1−k2
(x∗z,k1

(k2)) − ψ(x∗z,k1
(k2))

≤Vk1
(z) − Vk2

(z)

≤Vk1−k2
(x∗z,k2

(k2)) − ψ(x∗z,k2
(k2)) (14)

Proof: Denote by z1 the final state value of the optimal

trajectory originating from z at time N − k2, i.e., z1 =
x∗z,k2

(k2). Define

x̃(j) =

{

x∗z,k2
(j), j ≤ k2

x∗z1,k1−k2
(j − k2), k2 < j ≤ k1

(15)

As shown in Fig. 1, x̃(·) is obtained by concatenating

trajectory x∗z1,k1−k2
(·) to the end of x∗z,k2

(·). Let ũ(·) and

ṽ(·) be the controls corresponds to x̃. Then by the definition

of the value function, we have

Vk1
(z) ≤

k1−1
∑

j=1

L(x̃(j), ũ(j), ṽ(j)) + ψ(x̃(k1))

=

k2−1
∑

j=0

L(x∗z,k2
(j), u∗z,k2

(j), v∗z,k2
(j))

+

k1−k2−1
∑

j=0

L(x∗z1,k1−k2
(j), u∗z1,k1−k2

(j), v∗z1,k1−k2
(j))

+ ψ(x∗z1,k1−k2
(k1 − k2))

=Vk2
(z) − ψ(x∗z,k2

(k2)) + Vk1−k2
(z1)

=Vk2
(z) − ψ(x∗z,k2

(k2)) + Vk1−k2
(x∗z,k2

(k2)) (16)

Equation (16) describes exactly the second inequality in (14).

To prove the first inequality in (14), define x̂(t) = x∗z,k1
(j)

for 0 ≤ j ≤ k2 and let (û(·), v̂(·)) be the corresponding

hybrid control sequence. Since x̂(·) can be viewed as a

system trajectory originating from z at time N − k2, we

have

Vk2
(z) ≤

k2−1
∑

j=0

L(x̂(j), û(j), v̂(j)) + ψ(x̂(k2))

=

k2−1
∑

j=0

L(x∗z,k1
(j), u∗z,k1

(j), v∗z,k1
(j)) + ψ(x∗z,k1

(k2))

= Vk1
(z) − Vk1−k2

(x∗z,k1
(k2)) + ψ(x∗z,k1

(k2)),
(17)

where the last step follows from the Bellman’s principle

of optimality, namely, any segment of an optimal trajectory

must be the optimal trajectory joining the two end points of

the segment. The desired result follows from (16) and (17).

For the switched linear system considered in this paper,

the k-horizon value function Vk(z) may not be monotone

with respect to k. Nevertheless, by Lemma 2, the differ-

ence between two value functions Vk1
(z) and Vk2

(z) can

be bounded by some quadratic functions of x∗z,k1
(k2) and

x∗z,k2
(k2). In the next lemma, we will prove that x∗z,k(j) → 0

as k ≥ j → ∞. This will guarantee that by choosing large

k1 and k2, the upper and lower bounds in (14) can be made

arbitrarily small. The convergence of the value iteration can

thus be easily proved.

Lemma 3: Under assumptions (A1) and (A2), for any

j = 0, 1, . . . , k − 1, the optimal trajectory originating from
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−

= −
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2
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x ⋅
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*
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−
⋅

1

*

, ( )z k
x ⋅ 1

*

, ( )z k
x ⋅

2

*

, ( )z k
x ⋅

Fig. 1. Illustrating the proof of Lemma 2

z at time N − k, namely, x∗z,k(·), satisfies the following

inequalities:

‖x∗z,k(j)‖2
2 ≤

β

σ−
Q

γj‖z‖2
2,

‖x∗z,k(k)‖2
2 ≤

β(σ+
A)2

σ−
Q

γk−1‖z‖2
2

with γ =

(

1

1 + σ−
Q/β

)

.

(18)

where β is the finite positive real number introduced in

Proposition 1

Proof: For simplicity, for j = 0, 1, · · · , k, define

x̃(j) , x∗z,k(j) and Ṽk−j , Vk−j(x
∗
z,k(j)). Denote by ũ(·)

and ṽ(·) the optimal controls corresponding to x∗z,k(·). For

j = 1, . . . , k, we have

Ṽk−(j−1) − Ṽk−j

=L(x̃(j − 1), ũ(j − 1), ṽ(j − 1))

≥x̃(j − 1)TQṽ(j−1)x̃(j − 1)

≥σ−
Q‖x̃(j − 1)‖2

2

≥σ−
Q/βṼk−(j−1)

≥σ−
Q/βṼk−j . (19)

By (19), we have Ṽk−j ≤ 1
1+σ−

Q
/β
Ṽk−(j−1) for j = 1, · · · , k.

Hence, Ṽk−j ≤

(

1
1+σ−

Q
/β

)j

Ṽk. Obviously, for j ≤ k − 1,

Ṽk−j ≥ σ−
Q‖x̃(j)‖2

2. Thus,

‖x̃(j)‖2 ≤
1

σ−
Q

Ṽ1 ≤
1

σ−
Q

(

1

1 + σ−
Q/β

)j

Ṽk (20)

≤
β

σ−
Q

(

1

1 + σ−
Q/β

)j

‖z‖2
2 (21)

=
β

σ−
Q

γj‖z‖2
2. (22)

For j = k, by Theorem 1, we have that x̃(k) = (Ai −
BiKi(P )) · x̃(k−1) for some i ∈ M and P ∈ H∗. It follows

from (11) that

BiKi(P ) = Bi(Ri +BT
i PBi)

−1BT
i PAi

� Bi(B
T
i PBi)

−1BT
i PAi = Ai.

Thus,

‖x(k)‖2
2 = ‖(Ai −BiKi(P )) · x̃(k − 1)‖2

2

≤ ‖Ai‖
2
2 · ‖x̃(k − 1)‖2

2 = (σ+
A)2 · ‖x̃(k − 1)‖2

2

≤
(σ+

A)2β

σ−
Q

γk−1‖z‖2
2.

Now we are ready to prove the main result of this

subsection.

Theorem 2: Under assumptions (A1) and (A2), Vk(z)
converges exponentially fast to V∞(z) for each z ∈ R

n as

k → ∞. Furthermore, the convergence is uniform over the

unit ball in R
n and the difference between the value functions

at time step N − k1 and N − k2 is bounded above by

|Vk1
(z) − Vk2

(z)| ≤ αγk2‖z‖2, (23)

where α = max{1,
(σ+

A
)2

γ } ·
(β+λ+

f
)β

σ−
Q

.

Proof: By Lemma 3, for any z ∈ R
n and k1 > k2, we

have ‖x∗z,k2
(k2)‖

2 ≤
(σ+

A
)2β

σ−
Q

γ
γk2‖z‖2 and ‖x∗z,k1

(k2)‖
2 ≤

β

σ−
Q

γk2‖z‖2. Hence,

Vk1−k2
(x∗z,k2

(k2)) ≤ β‖x∗z,k2
(k2)‖

2 ≤
(σ+

A)2β2

σ−
Qγ

γk2‖z‖2,

ψ(x∗z,k2
(k2))≤λ

+
f ‖x

∗
z,k2

(k2)‖
2≤

λ+
f (σ+

A)2β

σ−
Qγ

γk2‖z‖2,

Vk1−k2
(x∗z,k1

(k2)) ≤ β‖x∗z,k1
(k2)‖

2 ≤
β2

σ−
Q

γk2‖z‖2,

ψ(x∗z,k1
(k2)) ≤ λ+

f ‖x
∗
z,k1

(k2)‖
2 ≤

λ+
f β

σ−
Q

γk2‖z‖2.
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Thus, by Lemma 2, the difference between the value func-

tions at time N − k1 and N − k2 is bounded above by

|Vk1
(z) − Vk2

(z)| ≤ max{1,
(σ+

A)2

γ
} ·

(β + λ+
f )β

σ−
Q

γk2‖z‖2.

Since γ < 1 and the upper bound in the above equation is

independent of k1, the value function converges exponen-

tially fast for each fixed z. In addition, the convergence is

obviously uniform for all z in the unit ball.

Remark 2: Assumptions (A1) and (A2) together imply the

exponential convergence of the value iteration. It is well

known ([14]) that the limiting function V∞(z), even exists,

may not coincide with the infinite-horizon value function

V ∗(z). However, it can be proved that it is indeed the case

for the DLQRS problem under assumptions (A1) and (A2).

The proof is omitted here, but can be found in [15].

Remark 3: Some convergence results of general value

iterations can be found in [14], [10]. Compared with the

previous work, our convergence result derived specially for

the DLQRS problem has several distinctions. Firstly, it

allows nonzero terminal cost, which is especially important

for finite-horizon DLQRS problem. Secondly, its conditions

are expressed in terms of the system matrices rather than the

infinite-horizon value function, and thus become much easier

to verify. Finally, as indicated in Theorem 2, the convergence

rate can be approximated using the system matrices. Thus,

for a given tolerance on the optimal cost, an upper bound of

the required number of iterations can be computed before

the actual computation starts. This provides an efficient

means to stop the value iterations with guaranteed suboptimal

performance.

V. CONCLUSION

Some important properties of the value functions of the

DLQRS problems are derived in this paper. In particular,

we have proved that under some mild conditions, the family

of the value functions generated by the Bellman iteration is

homogeneous of degree 2 and is uniformly bounded over

the unit ball. More importantly, we have also proved that the

finite-horizon value functions converges exponentially fast to

the corresponding infinite-horizon value function under the

additional assumption that each state weighting matrix Qi is

positive definite. The convergence rate is also characterized

analytically in terms of the subsystem matrices. Future

research will focus on using these properties to develop

infinite-horizon control strategies for the DLQRS problems

with guaranteed suboptimal performance.
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