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Abstract— Time-varying graphs are widely used to model
communication and sensing in multi-agent systems such as mo-
bile sensor networks and dynamic animal groups. Connectivity
is often determined by the presence of neighbors in a sensing
region defined by relative position and/or bearing. We present a
method for calculating the effective sensing region that defines
the connectivity between agents undergoing periodic relative
motions. This method replaces time-varying calculations with
time-invariant calculations which greatly simplifies studies of
connectivity and convergence of consensus algorithms. We apply
the technique to the case of agents moving in a common fixed
direction with sinusoidal speed oscillations and fixed relative
phases. For agents moving in a straight line, we show analyti-
cally how to select dynamics for fast convergence of consensus.
Further numerical results suggest graph-level connectivity may
be achieved with a sensing radius lower than that predicted by
percolation theory for agents with fixed relative positions.

I. INTRODUCTION

Cooperative dynamics of multi-agent systems depend on

information passing among agents; individuals use the feed-

back from others to modify their own dynamics [1], [2],

[3]. In mobile networks, the passing of information can be

implicit or explicit. For example, studies of animal aggrega-

tions typically assume an implicit communication network

generated by individual sensing capabilities [4]. In the design

of robotic systems, predefined rules for agent interaction

might be in place to determine an explicit communication

network [5]. However, in both the natural and engineered

settings, it is common for the flow of information from one

individual to another to be limited by their pairwise relative

position and/or bearing. In a mobile sensor network, power

consumption may limit the range of communication. In a

school of fish, forward-looking vision may limit the ability

of a fish to sense those to its rear.

In these sensory networks, spatial dynamics of agents cou-

ple directly with information passing: the spatial dynamics

determine the communication network, i.e., which agents can

sense which other agents, as a function of time, and the

resulting time-varying communication network influences the

dynamics of the motion of the agents through feedback. It

is thus of great interest to explore this coupling in order

to understand what kind of relative motion dynamics leads

to high performance cooperative group behavior. In the

engineered setting we seek to design individual feedback

dynamics that lead to high performance and in the natural
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setting we seek to understand how animals organize their

relative motion and why.

In this paper we consider agents that undergo fixed peri-

odic relative motion with common period T and have a finite

sensing region. We define a method to compute effective

sensing regions. These effective sensing regions determine a

single static graph into which we are able to map calculations

of the original time-varying graph’s properties.

We compute explicitly the effective sensing region for

agents undergoing straight-line motion with sinusoidally

time-varying speed. These dynamics are motivated by ex-

perimental observations of fish schooling with periodic speed

profiles exhibiting phase coordination [6] and a subsequent

study that suggests benefits of these oscillations to informa-

tion passing and spatial motion pattern generation [7].

To illustrate the utility of this tool, we analyze two

specific scenarios involving this type of relative motion.

First, we determine connectivity conditions and analyze the

convergence rate for a consensus algorithm executed over

evenly distributed agents. We show that the convergence

rate of such a system is maximized when nearest neighbors

are antisynchronized. Furthermore, we show that for fixed

parameters there is a particular frequency of oscillation that

optimizes the convergence rate. We then utilize the effective

sensing regions to make manageable a numerical study of

spatially randomly distributed agents. We then consider the

framework of graph percolation [8], [9], which is used to

study connectivity in sensor networks for randomly placed

fixed sensors with fixed sensing radius [10], [11]. Our study

indicates that connectivity is improved greatly for agents with

periodic relative motion.

The network model is described in Section II. In Sec-

tion III we present our method for computing effective

sensing regions for agents with periodic relative motion.

These are computed for straight-line motion in Section IV.

In Section V we apply the method to study connectivity and

performance.

II. MODEL

A. Particle Model

We consider a group of N individual agents and model

each as a particle with unit mass. In this paper we restrict

motion to the plane and identify R
2 with C. For k =

1, . . . , N , let rk ∈ C denote the position of particle k and

fk ∈ C the total external force on particle k. Let αk = |ṙk|
be the speed of particle k and for αk 6= 0, let θk ∈ S1 be

the direction of motion of particle k relative to an inertial
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frame (also referred to as its orientation). For particle k, we

express the velocity as

ṙk = αkeiθk (1)

and hence the dynamics are

r̈k =
(

α̇k + αkθ̇ki
)

eiθk (2)

for k = 1, . . . , N . The first term on the right of (2) is the

component of force in the direction of motion and the second

term is the component of force normal to velocity.

We are particularly interested in motions that result from a

periodically time-varying speed profile. We consider control

forces that produce a speed profile of the form

αk(t) = 1 + µ cos φk(t) (3)

where 0 ≤ µ < 1 is the amplitude of oscillations, we refer to

φk ∈ S1 as the speed phase, and, without loss of generality,

we have assumed that the mean speed is 1. We assume that,

in the absence of external influences, φ̇k = Ω. Here we

consider only θ̇k = 0, but in [7] and a forthcoming paper

we describe and design control laws for the novel family of

trajectories generated when θ̇k 6= 0 and for a more general

family of periodic speed profiles.

B. Communication Model

Here we formally review the terms and notions from

graph theory and consensus dynamics that we use throughout

this paper, following [5], [2], and we introduce notation for

periodically time-varying graphs.

The interaction network between N agents is defined by

a time-varying directed graph G(t) = {V, E(t), A(t)} with

node set V = {1, . . . , N}, time-varying edge set E(t) ⊆
V×V and adjacency matrix A(t). We consider each node to

represent one agent such that when agent k can sense agent

j at time t, there is an edge (j, k) ∈ E(t). A(t) is defined

such that element Akj(t) ≥ δ for some δ > 0 when (j, k) ∈
E(t). The interactions for agent k at time t are calculated

over the neighborhood set Nk(t) = {j ∈ V : (j, k) ∈ E(t)}.

The Laplacian matrix L(t) associated with the graph G(t)
is defined by its elements as Lkj =

∑

i Aki, j = k and

Lkj = −Akj , j 6= k. When the context is clear, we use

L = L(G) and G interchangeably.

For the case of a time-invariant graph, i.e., G(t) = G,

the graph G is strongly connected (resp. weakly connected)

if and only if any two distinct nodes can be connected by

a path that respects (resp. does not necessarily respect) the

edge directions of the graph. An undirected graph G (every

edge bi-directional) that is weakly connected is also strongly

connected and so we call it a connected graph.

Now consider a time-interval I and a time-varying graph

G(t). The time-invariant graph ḠI corresponding to the graph

G(t) over the interval I is ḠI =
{

V, Ē , Ā
}

where Ē =
∪t∈IE(t) and Ā the adjacency matrix corresponding to Ē
with weights proportional to the time duration of edges. We

say that G(t) is strongly connected over the interval I if ḠI is

strongly connected. Further, a node k is said to be connected

to node j (j 6= k) in the interval I if there is a path from

k to j in ḠI that respects edge directions. The time-varying

graph G(t) is uniformly connected if there exists an index

k and a time horizon T > 0 such that, for all t, node k is

connected to all other nodes in the interval I = [t, t + T ]. It

follows that a graph G(t) is uniformly connected if the graph

ḠI is strongly connected for all intervals I of length T .

We say that a graph is periodic with period T if G(t+T ) =
G(t) for all t. If a graph is periodic and strongly connected

over any interval of length T , then it is uniformly connected

with a horizon T . We write ḠT to denote the graph ḠI for

any I = [t, t + T ], t > 0.

Uniform connectedness of a directed, time-varying graph

is a useful property since it provides a sufficient condition

for global convergence of linear consensus dynamics [5]:

ẋ = −L(t)x (4)

where x =
[

x1 . . . xN

]T
and xk, k ∈ 1, . . . , N , is a

scalar quantity updated by agent k. Uniform connectedness

can also be used to prove global convergence of synchro-

nization problems on nonlinear spaces (e.g., on the N -torus)

when auxiliary consensus variable dynamics are included

[12].

When G is time-invariant, the convergence rate of the

consensus dynamics can be described precisely by the second

smallest eigenvalue λ2 of L(G), which is also called the

algebraic connectivity or the Fiedler constant of G [13], [14].

However, when G(t) is time-varying, the convergence rate

is typically difficult to compute. Different approaches have

been followed to estimate the convergence rate by utilizing

the fact that L(t) is taken from a compact set of matrices.

Notions in matrix theory, such as the joint spectrum radius

and scrambling constants, have been used to lower bound the

convergence rate [15], [3]. We show below how in the case

of agents undergoing periodic relative motion, the effective

sensing regions we define and the periodicity of the time-

varying graph can be used to compute the convergence rate.

C. Sensing Regions

Sensing regions define the mapping between spatial con-

figuration of agents and their neighbor relationships, i.e. the

communication graph. Let Γ ⊂ C be the sensing region

template defined as the set of points in C sensed by a particle

fixed at the origin with its direction of motion pointing along

the real axis. Fig. 1(a) shows an example with finite sensing

radius ρ combined with rear blind-angle 2β. We define the

sensing region of agent k at time t (called the perceptual

zone in [16]) as the set Γk(t) ⊂ C of points sensed by an

agent located at rk(t) with orientation θk(t). Assuming that

all agents share a common fixed sensing region template Γ,

we have, for k = 1, . . . , N that

Γk(t) = eiθk(t)Γ + rk(t)

:= {x ∈ C | (x − rk(t))e−iθk(t) ∈ Γ}.

An agent j is therefore in Nk(t) if and only if rj ∈ Γk(t).
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Fig. 1. (a) Example sensing region template Γ for a limited sensing radius
ρ with rear blindspot with half-angle β. (b) Illustration of Γk = eiθkΓ+rk

for Γ as defined in (a).

III. EFFECTIVE SENSING REGIONS FOR

PERIODIC RELATIVE MOTIONS

In this section we show how to compute connectedness

properties of a time-varying communication graph associated

with periodic relative motion. The approach is to map

the system with N time-varying sensing regions Γk(t) to

an equivalent system with N2 − N time-invariant sensing

regions Γ̄jk, j 6= k, where Γ̄jk is defined below.

Consider a group of N agents undergoing periodic relative

motion with period T . That is, for all t and for each pair j, k
we have rjk(t) = rjk(t + T ) where rjk(t) = rj(t) − rk(t).
Define the average relative position r̄jk as

r̄jk =
1

T

∫ T

0

rjk(τ)dτ. (5)

We define the effective sensing region such that there exists

a t∗ > 0 for which

rj(t
∗) ∈ Γk(t∗) ⇔ r̄jk ∈ Γ̄jk.

Because sensing over a period of motion depends upon

the relative phases of motion between neighbors, we must

calculate an equivalent sensing region for each pair of agents

k and j, j 6= k, which implies N2 − N sensing regions.

However, when sensing is isotropic and hence undirected

(for example in the case of a limited sensing range only),

we need only compute (N2 − N)/2 sensing regions.

Recall that j ∈ Nk(t) if and only if rj(t) ∈ Γk(t), which

(by definition) is equivalent to

rjk(t) ∈ Γeiθk(t). (6)

Given that rjk(t) = r̄jk(t) + (rjk − r̄jk), we can rewrite (6)

as

r̄jk ∈ Γeiθk(t) − (rjk(t) − r̄jk) .

Because relative motions are periodic, the communication

graph is also periodic. For uniform connectivity of this

graph we consider the associated time-invariant graph ḠT =
{V, Ē , Ā}. Assuming that the relative trajectories are suitably

smooth and that Γ is an open set, (j, k) ∈ Ē if and only if

r̄jk ∈
⋃

t∈[0,T )

(

Γeiθk(t) − (rjk(t) − r̄jk)
)

, Γ̄jk (7)

where we define membership in the union of time-varying

regions R(t) over a time interval I as x ∈
⋃

t∈I R(t) ⇔
x ∈ R(t) for some t in the interval I .

We call the time-invariant region Γ̄jk ⊂ C the effective

sensing region for the pair (j, k). This region can be found

by taking the union, over any period of motion T , of the

template sensing region Γ aligned with the velocity of agent

k and shifted (negatively) by rjk(t) − r̄jk.

We have shown the following.

Theorem 1: Consider N agents undergoing periodic rela-

tive motion with period T . Let the sensing region template

for each agent be given by Γ, which determines the corre-

sponding periodically time-varying graph G(t). The associ-

ated time-invariant graph over any time interval [t, t + T ],
denoted ḠT = {V, Ē , Ā}, is determined by computing the

N2 −N edges ((N2 −N)/2 if Γ defines isotropic sensing)

as follows:

(j, k) ∈ Ē ⇔ r̄jk ∈ Γ̄jk.

Further, G(t) is uniformly connected if ḠT is strongly

connected.

IV. STRAIGHT-LINE MOTIONS WITH

SINUSOIDAL SPEED

Here we apply the above methods to the case of straight-

line motions with sinusoidally oscillating speed: we use the

model (1), (3) with θ̇k = 0. We consider communication or

sensing that is limited by a distance ρ > 0, i.e., (j, k) ∈
E(t) if and only if |rjk(t)| < ρ. The group is assumed to

be arranged initially with parallel headings. Without loss of

generality, let θ1(0) = θ2(0) = . . . = θN (0) = 0. We apply

the formula (7) to obtain effective sensing region Γ̄jk.

Simply integrating the dynamics (1) with speed (3) gives

the position

rk(t) = t + r̄k +
µ

Ω
sinφk(t) (8)

where φk(t) = Ωt + φk(0) and r̄k = rk(0) − µ
Ω sinφk(0) is

the average location of rk(t) − t. The position of particle j
relative to particle k is

rjk(t) = rj(t) − rk(t) = r̄jk +
µ

Ω
(sinφj(t) − sinφk(t))

where r̄jk = r̄j−r̄k is the average relative position as defined

by (5) over the period T = 2π/Ω. Let φjk = φj(t)−φk(t) =
φj(0)−φk(0) and ϕjk(t) = φj(t)+φk(t) = 2Ωt+φj(0)+
φk(0), then

rjk(t) − r̄jk = 2
µ

Ω
sin

φjk

2
cos

ϕjk(t)

2
. (9)

Because the headings of all agents are equal and zero, we

need only take the union in (7) over the relative translations.

Thus, by (9), the center of Γ translates along the real axis

with an oscillation of amplitude 2 µ
Ω sin

φjk

2 centered about

the origin. The union over these translations gives the region

illustrated in Fig. 2.

The description of Γ̄jk is in terms of relative speed phase

φjk, speed oscillation frequency Ω and amplitude µ and

radius ρ of sensing region template Γ. By Theorem 1,
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∣

∣
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Fig. 2. Illustration of the effective sensing region Γ̄jk for motion as
described in Sec. IV as a function of relative speed phase φjk , speed
oscillation frequency Ω and amplitude µ and radius ρ of sensing region
template Γ (also shown).

(j, k) ∈ Ē if and only if r̄jk ∈ Γ̄jk and by isotropy of the

sensing region, (j, k) ∈ Ē if and only if (k, j) ∈ Ē . Thus, by

checking these (N2 −N)/2 conditions we can determine if

G(t) is uniformly connected.

V. CONNECTIVITY AND CONSENSUS IN

STRAIGHT-LINE MOTION WITH SINUSOIDAL

SPEED

Here we apply the results of Section IV to two scenarios.

In the first, motion takes place in a highly ordered configu-

ration and we analyze consensus convergence rates in terms

of motion parameters. In the second, agents are distributed

randomly and we observe the effects of relative motion on

connectivity.

A. Connectivity of Ordered Agents Oscillating in a Line

Consider N agents arranged along a straight line such that

their average positions are evenly spaced. Their velocity is

described by (1) with speed (3). The position of each agent

is given by (8) with r̄k = (k − 1)a for k = 1, . . . , N and

some constant a > 0 (see Fig. 3(a)). We assume that

2
µ

Ω
+ ρ > a > max

{µ

Ω
+

ρ

2
, ρ
}

, (10)

so that 1) a > ρ guarantees that constant connectivity of the

graph is impossible, 2) a > µ
Ω + ρ

2 guarantees that each agent

can become a neighbor of only the agents immediately to its

left and right, and 3) a < 2 µ
Ω +ρ guarantees that connectivity

is at least possible.

Due to the ordered nature of the problem, it is possible

to generalize a case of small N . Accordingly, we specialize

to the case of N = 4 agents. Additionally we assume that

the first and third agents’ speeds are synchronized and the

second and fourth agents’ speeds are synchronized. Without

loss of generality, we let φ1(0) = φ3(0) = 0 and φ2(0) =
φ4(0) = φ.

Let xk(t) ∈ R be the value at time t from agent k of a

scalar quantity of interest, and consider the linear consensus

dynamics (4), where L(t) is the Laplacian matrix generated

by the graph G(t) corresponding to communication limited

by the sensing radius ρ. We show here that the convergence

rate of (4) is maximized if nearest neighbors are exactly out

of phase (φ = π) and that there is a nontrivial frequency

Ω, for φ = π, that maximizes convergence rate. All of

a a a

2ρ

0 0φ φ

(a)

a a a

2ρ

0 0φ φ

(b)

Fig. 3. (a) Illustration of the ordered in-line setup of Section V-A. Agents
with sensing radius ρ are evenly distributed with spacing a along a line,
every other agent is phase locked, and the phase difference between the
first and second agents is φ. (b) Modification of the setup (a) in which a
two-dimensional lattice is generated by vertical offsets. Note that in these
figures the regions enclosed by dashed lines represent the area covered by
a single agent as it traverses its path and not the effective sensing region
(although they share a common shape).

these results are with respect to the following definition of

convergence rate:

Definition 1: Let L(t) be the Laplacian matrix of an

undirected graph that is uniformly connected so that the

consensus dynamics (4) converge to a vector xf = 1x̄ where

1 is the vector of ones and x̄ ∈ R [5]. The convergence rate

σ is the supremum over all σ̄ > 0 for which there exists a

β > 0 such that

‖x(t) − xf‖ ≤ βe−σ̄t (11)

for all initial conditions x(0) ∈ R
N .

We next review stochastic matrices. A square matrix M
is stochastic if it has nonnegative elements and M1 = 1.

The class of N × N stochastic matrices is closed under

multiplication [17]. Additionally, for a finite sequence of

graphs Li, i = 1, . . . , n, with ∪iLi strongly connected,

the matrix product e−L1a1 · · · e−Lnan for scalars ai ≥ 0,

i = 1, . . . , n, is a stochastic matrix with a single largest

eigenvalue equal to 1 and the remaining eigenvalues in the

interior of the unit circle in the complex plane [18].

We can show the following.

Theorem 2: Let G(t) be a graph that is piecewise constant

and periodic with period T = 2π
Ω . Define the finite sequence

of Laplacians L1, . . . , Ln and time intervals ∆t1, . . . ,∆tn
with

∑n
i=1 ∆ti = T such that for some ti ∈ [0, T ], we

have L
(

Ḡ[ti+ℓT,ti+1+ℓT )

)

= Li where ℓ = 0, 1, . . ., ti =
ti−1 + ∆ti, i = 0, 1, . . . , n − 1, and G(t) is constant over

[ti +ℓT, ti+1+ℓT ). Assume that ∪iLi is strongly connected.

The convergence rate of (4) calculated over G(t) is given by

σ = −
Ω

2π
log m2 (12)

where m2 is the second largest eigenvalue of the matrix M =
e−Ln∆tn · · · e−L1∆t1 .
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Proof: The solution to (4) for qT < t < (q +
1)T is given by x(t) = M2M

qM1x(0), where M =
e−Ln∆tn · · · e−L1∆t1 and M1 and M2 account for the frac-

tions of a period before and after the q complete cycles

over the n graphs. For large q, the term Mq dominates

the convergence rate [3]. Since ∪iLi is strongly connected,

limq→∞ Mqx(0) = 1x̄ for some scalar x̄. Let L =
− Ω

2π
log M , then limq→∞ e−LqT x(0) = 1x̄ and hence the

convergence rate in time is determined by the second smallest

eigenvalue λ2 of L, where λ2 = − Ω
2π

log m2.

Depending upon the relative phasing φ, there are either 1
or 3 piecewise constant graphs over a single period of the

above-described motion. Referring to Fig. 2, we see that there

is no connectivity when

∣

∣

∣
sin φ

2

∣

∣

∣
≤ Ω(a−ρ)

2µ
, in which case the

communication graph is constant and null. For

∣

∣

∣
sin φ

2

∣

∣

∣
>

Ω(a−ρ)
2µ

, the communication graph cycles between the null

graph L1 = 0, the graph L2 with undirected edges (1, 2)
and (3, 4), and the graph L3 with the single undirected edge

(2, 3). The case of zero connectivity is uninteresting, so we

consider only the latter two cases.

To apply Theorem 2, we need also to compute the times

∆t2 and ∆t3 corresponding to the time-durations of L2 and

L3. To do so we use the effective sensing region calculation

method. From (9) the relative positions r21 and r43 oscillate

with amplitude 2 µ
Ω sin φ

2 with frequency Ω about the mean

distance a. Since the phase difference between agents 2 and 3
is 2π − φ and sin 2π−φ

2 = sin φ
2 , r32 undergoes an identical

oscillation with a different phase. Therefore ∆t2 = ∆t3.

The corresponding phase length ∆φ = Ω∆t2 = Ω∆t3 can

be determined by finding where r21 = ρ. By our choice

of range for a, 0 < ∆φ < π with the range being evenly

distributed about the minimum distance. Therefore, we have

∆t2 = ∆t3 =
∆φ

Ω
=

2

Ω
cos−1

(

Ω(a − ρ)

2µ sin φ
2

)

, (13)

where we take only the solution of cos−1 in the range (0, π).
Note that (13) has a solution for all of the cases of interest

(i.e. where there is connectivity).

We can now state the following:

Corollary 1: Consider N = 4 agents with sinusoidal

motion defined by (8) with φ1(0) = φ3(0) = 0 and φ2(0) =
φ4(0) = φ. Each agent senses in a circle of radius ρ where ρ
satisfies (10). The rate of convergence of consensus dynamics

(4) is maximized with respect to the phase offset φ when

φ = π, i.e., when every agent’s oscillations are exactly out

of phase with its nearest neighbors.

Proof: We have shown that, when connectivity is estab-

lished, the system cycles periodically through three graphs

L1 = 0, L2 and L3 where L2 has only the edge (2, 3)
and L3 has edge set (1, 2), (3, 4). The second and third

graphs have time durations ∆t2 = ∆t3 given by (13).

Because L1 is the zero matrix, M = e−L2∆t2e−L3∆t3 . Since

MT = e−L3∆t3e−L2∆t2 , the eigenvalues are independent of

the order of graphs L2 and L3. We compute

m2 = e−2∆t2

(

cosh2 ∆t2 +

√

cosh4 ∆t2 − 1

)

. (14)

By Theorem 2, the convergence rate is given by σ =
− Ω

2π
log m2, which by (14) is monotonically increasing in

∆t2. For a fixed Ω, ∆t2, and likewise the convergence rate,

is maximized when φ = π.

From (12), (14), and (13), we see that the convergence

rate and the frequency of motion Ω are closely related. In

fact, we may state the following.

Corollary 2: Given the same hypotheses as Corollary 1,

the rate of convergence to consensus is maximized with

respect to the frequency of motion Ω for some a−ρ
2µ

≤ Ω <

2
µ sin φ

2

a−ρ
.

Proof: As Ω → 0, (12) shows that the convergence

rate decays to zero. For Ω = 2
µ sin φ

2

a−ρ
, there is no solution to

(13), that is, connectivity is lost and hence the convergence

rate is zero. For all intermediate frequencies, the convergence

rate is positive. Therefore, at least one local maximum must

exist between Ω = 0 and Ω = 2
µ sin φ

2

a−ρ
. The lower bound

a−ρ
2µ

prevents failure of the assumption that communication

is only with immediately adjacent neighbors.

Fig. 4(a) shows an example convergence rate σ as a

function of Ω for a = 1, µ = 0.5, ρ = 0.5, and φ = π.

The lower bound a−ρ
2µ

is indicated by the dashed vertical

line. In this case the optimal value of Ω is above the lower

bound. In case Ω at the peak of the curve is less than the

lower bound, the lower bound is the optimal Ω. We note that

the presence of an optimal frequency is a consequence of the

tradeoff between duration and frequency of communication.

Remark. The results from this section can be generalized

to N > 4 and also to ordered distributions of agents in the

plane as illustrated in Figure 3(b). In particular, one may

use this as a building block to describe the spatial flow of

information along such lattices.

B. Connectivity of Randomly Distributed Agents with Ran-

domly Distributed Speed Phase

In this section, we study numerically the connectivity of

randomly distributed agents with periodic relative motion.

We utilize effective sensing regions to translate between

uniform connectivity of the periodically time-varying graph

and strong connectivity of a static graph. The resulting

framework is similar to the application of percolation theory

[8] to the study of phase transition in connectivity of random

geometric graphs [9], [8]. Through this study we present

a measure of the improvement in connectivity offered by

relative motion.

Consider a random geometric graph with parameters N
and ρ defined by placing N nodes independently, randomly,

and uniformly on a unit square in 2D and adding edges

between any pair of nodes with relative distance less than

ρ [19]. Then for a fixed large number N , when one slowly

increases ρ from zero, there exists a critical sensing radius ρc
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Fig. 4. (a) Consensus convergence rate λ2 versus motion frequency Ω
for a = 1, µ = 0.5, ρ = 0.5, and φ = π. The dashed vertical line
corresponds to the value of Ω for which the assumption of nearest-neighbor-
only connectivity fails. (b) Probability that a graph is connected, ranging
from zero (black) to one (white). Probability is estimated for N = 100
agents, over 100 simulations at each of 400 grid points - 20 each for phase
spread α and sensing radius ρ. The vertical line represents the value ρc

predicted for connectivity of the static geometric graph with high probability.

for which the sudden dramatic change in connectivity hap-

pens, i.e. when ρ > ρc, a connected component containing a

large number1 of nodes appears with a positive probability.

In this paper, we follow Balister et al. [10], who combined

theoretical analysis with Monte Carlo simulation method and

obtained the estimated bounds

√

1.43
N

< ρc <
√

1.48
N

with

probability 0.9999.

Consider N agents with sinusoidal straight-line motion

as described by (8). We consider the average positions

in the moving frame to be uniformly and independently

randomly distributed over the unit square. That is, we draw

Re(r̄jk) and Im(r̄jk) from identical and independent uniform

distributions over the range [0, 1]. Similarly, we draw the

initial speed phases φk(0) from a uniform distribution over

the range [−α
2 , α

2 ] with α ∈ [0, 2π] a parameter. We also

consider as a parameter the sensing radius ρ. We consider a

range of ρ about the critical value ρc =
√

1.48
N

suggested by

[10].

For a given set of initial conditions and parameter values,

we estimate probability of uniform connectivity of the graph

G(t) by exploiting the equivalence of strong connectivity of

the static graph ḠT determined by effective sensing regions.

We determine the Laplacian matrix L(ḠT ) for N = 100
agents and compute the second smallest eigenvalue λ2. This

is carried out 100 times for each value of ρ and α. Probability

of connectivity is estimated as the percentage of experiments

where λ2 > 10−4. Fig. 4(b) shows the results for a grid of 20

values each for α and ρ, with the solid vertical line indicating

the value of ρc.

The horizontal line in Fig. 4(b) corresponding to α = 0 can

be taken to represent the geometric graph case, as synchro-

nized speed implies zero relative motion. Correspondingly,

phase transition occurs near ρc for α = 0. For subsequent

horizontal lines, corresponding to larger α, phase transition

occurs for smaller ρ. That is, the relative motion can be

seen to either improve connectivity for a fixed sensing radius

1To be more precise, the number of nodes in this connected component is
Θ(N) where Θ(·) is the notation in computational complexity theory and
f(N) ∈ Θ(g(N)) means that f is bounded tightly by g asymptotically.

or to decrease the sensing radius necessary to maintain

connectivity. The size of Γ̄jk is maximized when φjk =
π, hence little additional improvement in connectivity is

realized for α > π.

VI. FINAL REMARKS

In this paper we present effective sensing regions as a tool

to aid in the study of systems of agents with periodic relative

motion. We demonstrate their utility by deriving results

for two scenarios of straight-line motion with sinusoidally

varying speed. In both cases, analysis is made tractable by

reducing a time-varying graph determined by sensing regions

to an equivalent static graph determined by effective sensing

regions. In ongoing work, we are using the effective sensing

region method to further explore the coupling between spatial

dynamics and information passing of mobile networks and

in particular the role of relative dynamics among agents.
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