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Abstract

This paper is based on our recent contribution [3]
that studies Markov Decision Processes (MDPs) with
Borel state and action spaces and with the expected to-
tal rewards. The initial state distribution is fixed. Ac-
cording to [3], for a given randomized stationary pol-
icy, its occupation measure as a convex combination
of occupation measures for simpler policies. If this is
possible for a given policy, we say that the policy can
be split. In particular, we are interested in splitting a
randomized stationary policy into (nonrandomized) sta-
tionary policies or into a randomized stationary poli-
cies that are nonrandomized on a given subset of states.
Though [3] studies Borel-state MDPs with expected to-
tal rewards, some of its results are new for finite state
and action discounted MDPs. This paper focuses on
these results.

1. Introduction

For a Markov Decision Process (MDP), an occu-
pation measure is a measure on the product of the state
and action sets such that, for each measurable subset
of this product, it is equal to the expected total num-
ber of events when state-action pairs belong to the sub-
set. For MDPs with expected total rewards, occupation
measures play an important role, because, if occupation
measures coincide for two policies, the objective func-
tions are equal for these policies for all reward func-
tions. Furthermore, the set of occupation measures pos-
sesses several important properties including convex-
ity. Typically for MDPs with multiple criteria and con-
straints, the first and the most important step for finding
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an optimal policy is to compute its occupation measure
by solving an optimization problem in the set of all oc-
cupation measures.

We have recently studied in [3] representations of
occupation measures for randomized stationary poli-
cies via convex combinations of occupation measures
for nonrandomized (or nonrandomized on a subset of
states) stationary policies in discrete-time total-reward
MDPs with Borel state and action spaces. Such rep-
resentations play an important role in the convex-
analytical approach to MDPs [2, 10] which is the major
method for the analysis of MDPs with multiple crite-
ria and constraints [1, 9]. When such representation is
possible, we say that a given policy can be split into
the corresponding policies. This terminology is consis-
tent with Altman’s [1, p. 109] definition of splitting at
a state. This paper focuses on two types of splitting:
splitting at a state and finite splitting.

This paper focuses on the results from [3] that are
new for discounted MDPs with finite state and action
sets. We provide a new formula for a splitting at a state,
describe splitting a randomized stationary policies via
nonrandomized stationary policies and formulate an al-
gorithm that implements such splitting, and describe a
new class of optimal policies for constrained problems.
Since occupation measures become finite-dimensional
vectors for finite state and action MDPs, this paper deals
with occupation vectors.

Splitting at a state is representing the occupation
measure of a randomized stationary policy as a con-
vex combination of occupation measures of random-
ized stationary policies with the following properties:
(i) these policies are nonrandomized at this state, and
(ii) they coincide with this policy outside of this state.
Altman [1, p. 109] provided an explicit formula for
splitting at a state for transient countable-state MDPs.
[3, Theorem 5.1] gives necessary and sufficient condi-
tions when splitting at a state is possible and unique. As
follows from this theorem, for discounted MDPs split-
ting is always possible and unique. Formula (4.2) below
expresses the splitting measure via the initial policy σ

and the occupation measures for splitting policies. It
also expresses the splitting measure via the occupation
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measures for the initial and splitting policies.
Finite splitting deals with a randomized stationary

policy σ that uses a finite number of actions at some fi-
nite subset Y of states. For finite state and action MDPs,
finite splitting means that the occupation vector for each
policy can be presented as a convex combination of
a relatively small number of occupation measures for
stationary policies and and consequent policies in this
combination differ only at one state. In particular, this
result implies that for a multiple-criterion problem with
K constraints, an optimal policy can be presented as a
mixture of no more than K + 1 nonrandomized station-
ary policies and consequent policies in the mix differ
only at one state. Without the property that consequent
policies in the mix differ only at one state, this result
was described in Feinberg and Shwartz [7, Corollary
5.3] for discounted countable state MDPs.

2. Definition of the model

We consider a Markov decision process (MDP)
{X ,A,A(·), p,r}, where: (i) X is a finite state set, (ii)
A is a finite action set, (iii) A(x) ⊆ A are sets of ac-
tions available at states x ∈ X ; (iv) p(y|x,a) is a transi-
tion probability, i.e., the probability that the next state
is y ∈ X , if the current state is x ∈ X and the action
a ∈ A(x) is selected, ∑y∈X p(y|x,a) = 1 for all x ∈ X
and a∈ A(x), (v) r(x,a) is a one-step reward if an action
a ∈ A(x) is selected at a state a ∈ A(x). For constrained
problems, r(x,a) is a vector with the elements rk(x,a),
k = 0,1, . . . ,K, where K is the number of constraints.

As usual, a policy π is a sequence of transition
probabilities πt(at |ht) concentrated on the sets A(xt),
where ht = x0,a0, . . . ,at−1,xt is the observed history. If
transition probabilities πt depend only on the current
state and time, i.e. πt(·|ht) = πt(·|xt) for all t = 0,1, . . .,
then the policy π is called randomized Markov. If for a
randomized Markov policy π decisions do not depend
on the time parameter, i.e. πt(·|x) = πs(·|x), x ∈ X , the
policy π is called randomized stationary. For a ran-
domized Markov policy π , we write π(·|x) instead of
πt(·|x). If each measure πt(·|ht) is concentrated at one
point, the policy is called nonrandomized. A nonran-
domized Markov and nonrandomized stationary poli-
cies are called Markov and stationary, respectively. A
stationary policy is defined by a mapping φ from X to
A such that φ(x) ∈ A(x) for all x ∈ X .

Let RΠ be the set of all policies, Π be the set of
nonrandomized policies, RM be the set of randomized
Markov policies, M be the set of Markov Policies, RS
be the set of all randomized stationary policies, and S
be the set of stationary policies.

According to the Ionescu Tulcea theorem [8, p.

178], an initial distribution µ on X and a policy π de-
fine a unique probability measure Pπ

µ on the space of
trajectories H∞ = (X ×A)∞ which is called a strategic
measure. We denote by Eπ

µ expectations with respect to
Pπ

µ . We consider a σ -field on H∞ defined as a product
of Borel σ -fields on X and A. Throughout this paper,
we fix the initial distribution µ.

For a constant β ∈ [0,1) called the discount factor
and π ∈ RΠ, define the expected discounted rewards

V π(µ) := Eπ
µ

∞

∑
n=0

β
nr(xn,an).

For any policy π denote by Qπ
µ the occupation vec-

tor defined for x ∈ X and a ∈ A(x) as

Qπ
µ(x,a) :=

∞

∑
n=0

β
nPπ

µ {xn = x,an = a}. (2.1)

Then
V π(µ) = ∑

x∈X
∑

a∈A(x)
r(x,a)Qπ

µ(x,a). (2.2)

Therefore, if Qπ
µ = Qσ

µ then V π(µ) = V σ (µ) for any
reward function r. Of course, if Pπ

µ = Pσ
µ then, according

to (2.1), Qπ
µ = Qσ

µ . In other words, if strategic measures
are equal then occupation vectors are equal too.

For x ∈ X , set

qπ
µ(x) := ∑

a∈A(x)
Qπ

µ(x,a).

3. Properties of strategic measures

For a set of policies ∆, define L∆
µ := {Pπ

µ |π ∈ ∆}
the set of strategic measures for the policies from ∆.
Obviously, L∆

µ ⊆ L∆′
µ when ∆ ⊆ ∆′. According to [6,

Theorem 3.2], the set L∆
µ is a measurable subset of

(P(H∞),M (H∞)) when ∆ = RΠ,Π,RM,M,RS, or S.
According to [4, Sections 3.5 and 5.5], the set LRΠ

µ

is convex in the following strong case. For a probability
measure ν on LRΠ

µ , define the probability measure Pν

on H∞ by

Pν(E) :=
∫

LRΠ
µ

P(E)ν(dP), (3.1)

where E are measurable subsets of H∞. Then Pν ∈ LRΠ
µ ;

see [4, Sections 3.5 and 5.5]. In other words, there ex-
ists a policy π such that Pπ

µ = Pν . A policy π is called
mixed if there exists a probability measure ν on LΠ

µ

such that ν(LΠ
µ ) = 1 and Pπ

µ = Pν with Pν defined by
(3.1). A policy π is called mixed Markov if there exists
a probability measure ν on LRΠ

µ such that ν(LM
µ ) = 1

and Pπ
µ = Pν with Pν defined by (3.1). In other words,
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a policy π is called mixed Markov if for some probabil-
ity measure ν on LM

µ

Pπ
µ (E) =

∫
LM

µ

P(E)ν(dP), (3.2)

for all measurable subsets E of H∞. We notice the sets
M and Π are continuum even if the sets X and A are
finite. However, for finite-horizon problems, the sets Π

and M are finite and we can rewrite (3.2) as

Pπ
µ (hn) = ∑

φ∈M
ν(φ)Pφ

µ (hn), (3.3)

where n is the length of the horizon, for a mixed-
Markov policy. The same formula holds for a general
mixed policy with the summation in (3.3) changed over
Π instead of over M.

Similarly, a policy π is called mixed stationary if
for some probability distribution ν on S

Pπ
µ (E) = ∑

φ∈S
ν(φ)Pφ

µ (E), (3.4)

for all measurable subsets E of H∞.
According to [6, Theorem 5.l], any policy is a

mixed policy and any randomized Markov policy is a
mixed Markov policy. In other words: (i) for any pol-
icy π there exists a probability measure ν on LΠ

µ such
that (3.2) holds with LM

µ substituted with LΠ
µ , and (ii) for

any randomized Markov policy π there exists a proba-
bility measure ν on LM

µ such that (3.2) holds. How-
ever, the similar statement does not hold for randomized
stationary policies, because there may exist a random-
ized stationary policy π such that equality (3.4) does not
hold for any probability measure ν on LS

µ . In particular,
Remark 3.1 in Feinberg [5] provides an example of an
MDP with two stationary policies, i. e., S = {φ 1,φ 2},
such that Pπ

µ 6= αPφ1

µ +(1−α)Pφ2

µ for all π ∈ RS\S and
for all α ∈ (0,1).

The situation is different when we consider a rep-
resentation of an occupation vector Qπ

µ , where π ∈ RΠ,

via a convex combination of vectors from {Qφ

µ |φ ∈ S}.
Since the set of vectors {Qπ

µ |π ∈ RΠ} is a convex hull

of {Qφ

µ |φ ∈ S}, Caratheodory’s theorem implies that
such representations exist. Theorem 5.1 shows that sta-
tionary policies in such convex representations can be
chosen in a way that sequential policies differ only in
one decision.

4. Splitting at a state

For a randomized stationary policy σ , for a state
y ∈ X , and for an action a ∈ A(y), we denote by σ [y,a]

the randomized stationary policy that coincides with σ

at any state x 6= y and always selects the action a at y.
According to Altman [1, p. 108], for y∈ X , a prob-

ability vector γ∗(a), a ∈ A(y), splits a randomized sta-
tionary policy σ at the state y if for any x ∈ X and any
b ∈ A(x)

Qσ
µ (x,b) = ∑

a∈A(y)
γ
∗(a)Qσ [y,a]

µ (x,b). (4.1)

Altman [1, p. 109] provided an explicit formula for γ∗

that splits a randomized stationary policy at a state. [3,
Theorem 5.1] provides necessary and sufficient condi-
tions when a policy can be split and provides the split-
ting formula in a simpler form. The following theorem
follows from [3, Theorem 5.1].

Theorem 4.1. Consider a randomized stationary policy
σ and a state y ∈ X.

(i) If qσ
µ (y) = 0 then any probability vector on A(y)

splits σ at y.
(ii) If qσ

µ (y) > 0 then

γ
∗(a) :=

σ(a|y)
qσ [y,a]

µ (y)

∑b∈A(y)
σ(b|y)

qσ [y,b]
µ (y)

=
Qσ

µ (y,a)

qσ [y,a]
µ (y)

, a ∈ A(y),

(4.2)
is the unique probability vector that splits σ at y.

5. Finite splitting at multiple states

For a set of policies ∆⊆ RΠ, let O∆
µ := {Qπ

µ |π ∈ ∆}
be the set of occupation vectors generated by the poli-
cies π from ∆. Obviously, O∆

µ ⊆O∆′
µ when ∆⊆ ∆′. It is

well-known, see e.g., [1], that ORΠ
µ = ORS

µ . In addition:
(i) ORΠ

µ is a convex polytope consisting of all vectors Q
such that for all x ∈ X

∑
a∈A(x)

Q(x,a) = µ(x)+β ∑
y∈X

∑
a∈A(y)

p(x|y,a)Q(y,a)

and Q(x,a) ≥ 0, a ∈ A(x), and (ii) OS
µ is the set of ex-

treme points of ORΠ
µ .

For a policy σRΠ and for a state x ∈ X , we define
Aσ (x) = {a ∈ A(x)|Qσ

µ (x,a) > 0}. We denote by Sσ the
set of stationary policies φ ∈ S such that φ(x) ∈ Aσ (x)
if Aσ (x) 6= /0. We also set Xσ = {x ∈ X |Aσ (x) 6= /0}.

The following theorem describes splitting at multi-
ple states.

Theorem 5.1. Let M = ∑y∈X |Aσ (y)| and m = M−|Xσ |
for an arbitrary policy σ . Then there exist (m + 1) sta-
tionary policies φ 1, . . . ,φ m+1 from Sσ , and there exist
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(m + 1) nonnegative numbers α1, . . . ,αm+1 such that
∑

m+1
j=1 α j = 1 and

Qσ
µ =

m+1

∑
j=1

α jQ
φ j

µ . (5.1)

The stationary policies φ 1, . . . ,φ m+1 can be selected
in such a way that φ i 6= φ j when i 6= j, and for each
i = 1, . . . ,m there is exactly one state yi ∈ Y such that
φ i(yi) 6= φ i+1(yi). In addition, any policy from Sσ can
be selected as φ 1.

The following example demonstrates that it may be
impossible for all αi to be positive in (5.1). This exam-
ple also demonstrates that it may be impossible to se-
lect the stationary policies φ 1, . . . ,φ m+1 in (5.1) in such
a way that, in addition to φ i and φ i+1, i = 1, . . . ,m, the
stationary policies φ m+1 and φ 1 also differ only at one
state.

Example 5.2. Let X = {1,2}, A = {a1,a2}, A(1) =
A(2) = A, µ(1) = µ(2) = 0.5, p(x|x,a) = 1 for all
(x,a) ∈ X ×A, and there is a discount factor β = 0.5.
Let π be a randomized stationary policy with π(ai|x) =
π(ai|y) = 0.5, i = 1,2. Then straightforward computa-
tions imply that Qπ

µ(x,a) = 0.5 for all (x,a) ∈ X ×A.

For a stationary policy φ we have that Qφ

µ(x,φ(x)) = 1
for all x ∈ X . It is easy to verify that the ordered sets
{α1,α2,α3} and {φ 1,φ 2,φ 3} of constants and station-
ary policies satisfy (5.1) if and only if α1 = α3 = 0.5,
α2 = 0, φ 1(x) 6= φ 3(x) for all x ∈ X , and either φ 2 =
{φ 1(1),φ 3(2)} or φ 2 = {φ 3(1),φ 1(2)}.

Next, we provide an algorithm that, for a policy
σ ∈ RΠ, constructs an equivalent mixture of random-
ized stationary policies in the form described in Theo-
rem 5.1.

For a policy π ∈ RΠ, the algorithm operates with
the finite set

Z(π) := {x ∈ X(π) : |Aπ(x)|> 1}.

Algorithm 5.3. Input: a policy σ ∈ RΠ. Outputs: a
natural number m = ∑y∈X |Aσ (y)| − |Xσ |, nonnegative
numbers α1, . . . ,αm+1 satisfying ∑

m+1
j=1 α j = 1, and sta-

tionary policies φ 1, . . . ,φ m+1 from Sσ such that (5.1)
holds.

1. Set j := 1, π := σ , compute Z(π), set Qπ(x,a) =
Qπ

µ(x,a) for x∈ Z(π), a∈ Aπ(x), and select any station-
ary policy φ 1 ∈ Sπ .

2. While |Z(π)|> 1 do steps 2a – 2h:

2a compute qφ j

µ (x) for x ∈ Z(π) and set

α := min{Qπ(x,φ j(x))

qφ j

µ (x)
|x ∈ Z(π)}

and

G(π) :=

{
x ∈ Z(π)| Q

π(x,φ j(x))

qφ j

µ (x)
= α

}
;

2b for x ∈ G(π) set Aπ(x) := Aπ(x)\{φ j(x)};
2c set α j := α;
2d set k := |G(π)| and select φ j+k : Y → A such

that φ j+k ∈ Aπ(x) when x∈G(π) and φ j+k(x) = φ j(x)}
when x ∈ X \G(π);

2e if k > 1 then order the elements of G(π) in any
way, G(π) = {x1, . . . ,xk}, and for i = 1, . . . ,k− 1 set
α j+i := 0 and set

φ
j+i(x) :=


φ j+k(x) if x = x` for ` = 1, . . . , i,
φ j(x) if x ∈ X \G(π) or

x = x` for ` = i+1, . . . ,k−1;

2f set Z(π) := Z(π)\{x ∈ G(π) : |Aπ(x)|= 1};
2g for x ∈ Z(π) set

Qπ(x,φ j(x)) := Qπ(x,φ j(x))−αqφ j

µ (x); (5.2)

2h set j := j + k.
3. If Z(π) = /0 then set m := j− 1, αm+1 := 1−

∑
m
i=1 αi, and stop, because formula (5.1) holds.

4. Let Z(π) = {x∗} and Aπ(x∗) = {a0, . . . ,a`},
where a0 = φ j(x∗). For i = 1, . . . , ` define φ j+i(x∗) = ai

and φ j+i(x) = φ j(x) when x 6= x∗.

5. For i = 0, . . . , `−1 compute qφ j+i

µ (x∗) and set

α j+i :=
Qπ(x∗,ai)

qφ j+i

µ (x∗)
.

6. Set m := j+`−1, αm+1 := 1−∑
m
i=1 αi and stop,

because formula (5.1) holds.

We notice that the values of Qπ(x,a), and the sets
Aπ(x) and Z(π) are computed only one time by using
their definitions. This happens at step 1 for π = σ . Then
they are iteratively modified at steps 2b, 2g, and 2f. We
remark that it is possible to simplify the algorithm ei-
ther by slightly increasing the number of operations it
performs or by not providing the values of φ j when
α j = 0. In particular, it is possible to change the con-
dition |Z(π)| > 1 to |Z(π)| > 0 in step 2 and exclude
steps 4 – 6. Steps 4 – 6 are introduced only to utilize
computational advantages of formula (5.1) for splitting
at a state compared to ` executions of step 3 of the al-
gorithm. Step 6 can be excluded by setting i = 0, . . . , `
in step 5. Step 2e computes the stationary policies φ j
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when α j = 0. These steps can be excluded and the mod-
ified algorithm would compute the coefficients and the
mappings for equation (5.1) rewritten in the form

Qσ
µ =

m̂+1

∑
j=1

α̂ jQ
φ̂ j

µ ,

with m̂≤m equal to the number of positive instances of
α j in (5.1), α̂ j = αN( j) and φ̂ j = φ N( j) for j = 1, . . . , m̂,
where N(0) = 0 and N(k+1) = min{i≥N(k)+1|αi >
0} for k = 0, . . . , m̂−1.

6. Constrained optimization

In this section, we consider a problem with reward
functions rk, k = 0, . . . ,K, where K < ∞. The objection
criteria are the expected total discounted rewards

Vk(µ,π) = Eπ
x

∞

∑
n=0

β
nrk(xn,an), k = 1 . . . ,K,

where 0≤ β < 1.
For a given initial distribution µ and for numbers

c1, . . . ,cK , we consider the problem

maximize V0(µ,π) (6.1)

subject to Vk(µ,π)≥ ck, k = 1, . . . ,K. (6.2)

Problem (6.1)–(6.2) was studied by Feinberg and
Shwartz [7] for a countable state problem. First, we
recall some definitions from [7] adapted to the case of
finite state and action sets.

Let M = 0,1, . . . . A randomized stationary policy
π is called M-randomized stationary if

∑
x∈X

∑
a∈A(x)

I{π(a|x) > 0} ≤ |X |+M.

For a finite nonnegative integer N, a randomized sta-
tionary policy π is called a strong (M,N)-policy if: (a)
it is stationary from time N onwards, i.e. πn(φ(x)|x) = 1
for some stationary policy φ for all x ∈ X and for all
n≥ N, and (b) for all states it uses no more than M ad-
ditional actions than a stationary policy would use, and
(c) for all time-state pairs at epochs n = 0, . . . ,N−1, it
uses no more than M additional actions than a (nonran-
domized) Markov policy would use, i.e., the following
two properties hold:

∑
x∈X

∑
a∈A(x)

I{
N−1

∑
n=0

πn(a|x) > 0} ≤ |X |+M

and
N−1

∑
n=0

∑
x∈X

∑
a∈A(x)

I{πn(a|x) > 0} ≤ N · |X |+M.

A policy π is called M-mixed stationary if there exist
(M + 1) stationary policies φ 1, . . . ,φ M+1 and (M + 1)
nonnegative numbers α1, . . . ,αM+1 such that ∑

M
i=1 αi =

1 and

Pπ
µ =

M+1

∑
i=1

αiP
φ i

µ .

Feinberg and Shwartz [7] proved the following re-
sults for a countable state space X :

Theorem 6.1. (Feinberg and Shwartz [7, Theorem
2.1]) If problem (6.1)–(6.2) is feasible then

(i) there exists an optimal K-randomized stationary
policy;

(ii) for some finite N there exists an optimal strong
(K,N)-policy.

Theorem 6.2. (Feinberg and Shwartz [7, Theorem
5.1]) For any M-randomized stationary policy π there
exists an M-mixed stationary policy σ with Qσ

µ = Qπ
µ .

Corollary 6.3. (Feinberg and Shwartz [7, Corollary
5.3]) If problem (6.1)–(6.2) is feasible then there exists
an optimal K-mixed stationary policy.

The following statement follows from Theo-
rem 5.1.

Corollary 6.4. For any M-randomized stationary pol-
icy σ , there exists an m-mixed stationary policy π with
Qπ

µ = Qσ
µ , where m = ∑x∈Xσ |Aσ (x)|−|Xσ | ≤M. In ad-

dition, the strategic measure Pπ
µ can be presented in the

form

Pπ
µ =

m+1

∑
i=1

αiP
φ i

µ , (6.3)

where α1, . . . ,αm+1 are nonnegative numbers such that
∑

m+1
i=1 αi = 1, and φ 1, . . . ,φ m+1 are stationary policies

such that φ i 6= φ j when i 6= j and φ i and φ i+1 differ
exactly at one point xi, i = 1, . . . ,m.

We notice that Corollary 6.4 is a stronger result
than Theorem 6.2 because Corollary 6.4 specifies that
the policies φ i and φ i+1 in the mix differ only at one
state. This may be interpreted in the way that the struc-
ture of the policy φ i changes very little when i increases
by 1. The following theorem strengthens Corollary 6.3.

Theorem 6.5. If problem (6.1)–(6.2) is feasible then
for some m = 0, . . . ,K there exists an optimal m-mixed
stationary policy π whose strategic measure Pπ

µ can
be presented in the form (6.3), where α1, . . . ,αm+1
are nonnegative numbers such that ∑

m+1
i=1 αi = 1, and

φ 1, . . . ,φ m+1 are stationary policies such that φ i 6= φ j

when i 6= j and φ i and φ i+1 differ exactly at one point
xi, i = 1, . . . ,m.
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