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Abstract— The parametrization of solutions to scalar in-
terpolation problems with a degree constraint relies on the
concept of spectral-zeros –these are the poles of the inverse
of a corresponding spectral factor. In fact, under a certain
degree constraint, the spectral-zeros are free (modulo a stability
requirement) and parameterize all solutions. The subject of
this paper is the multivariable analog of a Nehari-like analytic
interpolation with a degree constraint. Our main result is based
on Rosenbrock’s pole assignability theorem and addresses the
freedom in assigning the Jordan structure of the spectral-zero
dynamics.

I. INTRODUCTION

A complete parametrization of bounded degree solutions
for scalar analytic interpolation problems has been

obtained in terms of the zeros of certain corresponding
spectral factors [1]–[5]. These are referred to as the spectral-
zeros. For scalar problems the dynamics of the inverse
spectral factors are completely determined by the spectral-
zeros. However, in the case of multivariable interpolation
problems nontrivial (i.e., noncyclic) Jordan structures are
possible. The purpose of this work is to study the freedom in
specifying the invariant factors for the inverse spectrum. We
utilize Rosenbrock’s theorem on assignability of dynamics
via linear state feedback to characterize interpolants and their
zero dynamics.

In this paper, we consider analytic interpolation with
m × m matrix-valued, positive-real functions. Very much
as in H∞-control the dimension of the interpolants relates
to the complexity of a model, a filter, or a controller.
The complexity of the interpolation is characterized by the
number of interpolation conditions, n. In the multivariable
case where the interpolation conditions are constraints along
different directions, n is the rank of a corresponding Pick
matrix (see [6]), or equivalently of a Hankel operator. While
the standard approach [7], based on linear fractional transfor-
mations, describes the complete solution set as a function-
ball around a central interpolant, it gives no insight as to
possible minimal-degree solutions.

Historically, over the last few decades there has been
effort to describe minimal-degree solutions for analytic
interpolation problems (see e.g., [1], [2], [8], [9]), with
significant developments over the past 10 years [3], [4],
[10]. These studies led to a complete parametrization of
bounded-degree interpolants for the most general Sarason-
type analytic interpolation in the scalar case [5]. Although
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attention to analogous results in matrix-valued interpolation
with bounded McMillan degree has already been drawn more
than 20 years ago in [1], progress has been slow. We mention
some recent nice work by Blomqvist et al. [11].

The main contribution of the current paper is to char-
acterize a family of solutions to multivariable analytic in-
terpolation with degree constraints. This generalizes scalar
results where a parametrization of solutions is given in
terms of admissible spectral-zeros. This is no longer the
case in multivariable problems where the dynamics relate
to noncyclic Jordan structures, in general. Thus, a variety
of solutions may have zero-dynamics that relate to the same
Jordan form. The generically minimal degree of solutions
for multivariable problems is n−m (n being the rank of a
Pick matrix and m×m the size of interpolants). We utilize
a formalism based on a multivariable moment problem in
[12] that describes a class of solutions of degree n−m in a
convenient factored form; the real part of interpolants gives
rise to a matrix-valued spectral density function that solves
the moment problem. We then utilize Rosenbrock’s theorem
on pole assignability by state feedback to specify all Jordan
structures that are possible for the inverse of corresponding
spectral factors. We will discuss a number of questions that
pertain to the complete parametrization of solutions that
remain open.

II. NOTATION AND PRELIMINARIES

We denote by C the set of square matrix-valued functions
which are analytic in D, the open unit disk of the complex
plane, and have positive Hermitian-part. There is a natural
correspondence between elements in C and the class of
finite Hermitian positive matrix-valued measures on (−π, π]
denoted by M. In fact, analytic interpolation constraints
on functions in C can be cast as moment constraints on
corresponding measures in M [13], [14]. We now make the
connection between the two as our results in this paper draw
heavily on recent developments in the multivariable moment
problem [12].

A. Analytic Interpolation

We consider the problem of parameterizing all functions
F ∈ C of size m×m which satisfy

F (z) = Fo(z) +Q(z)V (z), for z ∈ D, (1a)

with known Fo(z), V (z), and the parameter Q(z) all be-
ing square matrix-functions. Equation (1a) represents an
interpolation condition. Indeed, along directions where V (z)
vanishes F (z) − Fo(z) vanishes as well, and thus, F (z)
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interpolates Fo(z). The matrix-function Q(z) is required to
be analytic in D, and thereby, without loss of generality, we
can always assume V (z) is inner (all-pass), i.e.,

V (z)∗V (z) = V (z)V (z)∗ = I, for all |z| = 1, (1b)

where “∗” denotes “conjugate-transpose”. In cases where
V (z) is a scalar multiple of the identity, F (z) possesses
the same value as Fo(z) at the roots of V (z), whereas in
general with an arbitrary inner V (z), constraint (1a) is in
the category of tangential interpolation (see [13]).

We are interested in finite dimensional interpolation prob-
lems where V (z) is a rational function of McMillan degree
n. Therefore, we write

Fo(z) = H(I − zA)−1B, and (1c)
V (z) = D + Cz(I − zA)−1B, (1d)

where A ∈ Rn×n, B full column rank in Rn×m, H ∈
Rm×n, (A,B) is a reachable pair, and the eigenvalues of
A lie in D. Throughout the paper, “I” denotes the identity
matrix of compatible size. Moreover, C ∈ Rm×n and D ∈
Rm×m are suitably chosen so that (C,A) is an observable
pair and V (z) satisfies (1b). The completion of (A,B) into
an inner matrix-valued function V (z) is well known and is
part of the bounded real lemma, cf. [15].

Equations (1a-d), which are standing assumptions through-
out, form the standard Nehari-type problem with the triplet
of matrices (A,B,H) as the interpolation data. It turns out
that a positive Hermitian-part solution of (1a-d) exists if and
only if the Lyapunov equation

R−ARA∗ = BH +H∗B∗ (2)

has a positive semi-definite solution for R, which is thought
of as the corresponding Pick matrix (see e.g., [6], [16]). In
cases where R is strictly positive definite there exist infinitely
many solutions. Our interest in this paper is to identify the
family of interpolants, F (z)’s, which satisfy (1a-d) and have
low McMillan degree. We now outline the correspondence
between interpolation problem (1a-d) and a related moment
problem.

B. Connection with Moment Problem
Consider the linear discrete-time dynamical system

xk = Axk−1 +Buk, for k ∈ Z, (3)

where xk ∈ Rn, and uk ∈ Rm are the state and the input
vectors, respectively. The input-to-state transfer function of
this system is

G(z) := (I − zA)−1B,

where “z” stands for the transform of the delay operator,
and thus, “stability” of G(z) corresponds to “analyticity in
D”. Let the input uk be a stationary zero-mean random
process with the matrix-valued density function Φuu(θ), θ ∈
(−π, π], where Φuu(θ)dθ ∈ M. Then, the state covariance
matrix of (3) is in the form of the following integral

E{xkx∗k} =
1

2π

∫ π

−π
G(ejθ)Φuu(θ)G(ejθ)∗ dθ.

The classical moment problem amounts to the (inverse)
problem of finding an input spectral density function Φuu(θ)
which is consistent with a given state covariance matrix
E{xkx∗k}. It turns out that a non-negative definite matrix
R admits such a representation, i.e.,

R =
1

2π

∫ π

−π
G(ejθ)Φuu(θ)G(ejθ)∗ dθ, (4)

and hence qualifies as a state covariance of (3) if and only
if the following equivalent conditions hold (see [6], [16]):

rank
[
R−ARA∗ B

B∗ 0

]
= 2m, (5a)

R satisfies (2) for a choice of H. (5b)

Further, consistent spectral densities, Φuu’s, for the moment
problem (4) are in a bijective correspondence with solutions
to the interpolation problem (1a-d). More precisely, corre-
sponding to any positive-real matrix-function F (z) which
satisfies (1a-d) for a given triplet of (A,B,H), there exists
a solution to the moment problem (4) with the triplet of data
(A,B,R) such that

F (z) =
1

2π

∫ π

−π

(
1 + zejθ

1− zejθ

)
Φuu(θ)dθ + jc, (6)

where jc is an arbitrary skew-Hermitian constant. This is
the content of Riesz-Herglotz’s theorem [17]. Conversely,
any density function of more general measure that satisfies
(4) originates as the boundary limit of the real part of a
positive-real solution to (1a-d), i.e.,

Φuu(θ) = lim
r↗1
<e F (rejθ). (7)

We wish to emphasize that H (interpolation data) and R
(moment data) relate to each other via (2).

C. Solutions to the general moment problem

Reference [12], building on earlier works, e.g., [3]–[5],
characterized all positive solutions to the moment problem
(4) as minimizers of suitably weighted relative entropy
functionals. More specifically, let Ψ(θ)dθ and Φ(θ)dθ belong
to M and define the relative entropy functional

S(Ψ‖Φ) :=
1

2π

∫ π

−π
trace(Ψ log Ψ−Ψ log Φ)dθ.

Then, for a given admissible (A,B,R), i.e., such that (5a-b)
hold, all positive solutions to the moment problem (4) can
be obtained as minimizers of S(Ψ‖Φuu) for a choice of Ψ,
i.e., they are of the form

argmin
Φuu

{
S(Ψ‖Φuu) : R =

1

2π

∫ π

−π
G(ejθ)Φuu(θ)G(ejθ)∗ dθ

}
,

(8)
with Ψ a free parameter. Minimizers of this optimization
problem are shown to be in the form of

Φuu(θ) = σ(ejθ)
(
G(ejθ)∗λG(ejθ)

)−1
σ(ejθ)∗,

with λ, a Hermitian matrix of Lagrange multipliers, and σ, a
matrix-valued spectral factor of Ψ, i.e., σσ∗ := Ψ. Given σ,
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the value of λ can be obtained numerically via a continuation
method (see [12]).

For the special choice of σ(ejθ) = I + KejθG(ejθ),
selected so that A−BK is Hurwitz, we obtain a solution of
the form

Φuu(θ) =
(
Go(ejθ)∗λGo(ejθ)

)−1
, with (9a)

Go(ejθ) =
(
I − ejθ(A−BK)

)−1
B, (9b)

where Φuu(θ) in (9a-b) is a rational spectral density function
of degree at most 2n, and thereby, corresponds (via (6)) to
a positive-real F (ejθ) of McMillan degree at most n. This
F is, indeed, the solution of the corresponding interpolation
problem (1a-d) for the triplet of data (A,B,H). In this paper,
we identify and characterize a subclass of an even lower
McMillan degree. In fact, the minimal McMillan degree
which is generically feasible is n − m, and we show that
for a choice of K we can generate a family of solutions of
degree n−m.

III. JORDAN STRUCTURE OF SPECTRAL-ZERO DYNAMICS

In this section, we use Rosenbrock’s theorem [18] to
highlight the freedom in assigning the invariant factors of
the inverse dynamics of interpolants in the multivariable
setting. Earlier results for the scalar case (see e.g., [2]–[4])
suggest that the spectral-zeros can be arbitrarily assigned.
However, the associated Jordan structure of these spectral-
zeros is always cyclic. In the matricial interpolation this is not
the case and the spectral-zero dynamics relate to nontrivial
(i.e., noncyclic) Jordan structures as well.

A. Rosenbrock’s theorem

We first recall the notion of invariant polynomials. Let
Πt(z) for t = 1, 2, . . . , r denote the greatest common divisor
of all the minors of order t of zI−A. Then each polynomial
in the series

Πr(z),Πr−1(z), . . . ,Π1(z),Π0(z) ≡ 1

is divisible by the succeeding one and the quotients

p1(z) =
Πr(z)

Πr−1(z)
, p2(z) =

Πr−1(z)
Πr−2(z)

, . . . , pr(z) =
Π1(z)
Π0(z)

are the invariant polynomials of A (see e.g., [19], [20]).
Next, we need the notion of controllability indices. Let

(A,B) be a controllable pair, assume that B has full column
rank, and consider the ordered set of vectors

b1, . . . , bm, Ab1, . . . , Abm, A
2b1, . . . , A

2bm, . . . ,

where bi is the ith column of B. Following Popov ( [21]),
Akbj is an “antecedent” of Aµbν if it is listed earlier in
the above ordered list (i.e., if km + j < µm + ν). We
denote by κi the smallest positive integer for which Aκibi
is a linear combination of its antecedents. Then, κi’s for
i ∈ {1, 2, . . . ,m} are the controllability indices of the
pair (A,B). They are also known as Kronecker invariants
and their sum is equal to n, the dimension of the system.
These indices are invariant under state feedback, similarity

transformation, and invertible linear transformation on the
columns of B.

Rosenbrock’s theorem on pole assignment: Consider the
controllable pair (A,B) (as before) with controllability
indices κi’s in decreasing order for i = 1, 2, . . . ,m. Let
{pi(z); i = 1, 2, . . . ,m} be any set of polynomials which
satisfy

pi(z) | pi−1(z),

i.e., pi divides pi−1, and
∑m
i=1 deg pi(z) = n. Then the

conditions
j∑
i=1

deg pi(z) ≥
j∑
i=1

κi

for j = 1, 2, . . . ,m are necessary and sufficient for the
existence of linear map K : Rn 7→ Rm such that {pi(z)}
is the set of invariant polynomials of A−BK.

This theorem was proven in [18, page 190] (see also
[22] and [23], and an elegant constructive proof based on
a geometric argument by Flamm in [24]).

B. Spectral-zero dynamics assignability in multivariable in-
terpolation

The (generically) minimal-degree solutions for scalar in-
terpolation have been fully parameterized (see e.g., [2]–[5])
by an arbitrary choice of “spectral-zeros”. These spectral-
zeros are in fact the zeros of a meromorphic extension of
the real part of the interpolating function. Naturally, in the
matricial case, there are more degrees of freedom. Herein,
we use the notion of “spectral-zero dynamics” which helps
draw analogous results in multivariable interpolation. For any
F (z) ∈ C, denote by Wo the outer spectral factor of the
inverse of the real part of F , i.e.,(

<e F (ejθ)
)−1

= Wo(ejθ)∗Wo(ejθ), (10)

with Wo(z) =: Do + Coz (I − zAz)
−1
Bo, a minimal real-

ization of Wo(z). We call Az the spectral-zero dynamics of
F (z) as it determines the pole-structure of

(
<e F (ejθ)

)−1
.

Theorem 1, below, characterizes a family of minimal-degree
solutions to multivariable interpolation that correspond to
choices of spectral-zero dynamics.

Theorem 1: Consider data (A,B,H) for multivariable
interpolation problem defined by (1a-d) and assume that
(2) admits a positive definite solution R, i.e., that the
problem is solvable. Let κi’s for i = 1, 2, . . . ,m denote
the controllability indices of (A,B) in decreasing order.
Then, corresponding to any Az ∈ R(n−m)×(n−m) which
is Hurwitz and whose invariant polynomials {pi(z); i =
1, 2, . . . ,m} satisfy

j∑
i=1

deg pi(z) + j ≥
j∑
i=1

κi, for j = 1, . . . ,m, (11)

there exists an interpolant F (z) of McMillan degree
at most n − m whose spectral-zero dynamics has the
Jordan structure as Az.
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Corollary 1: Consider the interpolation problem (1a-
d) with a corresponding R � 0 and let Az be a Hurwitx
matrix. If any of the following conditions holds:

1) Az is cyclic,
2) m divides n and all the controllability indices of

(A,B) are equal, i.e., κ1 = . . . = κm = n
m ,

3) m does not divide n and the controllability indices
of (A,B) are as follows

κj =
{
b nmc+ 1 for j = 1, . . . ,mod(n,m)
b nmc for j = mod(n,m) + 1, . . . ,m ,

where b nmc stands for “the integer part of n
m ”, and

“mod(n,m)” gives the remainder of division n/m,
there exists an interpolant F (z) of McMillan degree
at most n − m whose spectral-zero dynamics has the
Jordan structure as Az.

The first condition implies that deg p1(z) = n−m, while
p2 = . . . = pm = 1 and thus Theorem 1 applies. The other
two can be argued in a similar way. An example where the
second condition holds is that of the trigonometric moment
problem in which

A =


O O · · · O O
I O · · · O O

. . .
. . .

...
...

O O I O

 , B =


I
O
...

O

 , (12)

with I and O the identity and the zero matrices of size m×m,
A an (l+ 1)× (l+ 1) and B an (l+ 1)× 1 block matrices,
respectively. The size of each block is m×m, and hence, the
actual size of A,B are n×n and n×m, with n = (l+1)m.
These correspond to a block-Topeltiz matrix

R =


R0 R1 · · · Rl
R−1 R0 · · · Rl−1

...
...

. . .
...

R−l R−l+1 · · · R0

 , (13)

where the size of each Ri is m×m and

F (z) =
1
2
R0 +R1z + · · ·+Rlz

l + o(zl).

For this case of (A,B) all the controllability indices are equal
to n

m = l+ 1. Section V discusses further the trigonometric
moment problem.

It should be noted that in general there may not exist
solutions F (z) of degree less than n − m. In fact, very
much as in the scalar case where m = 1, both the data
set of admissible triplets (A,B,R) for which a solution of
degree less than n−m is possible, as well as the complement
where n−m is the minimal degree, have a nonempty interior,
i.e., they are both generic conditions (see e.g. [1, pages 50,
& 80–83]). This is due to the semi-algebraic nature of the
underlying problem.

Note also that the set of conditions (11) are only sufficient
for the existence of degree n−m solutions corresponding to
the Jordan structure of a given Az. This will be taken up in
the next section. The proof of Theorem 1 requires a couple
of preceding steps, given as two separate lemmas.

Lemma 1: Let F (z) be a rational function of McMillan
degree n−m, which is strictly positive-real with <e F (z)
uniformly bounded in D. Then, there exists F̂ (z) which
is also strictly positive-real and of McMillan degree n−m
such that <e F̂ (ejθ) =

(
<e F (ejθ)

)−1.
Proof: The function F̂ in the lemma is the analytic part of
(<e F )−1. The McMillan degree of F̂ is the same as F and
this follows by comparing the degrees of the corresponding
spectral factors of their real parts. 2

The above fact sets a bijection F ↔ F̂ between functions
in this class.

Lemma 2: Let A,B,Go(z) be as in (9b), let ∆(K,λ) :=
G∗oλGo for λ ∈ Rn×n, and let K satisfy:

(i) A−BK is Hurwitz,
(ii) rank(A−BK) = n−m.

Then, there exists a rational matrix-valued function F̂ (z)
of degree n−m such that ∆(K,λ) = <e F̂ .
Proof: We write ∆(K,λ) as the two-sided series:

B∗
(
I − z−1(A−BK)∗

)−1
λ (I − z(A−BK))−1

B =
· · ·+ z−2B∗A∗2o ΛB + z−1B∗A∗oΛB +B∗ΛB +

zB∗ΛAoB + z2B∗ΛA2
oB + · · · , (14)

with Ao := A − BK and Λ the solution of the Lyapunov
equation Λ−A∗oΛAo = λ. It readily follows from (14) that
∆(K,λ) = <e F̂ with

F̂ (z) =
1
2
B∗ΛB +B∗ΛAoz(I − zAo)−1B. (15)

Since rank(Ao) = n − m, the rank of the observability
matrix of F̂ (z) cannot exceed n−m, hence neither can the
McMillan degree of F̂ (z). 2

Remark 1: The two lemmas establish a mapping
(K,λ) 7→ F̂ 7→ F . Therefore, the construction of
interpolants begins with a choice of K that satisfies the
conditions in Lemma 2. We then solve the optimization
problem (8) which gives rise to the desired λ, and hence
Λ. This Λ via (15) generates the matrix-valued function F̂ .
Finally, the interpolant F is the analytic part of (<e F̂ )−1.

Proof of Theorem 1: For any spectral-zero dynamics Az

with invariant polynomials {pi(z); i = 1, 2, . . . ,m} that
satisfy (11), the sequence of polynomials zipi(z) satisfies
the condition of Rosenbrock’s theorem for the pair (A,B).
Thus there exists a K such that A−BK has {zipi(z); i =
1, 2, . . . ,m} as its invariant polynomials, and hence

A−BK
similar∼

[
Az 0
Y 0

]
, (16)

with Y as a matrix of compatible size. This choice of K
gives rise to a matricial power spectral density Φuu(θ) as in
(9a-b). Then, from Lemma 2 we conclude that there exists
a rational function F̂ (z) of McMillan degree n − m such
that Φuu(θ)−1 = <e F̂ (ejθ). Positivity of its Hermitian part
on the circle ensures that F̂ (z) is a positive-real function.
Finally, application of Lemma 1 implies that there exists a
positive-real function F (z) of McMillan degree n−m such
that Φuu(θ) = <e F (ejθ). Indeed, this F (z) is a solution to
multivariable interpolation (1a-d) and this proves the claim
of the theorem. 2
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IV. ALTERNATIVE SOLUTIONS OF DEGREE n−m
In this part, we show that for a given triplet of data

(A,B,H) in the multivariable interpolation where m > 1,
there may exist interpolants of McMillan degree n−m with
spectral-zero dynamics which do not satisfy inequalities (11).
Indeed, the condition rank(A − BK) = n −m that played
a central role in the earlier section is only sufficient and not
necessary in order to obtain solutions of McMillan degree
n−m. In other words, such a rank condition, and hence the
drop of the degree, originate from the rank deficiency of the
observability matrix of F̂ (z) (see the proof of Lemma 2).
In cases where the rank of this observability matrix equals
n − m and rank(A − BK) > n − m, there may be more
degrees of freedom in assigning spectral-zero dynamics of
the interpolants so that instead of (16) we have

A−BK
similar∼

[
Az 0
Y1 Y2

]
. (17)

Here, Y1 and Y2 are free matrices of compatible size, Y2

is unobservable dynamics, and Az, whose invariant polyno-
mials do not need to satisfy (11), is the only block which
contributes in spectral-zero dynamics of the solution. We
illustrate this point with an example (see [25], [26] for
details).

Example 1: Consider the interpolation data

A =


1
2 1 0 0
0 1

2 1 0
0 0 1

2 0
0 0 0 1

2

 , B =


0 0
0 0
1 0
0 1

 ,
H =

[
0.0012 −0.3351 0.2507 0

0 0 0 0.2507

]
, (18)

where n = 4,m = 2. It is shown that for this triplet of
(A,B,H), there exists a solution F (z) of McMillan degree
n − m = 2 corresponding to a zero dynamics which does
not fall in the class specified by Theorem 1 (i.e., does not
satisfy (11)).

We solve the problem by following the path described in
Remark 1. In particular, we take K = 0 and this choice
results in

F̂ (z) =
[

1 0
0 1

]
+

[
z

1− 1
2 z

0
0 z

1− 1
2 z

]
.

Although in this example rank(A−BK) = 4 6= n−m, the
resulting F̂ (z) is of McMillan degree 2 with the minimal
realization

AF̂ =
[

1
2 0
0 1

2

]
, BF̂ = CF̂ = DF̂ = I2. (19)

Hence, F (z) is of McMillan degree 2 as well.
We now show that the resulting AF̂ does not satisfy the

set of conditions (11) in Theorem 1. Note that the invariant
polynomials of the desired spectral-zero dynamics, AF̂ in
(19), are p1 = p2 = z− 1

2 . On the other hand, controllability
indices of the given (A,B), are easily obtained as κ1 =
3 and κ2 = 1. Clearly, this set of {p1, p2, κ1, κ2} violates
the inequalities in (11). In fact, application of Rosenbrock’s

theorem (in which the set of conditions is both necessary
and sufficient) implies that there is no value for K such that
similarity in (16) holds for any choice of Y . Therefore, given
the set of interpolation data (18), interpolants with spectral-
zero dynamics similar to AF̂ in (19) cannot be obtained via
Theorem 1. 2

To sum up, the first conclusion to be drawn in multivari-
able interpolation is that corresponding to any spectral-zero
dynamics whose invariant polynomials satisfy (11), there
exists a solution of McMillan degree n − m. Remark 1
summarizes the construction of this class of interpolants.
Further, there may exist solutions of degree n − m whose
spectral-zero dynamics do not satisfy the set of inequalities in
(11). The existence of such solutions depends on a particular
H in interpolation data (e.g., as in Example 1). Therefore in
general, there is no systematic way to find solutions whose
spectral-zero dynamics do not fall in the class specified by
Theorem 1.

V. INTERPOLANTS AND THEIR JORDAN STRUCTURE

Contrary to the scalar case [4], [5], the Jordan structure
of the spectral-zero dynamics is not sufficient to specify an
interpolant uniquely. This is to be expected since the same
zero dynamics may be contributed by different channels.
However, if the interpolation is sought in a fractional form
as in [1], then the choice of the “numerator” of the spectral
factor in a likewise factorized form may be sufficient to en-
sure uniqueness (modulo multiplication by a unitary matrix).
The next example demonstrates the first point, followed by a
discussion of uniqueness in the context of the trigonometric
moment problem in the spirit of [1].

Example 2: Consider

A =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , B =


1 0
0 1
0 0
0 0

 , H =
[

2 0 2 0
0 2 0 2

]
,

and let the desired Jordan structure for spectral-zero dynam-
ics of solutions be

Az =
[
−1/2 0

0 −1/3

]
, (20)

which falls in the class specified by Corollary 1. It can be
shown that there exist more than one K that give rise to
interpolants with Jordan structure (20) as their spectral-zero
dynamics. To see this, we follow the construction in Remark
1 with two choices of K as

K1 =
[

1/2 0 0 0
0 1/3 0 0

]
,K2 =

[
1/3 0 0 0
0 1/2 0 0

]
.

These lead to F̂1 and F̂2 with minimal realizations

F̂1 :

{[
− 1

2
0

0 − 1
3

]
,

[
1 0
0 1

]
,

[
−0.34 0

0 −0.25

]
,

[
0.28 0

0 0.24

]}
,

F̂2 :

{[
− 1

3
0

0 − 1
2

]
,

[
1 0
0 1

]
,

[
−0.25 0

0 −0.34

]
,

[
0.24 0

0 0.28

]}
,

respectively. Therefore, the spectral-zero dynamics of the
corresponding interpolants F1 and F2 share the same Jordan
structure. 2
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Theorem 1 provides a rather clear picture of the inter-
polants of degree n−m for the special case of trigonometric
moment problem. The relevant statement is given below
while the proof can be found in [26].

Corollary 2: Consider the trigonometric moment
problem with data (A,B,R) as in (12) and (13) and
R � 0. Then, every interpolant F of McMillan degree
n−m can be obtained (as described in Remark 1) for a
unique choice of K which satisfies

(i) A−BK is Hurwitz,
(ii) rank(A−BK) = n−m,

and determines the spectral-zero dynamics of F (z).

Further, any K as in Corollary 2 gives rise to an interpolant
of McMillan degree less than or equal to n −m. Although
in the multivariable setting, the solution corresponding to
a given Jordan structure as spectral-zero dynamics is not
unique, in the case of trigonometric matrix functions we can
establish a bijective correspondence between solutions and
the parameter K. This implies that corresponding to any K
which satisfies the conditions in Corollary 2, there exists a
unique interpolant of McMillan degree n−m.

Remark 2: Interpolation of trigonometric matrix functions
with a degree constraint has been studied long ago in [1],
as the rational covariance extension problem. Because of
the uniformly distribution of controllability indices in this
problem, solutions are fully parameterized via Theorem 1.
Our results herein are compatible with earlier results in [1].
Further, we showed that there is no bijective correspondence
between interpolants and Jordan structure of spectral-zero
dynamics. However, if we fix the spectral factor of the
solution with a specific K in (9), there exists a corresponding
unique interpolant.

VI. CONCLUDING REMARKS

Analytic interpolation with degree constraint is motivated
by control and signal processing applications. Earlier studies
for scalar interpolation led to a parametrization of solutions
in terms of the so-called spectral zeros. Our contribution in
this paper is to study the spectral-zero dynamics for analytic
interpolation with m × m matrix-valued functions and to
characterize corresponding invariant subspaces and Jordan
structures that are permissible for (generically minimal)
McMillan degree n −m interpolants (n being the size and
rank of the corresponding Pick matrix). While interpolants
of McMillan degree lower than n − m may be possible,
depending on the data, the class of solutions of McMillan
degree n−m is always non-empty and represents a natural
generic family of interpolants of low complexity. An obstruc-
tion in assigning invariant subspaces for the spectral zero
dynamics is related to the type of obstruction in assigning
poles via state feedback, as characterized by the celebrated
Rosenbrock’s theorem.
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