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Abstract— In this paper, we study an optimal control problem
arising in plasma transport which is governed by a singularly
perturbed system. Time-scale separation allows us to focus
on an uncoupled parabolic PDE with diffusivity–interior–
boundary actuation. We prove the existence of the optimal
control solution and carry out numerical experiments using
sequential quadratic programming (SQP).

I. INTRODUCTION

Plasma, typically an ionized gas with free electrons, is

considered to be a distinct state of matter because of its

unique properties. The free electrical charges, without attach-

ment to any atom, make the plasma electrically conductive

so that it responds strongly to electromagnetic fields. Plasma

transport studies the behaviors of physical variables such as

plasma density, temperature and current (which is related to

the magnetic flux), where multi–scale dynamics are common

phenomena (see, e.g., [1], [2]).

We consider a simplified plasma transport model with 1D

Eulerian geometry. The variations of the plasma temperature

T and magnetic flux ψ are governed by the following system

of coupled partial differential equations (t > 0 and 0 < x <

1) (see, e.g., Chapter VI and Chapter VII in [3]):

ε
∂T

∂t
=

∂

∂x

{

D (T, ψ)
∂T

∂x

}

+ Γ(T, ψ) + ST (x, t), (1)

∂ψ

∂t
=

∂

∂x

(

η(T )
∂ψ

∂x

)

+ f(x)v(t), (2)

where ε is a small scale constant. D(T, ψ) is the energy

transport coefficient, the nonlinear function Γ(T, ψ) repre-

sents Joule heating, and ST (x, t) represents any external

heating source, which can be used to shape the temperature

profile. The nonlinear function η(T ) is the magnetic diffusion

coefficient and is dependent on the temperature profile, f(x)
is the (positive) input function with respect to the interior

control v(t). In this simplified transport model (1)–(2), the

contributions due to electron–ion energy exchange, radiation

and excitation losses have been neglected.

The initial and boundary conditions for the transport model

(1)–(2) are specified by

T (x, 0) = T0(x), ψ(x, 0) = ψ0(x), x ∈ [0, 1],

∂T (0, t)

∂x
=
∂ψ(0, t)

∂x
= 0, T (1, t) = ς,

∂ψ(1, t)

∂x
= w(t),

This work was supported in part by a grant from the Commonwealth of
Pennsylvania, Department of Community and Economic Development,
through the Pennsylvania Infrastructure Technology Alliance (PITA),
and in part by the NSF CAREER award program (ECCS-0645086). C.
Xu (chx205@lehigh.edu), J. Dalessio and E. Schuster are with
the Department of Mechanical Engineering and Mechanics, Lehigh
University, 19 Memorial Drive West, Bethlehem, PA 18015, USA.

where T0 and ψ0 are known positive continuous functions

defined on [0, 1] which are compatible with the boundary

conditions, ς is a small known constant, and w(t) is a bound-

ary control of the system through the right–end Neumann

condition.

For some plasma transport processes in fusion tokamaks, it

is possible to assume that the temperature takes an spatial–

temporal separation form, i.e., η (x, t) = γ(x)u(t), where

γ(x) is a known spatial function which is identified from

experimental data, and u(t) is a continuous temporal function

which depends on the dynamics of the temperature. Dynamic

systems with two distinct time scales are referred to as

singularly perturbed systems [4]. This is the case for system

(1)-(2), where the scale parameter is very small, i.e., ε≪ 1.
Therefore, since the dynamics of the temperature is much

faster than that of the magnetic flux, we can consider the

function u(t) as a diffusivity control that could be used to

shape the magnetic flux profile.

Taking into account the multiple scales of the problem,

we can decouple the transport equations (1)–(2) using a

singular perturbation approach. Thus, we define a control

problem for a parabolic PDE (magnetic flux transport) with

diffusivity–interior–boundary actuation. In controlled fusion

experiments, it has been proved very important to achieve

specific magnetic flux profiles to enhance confinement and

steady-state operation. By using physical actuation mecha-

nisms such as external heating sources, non-inductive current

drives (neutral beams or radiofrequency waves), and total

plasma current, we can indeed achieve independent diffusiv-

ity, interior and boundary actuation. This is a novel control

problem arising in the field of plasma physics and controlled

fusion.

In this paper, we consider an optimal control problem for

the decoupled magnetic flux transport dynamics and study

the existence of its solution as well as its numerical compu-

tation. We organize this paper as follows. In Section II, we

present the mathematical model and formulate the optimal

control problem. In Section III, we give the functional setting

and necessary technical lemmas which are used for the

proofs in this paper. In Section IV, we study the solution

bound estimates which are used to show the existence of the

optimal control in Section V. In Section VI, we summarize

the foundation of PDE-based optimization and sequential

quadratic programming (SQP), which is a powerful method

to find the numerical solution for the optimal control problem

proposed in the paper. We carry out numerical experiments

and show the results in Section VII. We close the paper by

stating the conclusions and research issues in Section VIII.
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II. STATEMENT OF CONTROL PROBLEM

Taking into account the spatial–temporal separation form

η(x, t) = γ(x)u(t) and the singularity (ε → 0) of the

energy transport equation (1), we rewrite the PDE (2) over

the domain QT = {(x, t)|x ∈ Ω = [0, 1]; 0 ≤ t ≤ T } as






















∂ψ

∂t
=

∂

∂x

(

γ(x)u(t)
∂ψ

∂x

)

+ f(x)v(t),

∂ψ

∂x
(0, t) = 0,

∂ψ

∂x
(1, t) = w(t),

ψ(x, 0) = ψ0(x),

(3)

where ψ(x, t) is the state variable, and γ(x), f(x) are posi-

tive geometry parameters. The initial distribution of the state

is denoted by ψ0(x). The three control functions u(t), v(t)
and w(t) represent the diffusivity, interior and (Neumann)

boundary control, respectively, which satisfy the following

constraints:

U = {u(t)|0 < Lu ≤ u(t) ≤ Uu, u ∈ C1[0, T ]}, (4)

V = {v(t)|0 < Lv ≤ v(t) ≤ Uv, v ∈ C1[0, T ]}, (5)

W = {w(t)|0 < Lw ≤ w(t) ≤ Uw, w ∈ C1[0, T ]}, (6)

where L(·) and U(·) are physical lower and upper bounds,

respectively. The control goal can be stated as the following

optimization problem:

min
u∈U ,v∈V,w∈W

J(u, v, w)

=
1

2

∫ T

0

[

θuu
2(t) + θvv

2(t) + θww
2(t)

]

dt

+
1

2

∫

Ω

θψ
∣

∣ψ(x, T ) − ψd(x)
∣

∣

2
dx,

(7)

where θ(·) are weighting factors and ψd(x) is the desired

profile at t = T .

III. FUNCTIONAL SETTINGS AND TECHNICAL LEMMAS

We define the following functional spaces

L2(Ω) =

{

f

∣

∣

∣

∣

∫

Ω

|f |2dx <∞

}

(8)

H2(Ω) = {f |f ∈ L2(Ω) and f ′ ∈ L2(Ω)} (9)

and denote their dual spaces [5] as
(

L2(Ω)
)′

and
(

H2(Ω)
)′

,

respectively. It is known in functional analysis that L2(Ω)
is self reflexive, i.e., L2(Ω) =

(

L2(Ω)
)′
. In the definitions

(8)–(9), we can find that for any f ∈ H2(Ω), it satisfies

f ∈ L2(Ω). Therefore, we have the embedding (inclusion)

relation H2(Ω) ⊂ L2(Ω). The dual representation of this

embedding (inclusion) relation is
(

L2(Ω)
)′

⊂
(

H2(Ω)
)′

.

Then we use the self reflexivity property L2(Ω) =
(

L2(Ω)
)′

,

to connect these two inclusions and obtain the famous

Gelfand triple [5]: H2(Ω) →֒ L2(Ω) =
(

L2(Ω)
)′

→֒
(

H2(Ω)
)′
, where the notation →֒ represents embedding (it

roughly means inclusion). All the embeddings in the Gelfand

triple are continuous, dense and compact. We introduce the

functional space

Ξ=

{

ξ ∈ L2(0, T ;H2(Ω));
∂ξ

∂t
∈L2(0, T ;

(

H2(Ω)
)′

)

}

(10)

endowed with the norm

‖ξ‖Ξ = ‖ξ‖L2(0,T ;H2(Ω)) + ‖ξ̇‖L2(0,T ;(H2(Ω))′). (11)

Lemma 1: Ξ is a Banach space. Every ξ ∈ Ξ is continuous

almost everywhere (a.e.) on [0, T ] with values in L2(Ω). The

embedding Ξ →֒ L2(0, T ;L2(Ω)) is compact.

Lemma 2 (Poincare Inequality [6]): For all ξ ∈ C1(Ω),
the following inequality holds for any subset [0, r] = Br ⊂
Ω:

∫

Br

(ξ − ξ)2dx ≤ C

∫

Br

|∇ξ|2dx, (12)

where C is a positive constant and

ξ =
1

Vol(Br)

∫

Br

ξ(x)dx, (13)

where Vol(Br) represents the volume of Br.

Lemma 3 (Fatou’s Lemma [6]): If {ξn} is a sequence of

nonnegative measurable functions on Ω, then
∫

Ω

lim inf
n→∞

ξndx ≤ lim inf
n→∞

∫

Ω

ξndx. (14)

Lemma 4 (Cauchy’s inequality [6]): Given functions

f, g ∈ L2(0, 1) and µ > 0, then we have the following

inequality:
∫ 1

0

fgdx ≤
1

2µ

∫ 1

0

f2dx+
µ

2

∫ 1

0

g2dx. (15)

IV. A PRIORI ESTIMATES

We note that the solution of the PDE (3) depends on all

the given control functions u, v, w and also on the initial

distribution ψ0(x). In this section, we will give some bounds

estimates (a priori estimates) for the solution of the PDE

system (3). Noting that the a priori bound estimate problem

is different from a control design problem where the control

functions are to be determined, we assume that the control

functions are given to study the dynamics of the solutions.

We first propose the following homogenization transform,

where w(t) is given such that w ∈ W :

Ψ(x, t) = ψ(x, t) −
1

2
x2w(t), (16)

which satisfies the homogeneous boundary conditions:

∂Ψ

∂x
(0, t) =

∂ψ

∂x
(0, t) = 0, (17)

∂Ψ

∂x
(1, t) =

∂ψ

∂x
(1, t) − w(t) = 0. (18)

Then, using (3) and (16)–(18), it is readily to obtain the

following PDE for Ψ:














































∂Ψ

∂t
=

∂

∂x

(

γ(x)u(t)
∂Ψ

∂x

)

−
1

2
x2 dw

dt

+

(

x
dγ(x)

dx
+ γ(x)

)

u(t)w(t) + f(x)v(t),

∂Ψ

∂x
(0, t) =

∂Ψ

∂x
(1, t) = 0,

Ψ(x, 0) = ψ0(x) −
1

2
x2w(0) = Ψ0(x).

(19)
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Theorem 5: We assume γ ∈ C1(Ω) ∩ L2(Ω), and f ∈
L2(Ω), then for any u ∈ U , v ∈ V and w ∈ W , the solution

Ψ(x, t;u, v, w) of (19) exists and satisfies the bound estimate

∫

QT

(

|Ψ|
2

+

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K1, (20)

where K1 is constant and independent of the control func-

tions u, v, w.

Proof: Existence and uniqueness of solution can be

proved by following the literature, e.g., [6]. It remains to

us to give a bound estimate.

Step 1. We multiply both sides of the PDE (19) by Ψ and

integrate over Qt = {(x, τ)|x ∈ Ω = [0, 1]; 0 ≤ τ ≤ t ≤ T },

1

2

∫

Qt

∂Ψ2

∂τ
dxdτ =

1

2

∫

Ω

Ψ2(x, t)dx −
1

2

∫

Ω

Ψ2(x, 0)dx

= −

∫

Qt

γ(x)u(τ)

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdτ +

∫

Qt

f(x)v(τ)Ψdxdτ

+

∫

Qt

[(

x
dγ(x)

dx
+ γ(x)

)

u(τ)w(τ) −
x2

2

dw

dτ

]

Ψdxdτ.

(21)

We use Cauchy inequality (Lemma 4) for the last two terms

in (21), then we can rewrite (21) as

∫

Ω

Ψ2(x, t)dx + 2

∫

Qt

γ(x)u(τ)

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdτ

≤ C0 +
2

µ

∫

Qt

Ψ2dxdτ,

(22)

where

C0 = µ

∫

Qt

∣

∣

∣

∣

(

x
dγ(x)

dx
+ γ(x)

)

u(τ)w(τ) −
x2

2

dw

dτ

∣

∣

∣

∣

2

dxdτ

+ µ

∫

Qt

(fv)2dxdτ +

∫

Ω

Ψ2(x, 0)dx.

Defining the average value (|Ω| = length of Ω)

Ψ =
1

|Ω|T

∫

QT

Ψ(x, t)dxdt, (23)

where T represents the length of the time interval [0, T ], we

can use Poincare inequality (Lemma 2) to obtain
∫

QT

Ψ2dxdt ≤

∫

QT

∣

∣Ψ − Ψ
∣

∣

2
dxdt+

∫

QT

Ψ
2
dxdt

≤ C1

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt+

∫

QT

Ψ
2
dxdt,

(24)

where C1 is a positive constant.

Step 2. To obtain an estimate for the term
∫

QT

Ψ
2
dxdt,

we integrate the PDE (19) over Qt,
∫

Ω

Ψ(x, t)dx−

∫

Ω

Ψ(x, 0)dx = −

∫

Qt

1

2
x2 dw

dτ
dxdτ

+

∫

Qt

[(

x
dγ(x)

dx
+ γ(x)

)

u(τ)w(τ) + f(x)v(τ)

]

dxdt

≤ C2, (25)

where

C2 = max
t

{

w(0) − w(t)

6
, 0

}

+

∣

∣

∣

∣

γ(1) −

∫ 1

0

γ(x)dx

∣

∣

∣

∣

∫ T

0

u(τ)w(τ)dτ

+

∫

Ω

γ(x)dx

∫ T

0

u(τ)w(τ)dτ +

∫

QT

f(x)v(τ)dxdτ.

Then, we integrate
∫

Ω
Ψ(x, t)dx from 0 to t,

∫

Qt

Ψ(x, τ)dxdτ ≤

(

C2 +

∫

Ω

|Ψ0(x)|dx

)

t ≤ C3T, (26)

where C3 := C2 +
∫

Ω
|Ψ0(x)|dx. Taking into account the

definition of the mean value over QT (23), we can rewrite

(26) to obtain

Ψ =
1

|ΩT |

∫

QT

Ψ(x, τ)dxdτ ≤
C3

|Ω|
, (27)

which makes (24) become

∫

QT

Ψ2dxdt ≤ C1

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt+
C2

3T

|Ω|
. (28)

Now we can use (28) to update the bound in (22)

∫

Ω

Ψ2(x, t)dx + 2

∫

QT

γ(x)u(t)

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt

≤ C0 +
2C1

µ

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt+
2C2

3T

µ|Ω|
.

(29)

We note that the continuous coefficient γ(x)u(t) in (29) can

be bounded from below, i.e., infx,t [γ(x)u(t)] ≤ γ(x)u(t).
Then, (29) becomes

sup
t

∫

Ω

Ψ2(x, t)dx

+ 2 inf
x,t

[

γ(x)u(t) −
C2

µ

]
∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt ≤ C4,

(30)

where C4 = C0 +
2C2

3
T

µ|Ω| . We can choose µ large enough in

(22) when using Cauchy’s inequality and make

inf
x,t

[

γ(x)u(t) −
C2

µ

]

≥ 0. (31)

Step 3. We multiply both sides of the PDE (19) by ∂Ψ
∂t

,

integrate over QT , and apply Cauchy inequality to obtain

∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt+
1

2

∫

QT

γ(x)u(t)
∂

∂t

(

∂Ψ

∂x

)2

dxdt

=

∫

QT

F (x, t)
∂Ψ

∂t
dxdt

≤
µ

2

∫

QT

F 2(x, t)dxdt +
1

2µ

∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt

(32)

where

F (x, t) = −
1

2
x2 dw

dt
+

(

x
dγ(x)

dx
+ γ(x)

)

u(t)w(t)+f(x)v(t).
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Then (32) becomes

(

2 −
1

µ

)
∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt

+ inf
x,t

[γ(x)u(t)]

∫

Ω

∣

∣

∣

∣

∂Ψ(x, T )

∂x

∣

∣

∣

∣

2

dx ≤ C5,

(33)

where

C5=µ

∫

QT

F 2(x, t)dxdt + inf
x,t

[γ(x)u(t)]

∫

Ω

∣

∣

∣

∣

∂Ψ(x, 0)

∂x

∣

∣

∣

∣

2

dx.

Combining estimates (30) and (33), we can find that ‖Ψ‖2,

‖∂Ψ
∂x

‖2 and ‖∂Ψ
∂t

‖2 can be bounded by certain positive

numbers. Therefore, there must exist a positive constant K1

to satisfy the following estimate

∫

QT

(

|Ψ|
2

+

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K1. (34)

Corollary 6: We assume γ ∈ C1(Ω) ∩ L2(Ω), and f ∈
L2(Ω), then for any u ∈ U , v ∈ V and w ∈ W , the solution

ψ(x, t;u, v, w) of (3) exists and satisfies the following bound

estimate

∫

QT

(

|ψ|2 +

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂ψ

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K2, (35)

where K2 is a constant.

Proof: Taking into account that

ψ(x, t) = Ψ(x, t) +
1

2
x2w(t), (36)

∂ψ

∂x
(x, t) =

∂Ψ

∂x
(x, t) + xw(t), (37)

∂ψ

∂t
(x, t) =

∂Ψ

∂t
(x, t) +

1

2
x2 dw

dt
(t), (38)

existence and uniqueness of the solution of (19) can ensure

those of the solution of (3). Then, we have

∫

QT

|ψ|2dxdt

=

∫

QT

|Ψ +
1

2
x4w(t)|2dxdt

≤

∫

QT

|Ψ|2dxdt+
1

4

∫

Ω

x2dx

∫ T

0

w2(t)dt

=

∫

QT

|Ψ|2 dxdt+
1

20

∫ T

0

w2(t)dt := C6, (39)

∫

QT

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

2

dxdt

≤

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt +

∫

Ω

x2dx

∫ T

0

w2(t)dt

=

∫

QT

|Ψ|
2
dxdt+

1

3

∫ T

0

w2(t)dt := C7, (40)

and

∫

QT

∣

∣

∣

∣

∂ψ

∂t

∣

∣

∣

∣

2

dxdt

≤

∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt+
1

4

∫

Ω

x4dx

∫ T

0

(

dw

dt

)2

(t)dt

=

∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt+
1

20

∫ T

0

(

dw

dt

)2

(t)dt := C8. (41)

Therefore, we can follow the same procedure as in the proof

of Theorem 5 to finish this proof.

V. EXISTENCE OF OPTIMAL CONTROL

Assume three minimizing sequences {un}, {vn} and

{wn}, such that

lim
n→∞

J(un, vn, wn) = inf
u,v,w

J(u, v, w).

Let ψn = ψ(un, vn, wn) be the corresponding solution of

the PDE (3), then by the a priori estimates in Theorem 5

and Corollary 6, we can obtain

∫

QT

(

|ψn|
2 +

∣

∣

∣

∣

∂ψn

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂ψn

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K2, (42)

where K2 is a constant independent of n. By the weak

convergence theory [5], we can extract weakly convergent

sequences

∂ψn

∂t
−→

∂ψ

∂t
, weakly in L2(0, T ;

(

H2(Ω)
)′

),

ψn −→ ψ, weakly in L2(0, T ;H2(Ω)),

un −→ u, weakly in L∞(0, T ),

vn −→ v, weakly in L∞(0, T ),

wn −→ w, weakly in L∞(0, T ).

Additionally, we note that the embedding Ξ →֒ L2(L2(Ω))
is compact (Lemma 1), then the sequence {ψn} admits

a subsequence which converges strongly in L2(L2(Ω)).
Therefore, we can show the existence of the optimal controls

(Q := (u, v, w)T ),

J(Q∗) ≤ inf
n

∫

Ω

ψn(x, T )dx+ inf
n

∫ T

0

αu2
n + βv2

n + γw2
ndt

≤ lim inf
n→∞

J(Qn), (43)

where we used Fatou’s lemma (Lemma 3) to change the

order of the inf and lim operations.

VI. PDE-BASED OPTIMIZATION

In this section, we rewrite the PDE–based optimization

problem into a large scale ODE-based optimization problem

and summarize the foundation of the nonlinear programming

using the sequential quadratic programming (SQP) method

(see, e.g., [7]). We discretize the PDE on a given spatial

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA07.6

2102



grid, which generates a large scale ODE–based optimization

problem:

min
y,p

Φ(y, p) (44)

dy

dt
= F (t, y, p), y(0) = y0 (45)

g(t, y(t), p) ≥ 0, (46)

where p is the parameterization vector of the control func-

tions u, v, w; cost functional (44) is the discrete version of

the cost functional (7); ODE system (45) for y represents

the space discrete version of the PDE system (3) for ψ(x, t);
and inequality (46) includes all the constraints in terms of

the optimization problem stated in Section II.

Introducing a new vector x = (y, p)T , we can rewrite

the ODE-based optimization problem (44)–(46) into the

following standard nonlinear programming formulation:

min
x

F(x) := Φ(y, p) (47)

c1(x) :=
dy

dt
− F (t, y, p) = 0, (48)

c2(x) := g(t, y(t), p) ≥ 0. (49)

The Lagrangian multiplier method [8] can be used to solve

this constrained optimization problem (47)–(49). One can

define the Lagrangian L(x, π) := F(x) − πT c(x), where

c(x) = (c1(x), c2(x))
T represents the constraints and π is

the Lagrangian multiplier. Then, the nonlinear optimization

problem can be reformulated as

min
x

L(x), c1(x) = 0, c2(x) ≥ 0. (50)

The SQP method can be used to solve (50) by generating

a sequence of iteration points (xk, πk) which converge to

a local minimum pair (x∗, π∗). Let (xk, πk) be the current

estimate of (x∗, π∗), then the nonlinear optimization problem

(50) can be linearized around (xk, πk) to obtain the following

quadratic programming (QP) problem:

min
x

L(xk) + ∇L(xk)
T (x − xk)

+
1

2
(x − xk)

T∇2Lk(x − xk) (51)

c1(xk) + ∇cT1 (xk)(x − xk) = 0, (52)

c2(xk) + ∇cT2 (xk)(x − xk) ≥ 0. (53)

The obtained QP problem (51)–(53) can be solved using the

Newton’s method and the current estimation (xk, πk) can

be updated. An initial guess and an error tolerance condition

are necessary to start and stop the SQP iteration, respectively.

For more details on numerical optimization and SQP, please

refer to [9]. Some commercially available software (such as

Matlab [10], SNOPT [7]) can be used to implement the SQP

algorithm.

VII. NUMERICAL EXAMPLES

We consider the following simplified system with γ(x) =
1 and f(x) = sin(πx):























∂ψ

∂t
= u(t)

∂2ψ

∂x2
+ sin(πx)v(t),

∂ψ

∂x
(0, t) = 0,

∂ψ

∂x
(0, t) = w(t),

ψ(x, 0) = 0.1.

(54)

The associated cost functional is given by

min
u∈[1,2],v∈[0.1,10],w∈[0.1,10]

J(u, v, w)

=
1

2

∫ 1

0

[

u2(t) + v2(t) + w2(t)
]

dt

+
30

2

∫ 1

0

|ψ(x, 1) − 1|
2
dx.

(55)

We choose the values of the actuator trajectories at given

equidistant points 0, 0.25, 0.5, 0.75, 1.0 (unit: second). We

use spline approximations to represent the control functions

based on the values u = u(t) ∈ R
1×5, v = v(t) ∈ R

1×5

and w = w(t) ∈ R
1×5 over t = [0, 0.25, 0.5, 0.75, 1.0].

We discretize the temporal–spatial domain into the following

equidistant grid

0 = x1 < x2 < · · · < ti < · · · < xM = 1, M = 50, (56)

0 = t1 < t2 < · · · < xj < · · · < tN = 1, N = 20. (57)

Then, we can write the discrete version of the cost functional

(55) as

min
u,v,w

Jd(u, v, w) =
30∆x

2

M
∑

i=1

|ψ(xi, 1) − 1|2

+
∆t

2

N
∑

j=1

[

u2(tj) + v2(tj) + w2(tj)
]

.

(58)

We use the Matlab function fmincon to implement the nu-

merical optimization in terms of the discrete cost functional

(58). The Matlab function pdepe is used as the computing

engine which is included in running the fmincon com-

mand. An initial guess of the control actuation (u,v and

w) is necessary to start the optimization process which is

carried out by the Matlab function rand. The optimization

results for the three controls are shown in Fig. 1– 3, while

Fig. 4 shows the dynamic evolution of the PDE system with

computed control functions. Fig. 5 extracts the final profile

at t = T which is close to the target ψd(x) = 1. We use

Fig. 6 to show the change of the cost function value with

respect to the optimization iterations.

VIII. CONCLUSIONS

In this paper, we prove the existence of optimal controls

of a parabolic PDE arising in plasma transport. For real–time

tracking of the obtained optimal trajectories, we can linearize

the original PDE with multiplicative control (bi-linearity)

around the optimal trajectories to obtain a standard linear

parabolic PDE with both the boundary control and interior
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Fig. 1. Diffusivity control u(t).
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Fig. 2. Interior control v(t).
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Fig. 3. Boundary control w(t).
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Fig. 4. Dynamic evolution of the controlled system.
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Fig. 5. Final profile at t = T .
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Fig. 6. Change of the cost function.

controls (the diffusivity control is included into the inte-

rior control vector after linearization). Many control design

techniques for linear systems (either distributed parameter

systems or lumped parameter systems) are then available to

obtain feedback laws.

REFERENCES

[1] F. Hinton and R. Hazeltine, “Theory of plasma transport in toroidal
confinement systems,” Reviews of Modern Physics, vol. 48, 1976.

[2] N. Fisch, “Theory of current drive in plasmas,” Reviews of Modern
Physics, vol. 59, 1987.

[3] J. Blum, Numerical simulation and optimal control in plasma physics.
John Wiley &. Sons, 1988.

[4] P. Kokotovic, H. Khalil, and J. O’Reilly, Singular Perturbation Meth-

ods in Control: Analysis and Design. Philadelphia: Society for
Industrial Mathematics, 1987.

[5] A. H. Siddiqi, Applied Functional Analysis:Numerical Methods,
Wavelet Methods and Image Processing. Routledge: Marcel Dekker
Inc., 2003.

[6] L. C. Evans, Partial Differential Equations (Graduate Studies in
Mathematics, V. 19). New York: American Mathematical Society,
1998.

[7] P. Gill et al., “An SQP method for the optimal control of large–
scale dynamical systems,” Journal of Computational and Applied
Mathematics, vol. 120, 2000.

[8] S. Boyd and L. Vandenberghe, Convex optimization. New York:
Cambridge University Press, 2004.

[9] J. Nocedal and S. J. Wright, Numerical Optimization (2nd edition).
New York: Springer, 2006.

[10] www.mathworks.com.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA07.6

2104


