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Abstract— This paper considers infinite horizon optimal feed-
back control of nonlinear models with discounted cost. The
paper includes two extensions of existing results about optimal
feedback control. First, it is proven that for real analytic state-
space models, a time-invariant real analytic feedback solution
exists, even when the cost function includes a discount factor,
provided certain regularity conditions. Second, the result is
generalized to nonlinear DAE models. The feedback solution
is valid in a neighborhood of the origin. In both cases, explicit
formulas for the series expansions of the cost function and
control law are given.

I. INTRODUCTION

The standard approach to compute the optimal solution to
an optimal feedback control problem is to use the Hamilton-
Jacobi-Bellman equation (HJB). The problem is that this
equation involves a nonlinear partial differential equation,
which for most problems is very hard to solve analytically.
The idea is to instead compute the optimal solution, i.e.,
the optimal performance criterion and the corresponding
feedback law, expressed as power series expansions. For
state-space models this idea was first considered by [1]. The
results in that paper show that the terms in the power series
expansions can be obtained sequentially, by first solving a
quadratic optimal control problem for the linearized system
and then a series of linear partial differential equations.
Further, a formal proof of the convergence of the power series
is presented in the case when the input signal is scalar and
the system has the form ẋ = f(x)+Bu. In [2], these results
are extended to general state-space systems, ẋ = f(x, u), and
this work is extended even more in [3]. In the earlier works
[1], [2], the functions involved are required to be analytic
functions around the origin. In [3], this requirement is relaxed
to twice differentiability. An alternative proof to the one
presented in [3] is given in [4], where the requirements
on the cost function are relaxed. [5] studied the case when
the dynamics of an external signal generator are included,
and in [6] the case when the system is not stabilizable or
not detectable is investigated. Finally, the method above is
extended to nonlinear DAE models in [7].

In some cases, it is interesting to have a bound on the
convergence rate for the states of a system as the time goes
to infinity. For linear systems, this fact was developed already
in [8] and has later been developed in numerous publications.
For other problems, it can be interesting to reduce the penalty
when the time increases, see [9]. The main motivation for
this choice is often that the most important parts of the state

trajectory are those in the beginning, while what happens
far into the future is less interesting. The feature above
is obtained using a discount factor in the cost function.
In this paper, the power series method for solving optimal
control problems will be extended to deal with cost functions
involvning such a discount factor both for nonlinear state-
space models and DAE models.

In practice, the series solution needs to be truncated and
the result is an approximative solution. Therefore, this kind
of methods is often denoted approximative methods even
though the complete power series expansions of the perfor-
mance criterion and feedback law yield the true optimal so-
lution. There are other methods which theoretically describe
the exact optimal solution but in practice are truncated, see
[10] and references therein.

Notation: The notation in this paper is fairly standard. The
Jacobian matrix ∂h

∂x will be denoted hx and (·)[i] will be used
to denote the terms of order i in a power series expansion.
Q � 0 means that Q is a real positive definite matrix. bmc
will denote the integer part of m.

II. PROBLEM FORMULATION

The considered optimal control problem is to minimize
the integral criterion

V (x1,0) = inf
u(·)

∫ ∞
0

L(x1, x3, u)eλt dt (1)

subject to the differential-algebraic system

F̂1(ẋ1, x1, x3, u) = 0 (2a)

F̂2(x1, x3, u) = 0 (2b)

with some initial condition x1(0) = x1,0. The term λ ∈
R is constant and can take arbitrary values both positive
and negative. It will be denoted the discount factor. The
initial condition is assumed to be consistent, i.e., to satisfy
F̂2

(
x1,0, x3(0), u(0)

)
= 0. Furthermore, it is assumed that

following assumption is satisfied.
Assumption 1: It holds that F̂ (0, 0, 0, 0) = 0. Further-

more, F̂1;ẋ1(0, 0, 0, 0) and F̂2;x3(0, 0, 0) are nonsingular.
From the implicit function theorem, it then follows that
there exists a neighborhood Ω of the origin, such that for
(ẋ1, x1, x3, u) ∈ Ω, the DAE model can be written as

ẋ1 = L(x1, u) (3a)
x3 = R(x1, u) (3b)
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If the original DAE model not satisfies Assumption 1, it is
shown in [11] that using so-called index reduction rather
general models can be rewritten in this form.

The assumptions above only guarantee that the DAE
model has an underlying state-space model. However, the
functions L andR may be hard or even impossible to express
in closed form. Therefore, the derived method will rely on
the Taylor series of F̂1, F̂2 and L̂. It means that the following
assumption is needed.

Assumption 2: The functions F̂1 and F̂2 in (2), and L in
(1) are real analytic in W , which is a neighborhood of the
origin (ẋ1, x1, x3, u) = 0.
Analyticity of the functions involved makes it possible to
write them as power series

F̂1(ẋ1, x1, x3, u) =

− E1ẋ1 +A11x1 +A12x3 +B1u+ F̂1h(ẋ1, x1, x3, u)
(4a)

F̂2(x1, x3, u) = A21x1 +A22x3 +B2u+ F̂2h(x1, x3, u)
(4b)

L(x, u) = xTQx+ uTRu+ 2xTSu+ Lh(x, u) (4c)

that are convergent inW . The functions F̂1h and F̂2h include
terms beginning with order two, while the higher order terms
of the performance criterion, that is Lh, is of order three at
least.

The linearization of the system (2) is easily be found as

ẋ1 = Âx1 + B̂u (5a)

x3 = −A−1
22 A21x1 −A−1

22 B2u (5b)

where

Â = E−1
1

(
A11 −A12A

−1
22 A21

)
(5c)

B̂ = E−1
1

(
B1 −A12A

−1
22 B2

)
(5d)

The objective is to find the optimal feedback control
locally around the origin. However, because of the infinite
horizon, the considered class of feedback laws needs to
satisfy some extra conditions.

Assumption 3: The considered feedback laws are de-
scribed by uniformly convergent power series

u(x1) = Dx1 + uh(x1) (6)

where uh(x1) are terms of at least order two. Furthermore,

Re eig(Â+ B̂D) < min(0,−λ2 )

where Â and B̂ are given in (5).
The last part of the assumption is introduced for two reasons.
First, it is necessary for the proof to have a feedback law that
stabilizes the system, and thereby makes a neighborhood of
the origin invariant. Second, the control law needs to ensure
convergence of the integral criterion, locally.

As can be seen above, the discount factor is used to obtain
a controller for which the linearization of the closed loop gets
a prescribed degree of stability. That is, the poles are placed
to the left of some specific limit, see [12]. It can also be
used to reduce the penalty for large t. This is for example
used in [9]. One interesting fact, that in many cases probably
can be rather important, is that despite that the cost function
is explicitly time-varying, the optimal solution will still be

time-invariant. That the optimal feedback law becomes time-
invariant simplifies the implementation of it. In [12] it is
shown that a discount factor term eλt, in principle, is the only
time-varying element allowed in order to have this property.

III. THE STATE-SPACE MODEL CASE

If the DAE model has no constraints and is explicit in the
states, the optimal control problem can be written as

V (x0) = inf
u(·)

∫ ∞
0

L(x, u)eλt dt

s.t. ẋ = F (x, u)
x(0) = x0

(7)

The solution to this optimal control problem is given by the
following Hamilton-Jacobi-Bellman equation (HJB), see [9],

0 = min
u

L(x, u) + λV (x) + Vx(x)F (x, u)

and the optimal feedback law u∗(x) must solve the equations

0 = L
(
x, u∗(x)

)
+ λV (x) + Vx(x)F

(
x, u∗(x)

)
(8a)

0 = Lu
(
x, u∗(x)

)
+ Vx(x)Fu

(
x, u∗(x)

)
(8b)

In this case, only stabilizing feedback laws are considered
and by just evaluate the cost criterion, it follows that the
optimal return function V (x) must have the structure

V (x) = xTPx+ Vh(x) (9)

where P is a symmetrical matrix and Vh(x) contains the
terms of order three and higher, see [3], [7]. If the expressions
for V and u are substituted into (8), the result are two
polynomial equations in x with coefficients including the
unknowns parameters in V and u∗. The following theorem
states when an analytic solution to these equations exists and
how it can be computed for state-space models.

Theorem 1: Consider the optimal control problem (7),
satisfying Assumption 2. Furthermore, assume that the
quadratic part of the cost function (4c) satisfies

(
Q S

ST R

)
� 0.

Then there exists an optimal feedback law u∗(x) satisfying
Assumption 3 if the ARE

0 = (A+λ
2 I)TP+P (A+λ

2 I)−(PB+S)R−1(PB+S)T+Q
(10a)

has a unique positive-semidefinite solution such that the
matrix A+BD∗ with D∗ given by

D∗ = −R−1(ST +BTP ) (10b)

satisfies

Re eig(A+BD∗) < min(0,−λ2 ) (11)

The equations (10) also determine the lowest order terms
in V (x) and u∗(x), respectively. The higher order terms in
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V (x) and u∗(x) can be computed recursively by solving

V [m]
x (x)Acx+ λV [m](x) = −

m−1∑
k=3

V [k]
x (x)Bu[m−k+1]

∗ (x)

−
m−1∑
k=2

V [k]
x (x)F [m−k+1]

h (x, u∗)− L[m]
h (x, u∗)

− 2
bm−1

2 c∑
k=2

u
[k]
∗ (x)TRu[m−k]

∗ (x)− u[m/2]
∗ (x)TRu[m/2]

∗ (x)

(12a)

where m = 3, 4, . . . and Ac = A+BD∗, and

u
[k]
∗ (x) = −1

2
R−1

(
V [k+1]
x (x)B+

k−1∑
i=1

V [k−i+1]
x (x)F [i]

h;u(x, u∗) + L
[k]
h;u(x, u∗)

)
(12b)

for k = 2, 3, . . ..
In the equations above, F [i] denotes the i:th order terms of
F and bic denotes the floor function, which gives the largest
integer less than or equal to i. Moreover, in (12) we use the
conventions that

∑l
k = 0 for l < k and that the terms u[m/2]

are to be omitted if m is odd.
Proof: The full version of the proof of the case with λ = 0
can be found in [3], while the general proof for arbitrary λ
can be found in [7]. Below, a sketch of the most important
steps is presented.

The first step is to evaluate the performance criterion for
arbitrary u(x) such that A + BD satisfies the eigenvalue
condition (11). The closed loop system will, because of
Assumption 2 and 3, have the form

ẋ = F
(
x, u(x)

)
= (A+BD)x+ Fh

(
x, u(x)

)
(13)

where Fh(·) is a uniformly convergent power series around
the origin, beginning with terms of order two. The solution
to the closed loop system will be denoted x(t, x0) where
x0 ∈ Rn is the initial value, that is, x(0, x0) = x0. In
a neighborhood of the origin, the following inequality is
ensured by Assumption 3

|x(t, x0)| ≤ C0e
µt|x0|

for some µ that satisfies Re eig(A + BD) < µ <
min(0,−λ2 ). Using Assumption 2, it then follows that

J
(
x0, u

)
=
∫ ∞

0

L
(
x(t, x0), u(x(t, x0))

)
eλt dt

is uniformly convergent locally around the origin. It can also
be shown that for all such u(x), J(x0, u) will satisfy

0 = λJ(x0, u) + Jx0(x0, u)F
(
x0, u(x0)

)
+ L

(
x0, u(x0)

)
(14)

for x0 in a neighborhood of the origin.
In the next step, it is shown that for an arbitrary p, the

following equation

0 = Lu(x, u) + Fu(x, u)p (15)

has a unique analytic solution u∗(x, p) near the origin in R2n

for which u∗(0, 0) = 0. Furthermore,

u∗(x, p) = − 1
2R
−1(2STx+BT p) + u∗,h(x, p) (16)

where u∗,h(x, p) is a convergent power series in a neighbor-
hood of the origin beginning with second order terms.

The major step is then to show that there exists a u∗(x) =
u∗
(
x, p(x)

)
that satisfies Assumption 3 and solves (15)

with p(x) = Vx(x), since the optimal feedback law have
to satisfy (8b). Here V (x) denotes J(x, u) with u∗(x) as
feedback law. This u∗(x) is then the optimal control, which
can be shown rather forwardly from the fact that R in (4c)
is assumed to be positive definite, see [7].

To show the existence of such a u∗, study the nonlinear
Hamiltonian system(

ẋ
ṗ

)
= H

(
x
p

)
+ r(x, p) (17)

where H is

H =
(

A−BR−1ST − 1
2BR

−1BT

−2(Q− SR−1ST ) −(A−BR−1ST + λI)T

)
and

r(x, p) =(
Bu∗,h + Fh

(
x, u∗(x, p)

)
−2Su∗,h − Lh;x

(
x, u∗(x, p)

)
− Fh;x

(
x, u∗(x, p)

))
It can be shown that by using the nonsingular real linear
transformation (

y
q

)
= M

(
x
p

)
where

M =
(
I − 2Q∗P Q∗

2P −I

)
, M−1 =

(
I Q∗

2P 2PQ∗ − I

)
the system (17) is transformed into(

ẏ
q̇

)
=
(
Ac 0
0 −(Ac + λI)T

)(
y
q

)
+ rM (y, q) (18)

where
rM (y, q) = Mr

(
M−1(y, q)

)
The expression for Ac is given by

Ac = A+BD∗, D∗ = −R−1(ST +BTP )

where P and Q∗ are the positive definite solutions to (10a)
and

0 = (Ac + 1
2λ)Q∗ +Q∗(Ac + 1

2λ)T + 1
2BR

−1BT

respectively. This means that if the ARE (10a) has a solution
that satisfies condition (11) with D given by (10b), the
nonlinear Hamiltonian system can divided into two parts
corresponding to y and q in (18). The linearization of the
y-part has eigenvalues that satisfy condition (11), while
the q-part has all eigenvalues to the right of −λ/2 in the
complex plane. Then, it can be shown that there exists an n-
dimensional stable manifold, described by a function p∗(x),
on which the required convergence rate is obtained given
that the eigenvalues of Ac, i.e., the system matrix for the
closed loop system, satisfies the condition (11). In the other
n-dimensions, the solution will not have this property, which
means that the performance criterion will diverge for those
directions.
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The step that closes the existence proof is then that if the
control law is chosen as u∗(x0, p∗(x0)), it can be shown that
Vx(x0) = p∗(x0) for x0 in a neighborhood of the origin. It
means that since u∗(x0, p∗(x0)) is the solution to (15) with
p = p∗(x0), it follows that

0 = Fu
(
x0, u∗(x0)

)
Vx(x0) + Lu

(
x0, u∗(x0)

)
and since u∗(x0, p∗(x0)) satisfies the condition in Assump-
tion 3, it follows from (14) that

0 = λV (x0) + F
(
x0, u∗(x0)

)
Vx0(x0) + L

(
x0, u(x0)

)
where we have used the definition that V (x0) = J(x0, u∗).

The equations (10) and (12) used to compute the solution
are then obtained by analyzing the terms of order m and
m − 1 of (8a) and (8b), respectively. These two equations
are polynomial in x and have to be satisfied for x in a
neighborhood of the origin. Therefore, the coefficients for
different orders in x all have to be zero. Then if m = 2
is considered, the obtained equations become (10) while for
m ≥ 3, the outcome are the equations in (12).

The theorem above is formulated in terms of the
ARE (10a). The following lemma shows some typical situa-
tions when the ARE has a solution satisfying the conditions.

Lemma 1: Consider the ARE (10a). Assume the assump-
tions in Theorem 1 are satisfied. Then there exists a unique
positive semi-definite solution such that the eigenvalues of
A+BD satisfies condition (11) if
• λ = 0: (A,B) is stabilizable.
• λ > 0: (A,B) is controllable or (A + 1

2λI,B) is
stabilizable.

• λ < 0: (A+ 1
2λI,B) is stabilizable or (A,B) control-

lable, and the solution yields eig(A+BD) < 0.
Proof: See for example [13] and [12].

Note that under the assumptions about stabilizability or
controllability made above, it is ensured that there exists
a unique positive semi-definite solution such that with D
in (10b), the eigenvalues of A + BD will have real parts
less than −λ/2 (which is necessary in order to obtain
a convergent performance criterion). However, in the case
when λ < 0, it means that the eigenvalues need not satisfy
condition (11) and an extra condition is therefore added in
the lemma. Since the extra condition is included, it is not
guaranteed from the problem data that a solution exists.
However, at least in randomly generated problems, it actually
seems to happen quite often. For these cases the optimal
feedback law is found.

The optimal solution can be computed recursively order
by order. First the lowest order terms are obtained by solving
(10) as

u
[1]
∗ (x) = D∗x, V [2](x) = xTPx

and having these, the higher order terms in V (x) and u∗(x)
are obtained uniquely from (12), in the sequence

V [3](x), u[2]
∗ , V

[4](x), u[3]
∗ , . . .

to any order, see [3] or [7]. Furthermore, as can be seen the
optimal solution becomes time-invariant.

Note that the equations obtained from the higher order
terms in (12) are linear in the coefficients from V [m] and
u

[m−1]
∗ , both separately and simultaneously. If solved recur-

sively, rather high orders can be computed. However, the size

of the set of equations grows rather fast with the number
of states which limits the size of the problems that can be
handled. Another small note is that it is not necessary to have
a system that is analytic. If the model is Cr it has been shown
in [6] that the optimal return function up to Cr−2 exists and
can be computed as above.

IV. THE DAE MODEL CASE

To solve the optimal control problem described by (1)
and (2), the problem is rewritten as the following equivalent
optimal control problem

V (x1,0) = inf
u(·)

∫ ∞
0

L̂(x1, u)eλt dt

subject to the dynamics

ẋ1 = L(x1, u)

where L is given by (3a) and

L̂(x1, u) = L
(
x1,R(x1, u), u

)
(19)

This reformulation can always be done because of Assump-
tion 1. Then, in principle, the optimal control problem is a
standard problem in the state variables x1 and state-space
theory is applicable. However, as mentioned earlier, there
is a major computational barrier, namely that L and R are
usually not explicit. However, Assumptions 1 and 2 ensure
the existence of convergent power series of L(x1, u) and
R(x1, u), and using the method in the following section,
these power series can be computed to any order.

A. Power Series Expansion of the Reduced Problem
A keystone in the derived method for solving optimal

control problems for nonlinear DAE models is that the power
series expansions of R(x1) and L(x1, u) can be computed
recursively. Let

ẋ1 = L(x1, u) = L[1](x1, u) + Lh(x1, u) (20a)

x3 = R(t, x1, u) = R[1](x1, u) +Rh(x1, u) (20b)

where both Lh(x1, u) and Rh(x1, u) contain terms in x1

and u beginning with order two.
From (4b) the series expansion of F̂2 is given by

F̂2(x1, x3, u) = A21x1 +A22x3 +B2u+ F̂2h(x1, x3, u)

By combining this equation with (20b), it follows that

0 = A21x1 +A22

{
R[1](x1, u) +Rh(x1, u)

}
+B2u+ F̂2h

(
x1,R[1](x1, u) +Rh(x1, u), u

)
The equation above has to be satisfied for all (x1, u) in a
neighborhood of the origin, which means that the first order
term of R(x1, u) will be given by

R[1](x1, u) = −A−1
22 A21x1 −A−1

22 B2u (21)

since all other terms are of higher order than one. Further-
more, since F̂2h(x1, x3, u) has an order of at least two, it
follows that

F̂
[m]
2h

(
x1,R(x1, u), u

)
=

F̂
[m]
2h

(
x1,R[1](x1, u) + . . .+R[m−1](x1, u), u

)
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This makes it is possible to derive a recursive expression for
a general order term of R(x1, u) as

R[m](x1, u) = −A−1
22 F̂

[m]
2h

(
x1,R[1](x1, u)+. . .+R[m−1], u

)
In the same way, (4a), i.e.

F̂1(ẋ1, x1, x3, u) =

− E1ẋ1 +A11x1 +A12x3 +B1u+ F̂1h(ẋ1, x1, x3, u)

can be combined with (20) yielding the equation

0 = −E1L[1](x1, u)− E1Lh(x1, u) +A11x1

+A12

(
R[1](x1, u) +Rh(x1, u)

)
+B1u

+ F̂1h

(
L[1](x1, u) + Lh(x1, u), x1,R[1](x1, u)

+Rh(x1, u), u
)

By assumption E1 is nonsingular and for notational reasons,
it will in the sequel of this paper, be assumed that it is an
identity matrix. The first term in L(x1, u) is obtained as

L[1] = A11x1 +A12R[1](x1, u) +B1u = Âx1 + B̂u

where

Â = A11 −A12A
−1
22 A21, B̂ = B1 −A12A

−1
22 B2

and the second equality is obtained using (21). Since
F̂1h(ẋ1, x1, x3, u) contains terms of at least order two it
follows that

F̂
[m]
1h

(
L(x1, u), x1,R(x1, u), ux

)
=

F̂
[m]
1h

(
L[1](x1, u) + . . .+ L[m−1](x1, u), x1,

R[1](x1, u) + . . .+R[m−1](x1, u), u
)

which shows that higher order terms in L(x1, u) can be
computed recursively using the expression

L[m](x1, u) = A12R[m](x1, u)+

F̂
[m]
1

(
L[1](x1, u) + . . .+ L[m−1](x1, u), x1,

R[1](x1, u) + . . .+R[m−1](x1, u), u
)

The equations to find the coefficients of R and L will
be linear in the m:th order coefficients. It means that if
the equations are solved recursively, the computation can be
carried out rather fast. However, if the number of variables
in either x1 or x3 are large, the number of equations will
grow rapidly. For physical systems, the DAE model is often
semi-explicit and can be written as

ẋ1 = F̂1(x1, x3, u), 0 = F̂2(x1, x3, u)

The computations above can then be simplified substantially,
since the power series of L(x1, u) is obtained, without
solving any equations, as the composition of the power series
of F̂1 and R.

Having the power series expansions ofR(x1, u), the series
expansion of (19) can be computed as

L̂(x1, u) = ( x1
u )T ΠT

(
Q S

ST R

)
Π ( x1

u ) + L̂h(x1, u)

= ( x1
u )T

(
Q̂ Ŝ

ŜT R̂

)
( x1
u ) + L̂h(x1, u) (22a)

where
Π =

(
I 0

−A−1
22 A21 −A−1

22 B2
0 I

)
(22b)

and

L̂h(x1, u) =
= Lh(x1,R(x1, u), u) + 2xT1 Q12Rh(x1, u)

+ 2R[1](x1, u)Q22Rh(x1, u) + 2uTS2Rh(x1, u)
+Rh(x1, u)TQ22Rh(x1, u) (22c)

B. Existence and Computation of the Solution
Now when the series expansions of L andR are computed,

the method in Section III can be used. That is, Theorem 1
can be modified to the nonlinear DAE case as follows.

Theorem 2: Consider the optimal control problem (1) and
(2). Assume that it satisfies Assumptions 1 and 2. Further-
more, assume that the quadratic part of the cost function
satisfies

(
Q̂ Ŝ

ŜT R̂

)
� 0. Then an optimal feedback law u∗(x)

satisfying Assumption 3 exists if the ARE

0 = (Â+λ
2 I)TP+P (Â+λ

2 I)−(PB̂+Ŝ)R̂−1(PB̂+Ŝ)T+Q̂
(23a)

has a unique positive-semidefinite solution such that the
matrix Â+ B̂D with D given by

D = −R̂−1(ŜT + B̂TP ) (23b)

satisfies
Re eig(Â+ B̂D) < min(0,−λ2 )

The higher higher order terms are given by (12) with the
system and cost function replaced by L(x1, u) and L̂(x1, u),
respectively.

Proof: Follows from Theorem 1 after reformulation of
the DAE model as state-space system. For this model, the
power series can be computed to any order.
Some cases for which the ARE (23a) has solutions satisfying
the conditions is provided by Lemma 1. The solution is
computed in the same manner as described in Section III
That is, the optimal solution can be found recursively and in
this case, the sequence becomes

V̄ [2](x1), u[1]
∗ (x1), R[1](x1, u

[1]
∗ ), L[1](x1, u

[1]
∗ ) . . . (24)

In the Theorem 2, one possible approach to compute the
optimal solution was described, namely to first find the power
series ofR(x1, u) and L(x1, u) and then use (12) to compute
the solution. The main motivation for choosing this approach,
is that it makes it easier to prove existence. However, it is
also possible, as shown in [7], to use the following equivalent
set equations

0 = Lu − Vx1 F̂
−1
1;ẋ1

F̂1;u

−
(
Lx3 − Vx1 F̂

−1
1;ẋ1

F̂1;x3

)
F̂−1

2;x3
F̂2;u (25a)

0 = L+ λV + Vx1 ẋ1 (25b)

0 = F̂1 (25c)

0 = F̂2 (25d)

where L is evaluated in (x1, x3, u), V in (x1), F̂1 in
(ẋ1, x1, x3, u) and F̂2 in (x1, x3, u). The advantage with
this is that one solves for V (x1), u∗(x1), L(x1) and R(x1)
simultaneously which for certain systems can simplify the
computations. For more details see [7].
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C. Conditions on the Original Cost Function
The conditions in Theorems 2 are expressed in terms of the

reduced optimal control problem, e.g., Â, B̂ and Q̂. However,
in some cases these conditions can be translated to conditions
on the original data. First consider the condition(

Q̂ Ŝ

ŜT R̂

)
� 0 (26)

Since the variable transformation matrix Π in (22b) has full
column rank, it follows that(

Q S

ST R

)
� 0 ⇒

(
Q̂ Ŝ

ŜT R̂

)
� 0

However, note that the arrow only goes in one direction
and the cost matrix (26) may be positive definite also for
indefinite matrices in the original problem.

In some cases, it is not desired to penalize the variables
x3. In these cases the cost matrix is given by(

Q̂ Ŝ

ŜT R̂

)
= ΠT

(
Q11 0 S1
0 0 0
ST

1 0 R

)
Π =

(
Q11 S1

ST
1 R

)
which means that if the cost matrix for x1 and u is positive
definite, the cost matrix for the reduced system is too.

V. EXAMPLE

u(t) L
R C

i(t)

uC(t)

uL(t)

uR(t)

Fig. 1. Electrical ciruit

In order to illustrate the method a small example, namely
an electrical circuit. The circuit, which can be seen in
Figure 1, consists of an ideal voltage source, an inductor with
a ferromagnetic core, a capacitor and a resistor. Because of
the ferromagnetic core, the flux of the inductor saturates for
large currents. The complete model can then be written as

u̇C = i
1+10−2uC

(27a)

Φ̇ = uL (27b)
0 = Φ− arctan(i) (27c)
0 = uR − i− i3 (27d)
0 = u− uR − uC − uL (27e)

where uC is the voltage over the capacitance, Φ is the flux,
uL is the voltage over the inductor, i is the current, uR
is the voltage over the resistor and u is the voltage over
the voltage source. The dynamic variables are in this case
chosen as x1 = (uC ,Φ) and the algebraic variables are
x2 = (i, uL, uR). The control input is the voltage over the
voltage source u. This model satisfies Assumptions 1 and 2.
The cost function is chosen as

L(uC ,Φ, i, uL, uR) = i2 + i4 + 1
2u

2

Figure 2 shows the corresponding solution for uc(t) when
the third order approximation of the optimal feedback law
is used. The initial conditions for the dynamic variables are

chosen as uc(0) = 0.5 and Φ(0) = −0.5, while the other
variables are chosen consistently. The different curves are:
λ = 3 (dashed), λ = 0 (dotted) and λ = −3 (solid). As can
be seen, the convergence time increase when λ decrease, i.e.,
a more negative λ yields a longer settling time.

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

u
c

Fig. 2. The solution uc(t) for the mathematical example with the initial
condition uc(0) = 0.5, Φ(0) = −0.5 and the other variables chosen
consistently. The cases are λ = 3 (dashed), λ = 0 (dotted) and λ = −3
(solid).

VI. CONCLUSIONS

In this paper, it has been shown that for models described
by convergent power series, it is possible to include a dis-
count factor in the cost function and still a time-invariant and
real analytic optimal solution is ensured to exist under certain
regularity conditions. Furthermore, a recursive method to
find the optimal solution is presented. Finally, the method
is extended to also handle nonlinear DAE models.
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