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Abstract— This paper presents an adaptive switching super-
visory control scheme for highly uncertain discrete-time systems
with time-varying state delay and time-varying parameters. The
uncertainties appear in the system matrices and the system is
assumed to be subject to the external bounded disturbances. It
is supposed that a set of stabilizing controllers are available
(which are designed off-line) to stabilize the system in the
whole uncertain parameter space. To find a supervisory control
scheme, it is initially assumed that the system parameters
and delay are fixed. A switching algorithm is then proposed
to stabilize the system. Next, by modifying the proposed
algorithm, the stability analysis of the system with time-varying
parameters and time-varying delay is carried out. Furthermore,
an upper bound on the permissible rate of change of the system
parameters and delay to maintain stability of the closed-loop
system is obtained. Simulation results are presented to show
the efficacy of the proposed switching scheme.

I. INTRODUCTION

In numerous control applications such as multi-vehicle
coordination, manufacturing systems, spacecraft exploration
missions and network control systems, time-delay in system
dynamics, if neglected in control design procedure, can lead
to instability or poor performance of the system. In fact, in
presence of large uncertainties in the magnitude of delay (in
addition to uncertainties in the system parameters) it may be
difficult (or sometimes impossible) to find a single controller
capable of stabilizing the system.

Robust stabilization of uncertain time-delay systems with
time-varying delay is well-documented [2], [5], [10], [11],
[12], [16], [15]. In most of the existing works in this area,
delay-dependent approaches are presented to find a single
controller which stabilizes the uncertain system with time-
varying delay. However, these works are often unable to ef-
fectively handle large uncertainties in both system parameters
and delay.

Furthermore, in conventional adaptive control techniques
(even for the case of finite-dimensional LTI systems), a
number of standard assumptions in the form of a priori
knowledge (e.g., on the relative degree, non-minimum phase
property, and the sign of the high-frequency gain) are re-
quired to be made (e.g., see [6]). Furthermore, such tech-
niques are usually inefficient in presence of highly uncertain
or rapidly changing parameters. In order to relax the above
mentioned limitations of classical adaptive control methods,
the supervisory switching control schemes are presented [1],
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[7], [8], [9], [13], [14]. The main idea of such schemes
is to switch among a family of pre-designed and fixed
controllers in such a way that adaptive tracking of reference
signals is achieved. One of the recent works in this discipline
of research is localized-based switching adaptive control
proposed in [9], which results in a fast model falsification
and an acceptable transient response.

On the other hand, classical adaptive methods and re-
cently developed switched based controllers can stabilize
the systems with only large uncertainties on the system
parameters. For uncertain time-delay systems there are only
a few references that can handle both large uncertainties in
system parameters in addition to time-delay in the system
dynamic [4]. In [4] a pre-routed switching approach is
developed to stabilize a class of uncertain continuous-time
system with time-delay while the delays are supposed to be
constant and known.

In this work, it is assumed that the system is subject to
large parameter uncertainties and time-varying delay in the
state with known upper and lower bound on the delay. Since
the perturbations could be large, it is aimed to design a set of
state feedback gains along with a supervisory algorithm such
that the discrete-time system becomes stable. To that end, a
decomposition of uncertain parameter space is assumed and a
state feedback controller is considered to exist corresponding
to each region. In the following, similar to [9], a switching
algorithm is proposed with fast falsification property. Based
on the properties of the system and designed controllers
an upper bound on the rate of the changes on the system
parameters and delay is obtained.

Problem formulation is presented in Section II, where
some useful definitions are also provided. In Section III,
some preliminary results on µ̄- exponential stability of
discrete-time systems with time-varying state delay are given.
Then, the stability analysis is carried out in two steps. First, it
is considered that the uncertain system parameters and delay
are fixed and then, in the second subsection, it is assumed
that the uncertain parameters and delay are time-varying. A
numerical example is presented in Section IV which demon-
strates the effectiveness of the proposed adaptive switching
controller. Finally, the concluding remarks are given.

II. PROBLEM FORMULATION

Consider the following uncertain time-varying discrete-
time system
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x(k + 1) =A(k)x(k) +Ad(k)x(k − l(k))
+B(k)u(k) + µ(k) (1)

where x(k) ∈ Rn is the measurable state vector, u(k) ∈
Rm is the control input, µ(k) ∈ Rn is the disturbance
vector, A(k) ∈ Rn×n, Ad(k) ∈ Rn×n and B(k) ∈ Rn×m

are uncertain time-varying system matrices and l(k) is the
time-varying delay in state dynamics. It is assumed that the
disturbance vector µ(k) is norm-bounded; i.e. ||µ(k)|| ≤ µ̄,
where, µ̄ is a positive constant. Moreover, the following
assumption is made on the size of delay:

0 ≤ l ≤ l(k) ≤ l̄ (2)

where l and l̄ are known non-negative integers. Let the initial
condition associated with (1) be given by

x(k) = φ(k), k ∈ [−l̄, 0] (3)

where φ(k) is a real valued function on [−l̄, 0]. The following
definitions for the type of stability of discrete-time systems
will prove convenient in the development of the main results.

Definition 1: The uncertain time-delay system (1) with
u(k) and µ(k) both set to zero, ∀k ∈ Z, is said
to be exponentially stable if there exist constant scalars
ρ ∈ (0, 1) and M1 > 0 such that ||x(k)|| ≤
M1ρ

(k−k0) supk0−l̄≤v≤k0
||x(v)||, ∀k ≥ k0, and for all

admissible uncertainties.
Definition 2: The uncertain system (1) with u(k) = 0

is said to be globally µ̄-exponentially stable, if there exist
constant scalars ρ ∈ (0, 1) and M̃1 > 0, as well as a function
M̃2(·) : R+ → R+ with M̃2(0) = 0 such that ||x(k)|| ≤
M̃1ρ

(k−k0) supk0−l̄≤v≤k0
||x(v)|| + M̃2(µ̄) , ∀k ≥ k0, and

for all admissible uncertainties, where R+ denotes the set of
strictly positive real numbers.
It is desired now to design a switching discrete-time con-
troller under which the system (1) is exponentially µ̄-
exponentially stable in the presence of uncertainties and
time-varying delay.

III. MAIN RESULT

A. Preliminary Results

In this subsection, four lemmas are presented which will
be used to develop the main results of the paper. First, the
following two definitions are given.

Definition 3: Consider the following LTV discrete-time
system with an integer state delay l(k)

x(k + 1) = A0(k)x(k) +A1(k)x (k − l(k)) + µ(k), (4)

where x(k) ∈ Rn and µ(k) ∈ Rn are the state and input of
the system, respectively. Assume that l(k) ∈ [l, l̄]. Λ(k) ∈

Rn(l̄+1)×n(l̄+1) is defined as

Λ(k) =


Λ1,1 0n · · · 0n Λ1,l(k)+1 0n · · · 0n

In 0n · · · 0n 0n 0n · · · 0n

...
...

0n 0n · · · 0n 0n 0n · · · In
0n 0n · · · 0n 0n 0n · · · 0n

0n 0n

0n 0n

...
0n 0n

In 0n

 (5)

where In and 0n denote the n×n identity and zero matrices,
respectively. If l(k) is non-zero,

Λ1,1 = A0(k), Λ1,l(k)+1 = A1(k)

otherwise,

Λ1,1 = Λ1,l(k)+1 = A0(k) +A1(k)
Definition 4: For the system (4), let φ(k1, k2) be defined

as

Φ(k1, k2) =

{
Λ(k1 − 1)Λ(k1 − 2) . . .Λ(k2), k1 > k2

I, k1 = k2

(6)
where k1 ≥ k2.

Lemma 1: Consider the system (4). The state x(k) can be
expressed by

x(k) = Ψ(k, k0)z(k0) +
k∑

p=k0+1

Ψ(k, p)Eµ(p− 1) (7)

for k > k0, where

z(k0) =
[
xT (k0) xT (k0 − 1) · · · xT (k0 − l̄)

]T

Ψ(k1, k2) = ΞΦ(k1, k2), E = ΞT (8)

Ξ =
[
In 0n · · · 0n

]
Note that Ξ ∈ Rn×n(l̄+1).

Proof: From

z(k) =
[
xT (k) xT (k − 1) · · · xT (k − l̄)

]T
(9)

the equation (4) can be written as

z(k + 1) = Λ(k)z(k) + Eµ(k)
x(k + 1) = Ξz(k + 1)

(10)

where E and Ξ are given by (8), Λ(k) is defined in (5), and
z(k0) is given in (8). By solving the system (10) recursively,
one can verify that x(k) satisfies (7). �

Lemma 2: If the system (4) is exponentially stable for
l(k) ∈ [l, l̄], then there exists a constant M̃ > 0 such that
Ψ(k, k0) defined in Lemma 1, satisfies

‖Ψ(k, k0)‖ ≤ M̃ρk−k0 , k ≥ k0 (11)
Proof: Consider a fixed k > k0. Then, for all k

‖Ψ(k, k0)‖ = sup
v(k)

‖Ψ(k, k0)v(k)‖
‖v(k)‖

(12)
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Let v(k) is written in the standard basis {ei}, i =
1, 2, . . . , n(l̄ + 1); i.e.,

v(k) =
n(l̄+1)∑

i=1

αi(k)ei (13)

Using (13), (12) is written as following

‖Ψ(k, k0)‖ = sup
αi(k)

‖
∑n(l̄+1)

i=1 αi(k)Ψ(k, k0)ei‖
‖

∑n(l̄+1)
i=1 αi(k)ei‖

(14)

Thus, it can be concluded that

‖Ψ(k, k0)‖ ≤ sup
αi(k)

∑n(l̄+1)
i=1 |αi(k)|‖Ψ(k, k0)ei‖
‖

∑n(l̄+1)
i=1 αi(k)ei‖

(15)

In (7), assume that µ(k) = 0 and z(k0) = ei. Therefore,

x(k) = Ψ(k, k0)ei (16)

Since the system (4) is exponentially stable, according to
Definition 1, there exists a constant M > 0 such that

‖Ψ(k, k0)ei‖ = ‖x(k)‖ ≤Mρk−k0 , k > k0 (17)

Then, it is resulted that

‖Ψ(k, k0)‖ ≤Mρk−k0 sup
αi(k)

∑n(l̄+1)
i=1 |αi(k)|

‖
∑n(l̄+1)

i=1 αi(k)ei‖
(18)

On the other hand,

‖v(k)‖1 =
n(l̄+1)∑

i=1

|αi(k)| (19a)

‖v(k)‖ = ‖
n(l̄+1)∑

i=1

αi(k)ei‖ (19b)

It is known that in finite-dimensional space, all the vector
norms are equivalent; i.e.,

‖v(k)‖1 ≤ c‖v(k)‖ (20)

where c is a constant. By defining M̂ = cM , it is followed
that

‖Ψ(k, k0)‖ ≤ M̂ρk−k0 , k > k0

Let M̃ = max{1, M̂}, then (11) is resulted. �
Lemma 3: Suppose that the system

x(k+1) = A(k)x(k)+Ad(k)x(k− l(k))+B(k)u(k) (21)

is exponentially stable under the feedback control u(k) =
Kx(k) for all l(k) ∈ [l, l̄]. Then the system

x(k+1) = A(k)x(k)+Ad(k)x(k− l(k))+B(k)u(k)+µ(k)

where 0 ≤ ‖µ(k)‖ ≤ µ̄, is µ̄-exponentially stable under the
control law u(k) = Kx(k).

Proof: Substituting u(k) = Kx(k) in (21), the following
equation is obtained for k > k0

x(k+1) = (A(k) +B(k)K)x(k)+Ad(k)x (k − l(k))+µ(k)
(22)

According to Lemma 1, x(k) can be written as (7), with
A0(k) = A(k) + B(k)K, and A1(k) = Ad(k). Since the
system obtained in (22) is exponentially stable for all l(k) ∈
[l, l̄],

‖Ψ(k, k0)z(k0)‖ ≤Mρk−k0 sup
k0−l̄≤v≤k0

‖x(v)‖ (23)

Applying triangular inequality to (7) leads to

‖x(k)‖ ≤ ‖Ψ(k, k0)z(k0)‖+
k∑

p=k0+1

‖Ψ(k, p)Eµ(p− 1)‖

(24)
Using (23), it follows that

‖x(k)‖ ≤Mρk−k0 sup
k0−l̄≤v≤k0

‖x(v)‖

+
k∑

p=k0+1

‖Ψ(k, p)‖‖E‖µ̄
(25)

From Lemma 2, it can be concluded that

‖x(k)‖ ≤Mρk−k0 sup
k0−l̄≤v≤k0

‖x(v)‖+
k∑

p=k0+1

M̃ρk−pµ̄

(26)
Thus,

‖x(k)‖ ≤Mρk−k0 sup
k0−l̄≤v≤k0

‖x(v)‖+ M̃µ̄
1− ρk−k0

1− ρ
(27)

Define
M̃2(µ̄) := M̃µ̄

1
1− ρ

(28)

It is clear that

M̃2(µ̄) : R+ → R+, M̃2(0) = 0 (29)

Therefore, for k > k0,

‖x(k)‖ ≤Mρk−k0 sup
k0−l̄≤v≤k0

‖x(v)‖+ M̃2(µ̄)

Let M̃1 denote max{1,M}; it can now be inferred from
Definition 2 that (21) is µ̄-exponentially stable under the
feedback u(k) = Kx(k). �

Lemma 4: Consider the following system

x(k+1) = A(k)x(k)+Ad(k)x(k− l(k))+B(k)u(k)+µ(k)
(30)

where lm ≤ l(k) ≤ lM , and µ(k) is a bounded disturbance
(0 ≤ ‖µ(k)‖ ≤ µ̄). If (30) is exponentially stable under
the feedback law u(k) = Kx(k), ∀l(k) ∈ [lm, lM ], then
there exist constants M̃ > 0, ρ ∈ (0, 1), and a function
M̂(·) : R+ → R+ with M̂(0) = 0 such that for every
l̄ ≥ lM , and k ≥ k0

sup
k−l̄≤v≤k

‖x(v)‖ ≤ M̃ρk−k0 sup
k0−l̄≤v≤k0

‖x(v)‖+ M̂(µ̄)

(31)
Proof: Since (30) is exponentially stable under the feed-

back u(k) = Kx(k), it is µ̄-exponentially stable as well.
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Thus, for any k ≥ k0, there exist a positive constant M1 and
a function M̂1 such that

‖x(k)‖ ≤M1ρ
k−k0 sup

k0−lM≤v≤k0

‖x(v)‖+ M̂1(µ̄) (32)

This means that

‖x(k)‖ ≤M1ρ
k−k0 sup

k0−l̄≤v≤k0

‖x(v)‖+ M̂1(µ̄) (33)

If k > k0 + l̄, then for 0 ≤ i ≤ l̄

‖x(k− i)‖ ≤M1ρ
k−i−k0 sup

k0−l̄≤v≤k0

‖x(v)‖+M̂1(µ̄), (34)

or equivalently,

‖x(k−i)‖ ≤M1ρ
−iρk−k0 sup

k0−l̄≤v≤k0

‖x(v)‖+M̂1(µ̄) (35)

Let M̃1 be equal to M1
ρl̄ . Then, it can be concluded that

sup
k−l̄≤v≤k

‖x(v)‖ ≤ M̃1ρ
k−k0 sup

k0−l̄≤v≤k0

‖x(v)‖+ M̂1(µ̄).

(36)
Consider now the case when k ≤ k0 + l̄. Since A(k), Ad(k)
and B(k) are norm bounded and K is a constant matrix, one
can find a positive constant M2 and a function M̂2(·) such
that

sup
k−l̄≤v≤k

‖x(v)‖ ≤M2 sup
k0−l̄≤v≤k0

‖x(v)‖+ M̂2(µ̄), (37)

or equivalently,

sup
k−l̄≤v≤k

‖x(v)‖ ≤M2ρ
k0−kρk−k0 sup

k0−l̄≤v≤k0

‖x(v)‖

+ M̂2(µ̄)
(38)

Let M̃2 be equal to M2
ρl̄ . Then, it can be concluded that

sup
k−l̄≤v≤k

‖x(v)‖ ≤ M̃2ρ
k−k0 sup

k0−l̄≤v≤k0

‖x(v)‖+ M̂2(µ̄).

(39)
Define M̃ and M̂ as

M̃ = max
i=1,2

M̃i

M̂(µ̄) = max
i=1,2

M̂i(µ̄), ∀µ̄ ≥ 0
(40)

It can be deduced that for a constant M̃ and a function M̂(·) :
R+ → R+, M̂(0) = 0 defined above, the inequality (31)
holds. �

B. A Time-Invariant System with Fixed Delay

In this subsection, it is assumed that the system matrices
are uncertain nevertheless time invariant, and that the delay
is an unknown, bounded constant. Moreover, no single
controller is assumed to exist with the property that it
stabilizes the system within the whole uncertain parameter
space pertaining to A, Ad and l. The following assumption
is essential for developing the main results.

Assumption 1: Suppose that the uncertain parameter space
associated with A, Ad and l, denoted by Ω, is compact and
can be decomposed into a finite cover {Ωi}L

1 , for which the
following conditions hold

i) Ωi ⊂ Ω, Ωi 6= {}, i = 1, ..., L

ii)
⋃L

i=1 Ωi = Ω

iii) For any i ∈ {1, ..., L}, there exist (Ai, Adi, Bi) ∈ Ωi

(center) and Ki (control gain) such that for any l ∈
[lmi

, lMi
], the controller u(k) = Kix(k) exponentially

stabilizes the system (1) for all (A,Ad, B) satisfying

||A−Ai|| ≤ αi, ||Ad −Adi|| ≤ βi, ||B −Bi|| ≤ δi
(41)

It is to be noted that, lmi
and lMi

in condition (iii) above
represent the lower and upper bounds of l in Ωi, respectively.
Note that l ≤ lmi , and lMi ≤ l̄ and (41) holds for all
(A,Ad, B) ∈ Ωi and ∀l ∈ [lmi, lMi].

In Conditions (i) and (ii) given above, it is supposed that
the uncertain set Ω can be constructed from the union of the
sets Ωi, i = 1, ..., L. In the next step, a condition is presented
based on which a supervisory control scheme is obtained to
µ̄-exponentially stabilize the system (1). Suppose that the
uncertain plant (1) with any time-delay l ∈ [lmp

, lMp
] lies in

Ωp. Then, there exists a delay l̂ ∈ [lmp
, lMp

] that is equal to
the plant delay (i.e., l = l̂) which can be interpreted as the
nominal delay corresponding to Ωp. Condition (iii), on the
other hand, implies that

||x(k)−Apx(k − 1)−Adpx(k − l̂ − 1)−Bpu(k − 1)|| ≤
αp||x(k − 1)||+ βp||x(k − l̂ − 1)||
+ δp||u(k − 1)||+ µ̄

(42)

The above inequality provides the core falsifying criterion
for the switching rule proposed in this work. If this inequality
is violated for ∀l̂ ∈ [lmp

, lMp
], it implies that the plant is not

in Ωp, i.e. i(k) 6= p, where i(k) denotes the index of the
controller.

The following algorithm is proposed to design supervisory
control based on (42).

Algorithm 1
1) Let k = k0, k0 > 0

P = {1, ..., L}
Qp = {mp, ..., Mp}, ∀p ∈ P
H(k0) = {(p, lq) | p ∈ P and q ∈ Qp}
Choose i(k0) ∈ P

2) k = k + 1
3) Ĥ(k) =

{
(p, lq) | (42) holds p ∈ P, l̂ = lq, q ∈ Qp

}
4) H(k) = H(k − 1) ∩ Ĥ(k)
5) if ∃ q ∈ Qi(k−1) such that (i(k − 1), lq) ∈ H(k),

then i(k) = i(k − 1). Go to step 2
else
i(k)= any entry of P such that (p, lq) ∈ H(k). Go to
step 2

The above algorithm can be summarized as follows: In
Step 1 of the algorithm, the controller is initialized and the
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set H(k0), which includes all the regions in the parameter
space of Ω, is formed. The set Ĥ(k) is then constructed in
Step 3. This set consists of all ordered pairs (p, lq) which
are not falsified by (48) at time k. The falsified pairs (p, lq)
prior to time k are also omitted form Ĥ(k) in the next
step (Step 4). Finally, if the current controller index belongs
to H(k) obtained in Step 4, no switching from the current
controller is required. Otherwise, a new controller index is
chosen from H(k), and therefore the falsification procedure
will be repeated from Step 2 again.

Remark 1: Note that the controller gain Ki will not be
replaced in step 5 unless all potential values for delay, i.e.
li = lmi , ..., lMi are falsified.

Remark 2: Algorithm 1 guarantees that all elements of
the compact set Ω (uncertain parameter space) with any
plant delay corresponding to l = l, ..., l̄ is examined. It
also guarantees the existence of a control law that stabilizes
the plant (1), leading to the convergence of the switching
sequence i(k0), i(k0 + 1), ... .

Theorem 1: Consider the system (1) and suppose that the
conditions of Assumption 1 hold. Then, using the proposed
switching algorithm the resultant closed-loop system is µ̄-
exponentially stable.

Proof: Consider the finite set {k1, ..., kf} as the sequence
of switching instants. Consider also two consecutive instants
ks and ks+1 (it is known that such switching instants exist
for some s). From (1), the dynamics of the closed-loop
system (with time-invariant parameters and fixed delay) for
k ∈ [ks, ks+1) can be presented by

x(k + 1) =(A+BKi(ks))x(k) +Adx(k − l) + µ(k)
=(Ai(ks) +Bi(ks)Ki(ks))x(k)

+Adi(ks)x(k − l̂(k))
+ (A+BKi(ks))x(k) +Adx(k − l) + µ(k)
− (Ai(ks) +Bi(ks)Ki(ks))x(k)

−Adi(ks)x(k − l̂(k))
(43)

where l̂(k) is the nominal delay that satisfies (42) for k ∈
[ks, ks+1). Define ψ(k) as

ψ(k) =(A+BKi(ks))x(k) +Adx(k − l)
− (Ai(ks) +Bi(ks)Ki(ks))x(k)

−Adi(ks)x(k − l̂(k)) + µ(k)

(44)

Thus, on substituting (44) in (43) one will obtain

x(k + 1) =(Ai(ks) +Bi(ks)Ki(ks))x(k)

+Adi(ks)x(k − l̂(k)) + ψ(k)
(45)

where ||ψ(k)|| ≤ αi(ks)||x(k)|| + βi(ks)||x(k − l̂(k))|| +
γi(ks)||u(k)|| + µ̄, as (45) is not violated in the switching
interval [ks, ks+1). Introducing fictitious matrices and pa-
rameter ∆A, ∆Ad, ∆B and µ̂(k), it can be concluded from
the structure of (45) that

x(k + 1) =(Ai(ks) + ∆A+Bi(ks)Ki(ks) + ∆BKi(ks))x(k)

+ (Adi(ks) + ∆Ad)x(k − l̂(k)) + µ̂(k)
(46)

where ||µ̂(k)|| ≤ µ̄, ||∆A|| ≤ αi(ks), ||∆Ad|| ≤ βi(ks) and
||∆B|| ≤ γi(ks).

Since Ki(k) ∈ {Ki}L
i=1, and i(k) ∈ P , (P is a finite

set), there exist a finite positive constant M0 and a function
γ0 : R+ → R+, with γ0(0) = 0, satisfying

sup
ks−l̄≤v≤ks

||x(v)|| ≤

M0 sup
ks−l̄−1≤v≤ks−1

||x(v)||+ γ0(µ̄)
(47)

and since (46) behaves like an exponentially stable system,
for any k ∈ [ks, ks+1 − 1], it follows from Lemma 4 that
there exist constants Mi(ks), ρi(ks), and a function M̂i(ks)(·)
with M̂i(ks)(0) = 0 such that

sup
k−l̄≤v≤k

||x(v)|| ≤Mi(ks)ρ
k−ks

i(ks) sup
ks−l̄≤v≤ks

||x(v)||

+ M̂i(ks)(µ̄)
(48)

By substituting (47) in (48) one will obtain

sup
k−l̄≤v≤k

||x(v)|| ≤M0Mi(ks)ρ
k−ks

i(ks) sup
ks−l̄−1≤v≤ks−1

||x(v)||

+ M̂i(ks)(µ̄) +Mi(ks)ρ
k−ks

i(ks) γ0(µ̄)
(49)

Now, since the closed-loop system is exponentially stable
in the time interval k ∈ [ks−1, ks), it can be concluded from
Lemmas 3 and 4 that

sup
ks−l̄−1≤v≤ks−1

||x(v)|| ≤

Mi(ks−1)ρ
ks−ks−1−1
i(ks−1)

sup
ks−1−l̄≤v≤ks−1

||x(v)||

+ M̂i(ks−1)(µ̄)

(50)

Define
ρ := max

1≤i(k)≤L
ρi(k)

M := max
1≤i(k)≤L

Mi(k)

Substitute (50) in (49) to obtain

sup
k−l̄≤v≤k

||x(v)|| ≤M2M0ρ
k−ks−1−1 sup

ks−1−l̄≤v≤ks−1

||x(v)||

+ M̄i(ks)(µ̄)
(51)

for k ∈ [ks, ks+1), where

M̄i(ks)(µ̄) =M̂i(ks)(µ̄)

+Mi(ks)ρ
k−ks [M0M̂i(ks−1)(µ̄) + γ0(µ̄)]

On the other hand, like (49) one can verify that

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB11.5

2890



sup
ks−1−l̄≤v≤ks−1

||x(v)|| ≤

M0 sup
ks−1−l̄−1≤v≤ks−1−1

||x(v)||+ γ0(µ̄)

(52)

Therefore, from the inequalities (51) and (52), the following
can be obtained for k ∈ [ks, ks+1)

sup
k−l̄≤v≤k

||x(v)|| ≤

M2M2
0 ρ

k−ks−1−1 sup
ks−1−l̄−1≤v≤ks−1−1

||x(v)||

+ M̄i(ks)(µ̄) +M2M0ρ
k−ks−1−1γ0(µ̄)

(53)

Using the above inequality iteratively yields

||x(k)|| ≤MfMf
0 ρ

k−k0−f sup
k0−l̄≤v≤k0

||x(v)||

+ M̄i(kf )(µ̄) +MfMf−1
0 ρk−k0−fγ0(µ̄)

(54)

for k ≥ kf , where

M̄i(kf )(µ̄) = M̂i(kf )(µ̄) +Mρk−kf [M0M̂i(kf−1)(µ̄)

+ γ0(µ̄)]

Define M̃1 = (MM0
ρ )f and M̃2(µ̄) = M̄i(kf )(µ̄) +

MfMf−1
0 ρk−k0−fγ0(µ̄). Note that M̃1 is a bounded positive

constant and M̃2(µ̄) is a function of µ̄ such that M̃2(·) :
R+ → R+ with M̃2(0) = 0. Therefore (54) can be written
as

||x(k)|| ≤ M̃1ρ
k−k0 sup

k0−l̄≤v≤k0

||x(v)||+ M̃2(µ̄)

Hence, it follows from Definition 2, that the system (1) is
µ̄-exponentially stable. �

C. A Time-Varying System with Time-Varying Delay
It is now assumed that the uncertain system (1) can have

infrequent parameter jumps. The following assumption is
made on the maximum allowable speed of parameter jumps.

Assumption 2: The number of jumps in system parameters
in (1) (i.e. A(k), Ad(k), B(k) and l(k)) for any time interval
[k, k + σN + l̄] cannot exceed σ, where l̄ is the maximum
bound on the delay, and σ, N are strictly positive constants.

Algorithm 1 can still be used in the case of a system
with slowly vary parameters satisfying Assumption 2, after
modifying step 4 as follows [9]

H(k) =
{
H(k − 1) ∩ Ĥ(k), if H(k − 1) ∩ Ĥ(k) 6= {}

Ĥ(k), otherwise
(55)

This modification allows the algorithm to recheck the fal-
sified items. In the following theorem, conditions for µ̄-
exponential stability of the time-varying systems are pre-
sented.

Theorem 2: Consider the system (1) and let the condition
of Assumption 2 holds for some σ and N (strictly positive).
Then the closed system is globally µ̄-exponentially stable if
M̃1ρ

N < 1, where M̃1 and ρ are constant scalars defined in
Definition 2.

Proof: Consider the behavior of system (1) in the interval
[k, k + σN + l̄], where the number of parameter jumps
is assumed to be less than σ. Let h denote the number
of switchings carried out by the controller in the above
interval. Consider the constant ρ and the function M̂f (·) in
Definition 2, where ρ ∈ (0, 1) and the function M̂f (·) > 0,
M̂f (0) = 0. For any interval [k, k + σN + l̄] one can use
(54) to obtain

||x(k + σN + l̄)|| ≤ (
MM0

ρ
)hρσN+l̄ sup

k−l̄≤v≤k

||x(v)||

+ M̂f (µ̄)
(56)

Denote with f the maximum number of switchings that can
be made by the controller applied to the plant with unknown
time-invariant parameters and fixed unknown time delay.
Then,

h ≤ σf + 1

which implies that

||x(k + σN + l̄)|| ≤ (
MM0

ρ
)((
MM0

ρ
)fρN )σρl̄

× sup
k−l̄≤v≤k

||x(v)||+ M̂f (µ̄)
(57)

Note that if (MM0
ρ )((MM0

ρ )fρN )σ ≤ 1, then

sup
k+σN≤v≤k+σN+γ

||x(v)|| ≤ a sup
k−l̄≤v≤k

||x(v)||+ M̂f (µ̄)

(58)
where a and γ are scalar constants such that 0 < a < 1 and
γ ∈ {0, ..., l̄}, respectively.

It can be easily verified that the inequality
(MM0

ρ )((MM0
ρ )fρN )σ ≤ 1, pointed out above is equivalent

to

(
MM0

ρ
)fρN ≤ (

MM0

ρ
)
−1
σ (59)

Using the same argument as in [9], and noting that
(MM0

ρ )
−1
σ is increasing in σ and limσ→∞(MM0

ρ )
−1
σ = 1,

the inequality (MM0
ρ )fρN < 1 will be hold for sufficiently

large N which guarantees the existence of a finite σ such
that (59) holds. Note that it can be concluded from (58) that

sup
k0+k(σN)+(k−1)l̄≤v≤k0+k(σN+l̄)

||x(v)|| ≤

ak sup
k0−l̄≤v≤k0

||x(v)||+
i=k∑
i=1

ai−1M̂f (µ̄)
(60)
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for ∀k ∈ N. Since 0 < a < 1 and
∑k

i=1 a
i−1 < ∞, it is

easy to notice from Definition 2, that ||x(k0+k(σN+ l̄))|| is
µ̄-exponentially stable for ∀k ∈ N. Now, it is straightforward
to observe that ∀j ∈ {1, ..., σN + l̄−1} and ∀k ∈ N, there
exist positive constants G1 and G2 such that

||x(k0 + k(σN + l̄) + j)|| ≤
G1 sup

k0+k·(σN)+(k−1)·l̄≤v≤k0+k·(σN+l̄)

||x(v)||+G2
(61)

This implies µ̄-exponential stability of the system (1) with
time-varying parameters and time-varying delay satisfying
Assumption 2. �

IV. NUMERICAL EXAMPLE

Example 1: Consider the following discrete-time system
with time-delay:

x(k + 1) = A(k)x(k) +Ad(k)x(k − l(k))
+B(k)u(k) + µ(k)

(62)

where l(k) ∈ {0, 1, ..., 24}, µ(k) is the uniformly bounded
disturbance such that ||µ(k)|| < 0.1, ∀k ∈ N. Furthermore,
the uncertain matrices A(k), Ad(k) and B(k) can switch
between the following 7 sets of matrices

1) A1 =
[

0.8 0
0.1 0.9

]
+ ∆A1, B1 =

[
1

0.5

]
+ ∆B1,

Ad1 =
[
−0.1 0
−0.2 −0.1

]
+ ∆Ad1

(63a)

2) A2 =
[

0.3 1
0.1 0.6

]
+ ∆A2, B2 =

[
1

0.5

]
+ ∆B2,

Ad2 =
[

0.5 0
0.5 0.5

]
+ ∆Ad2

(63b)

3) A3 =
[

1 1
0.2 0.7

]
+ ∆A3, B3 =

[
1

0.5

]
+ ∆B3,

Ad3 =
[

0.4 0
0.8 0.4

]
+ ∆Ad3

(63c)

4) A4 =
[

2 1
1 1

]
+ ∆A4, B4 =

[
1
1

]
+ ∆B4,

Ad4 =
[

0.5 0
−0.5 0.3

]
+ ∆Ad4

(63d)

5) A5 =
[

1 1
−1 −0.1

]
+ ∆A5, B5 =

[
1
1

]
+ ∆B5,

Ad5 =
[
−0.5 0
0.1 0.03

]
+ ∆Ad5

(63e)

6) A6 =
[
−0.2 0.1
−0.5 1

]
+ ∆A6, B6 =

[
1
1

]
+ ∆B6,

Ad6 =
[
−0.1 0
0.1 −0.5

]
+ ∆Ad6

(63f)

7) A7 =
[
−0.1 1
0.1 −1

]
+ ∆A7, B7 =

[
1
1

]
+ ∆B7,

Ad7 =
[
−0.4 0.4
−0.1 0.1

]
+ ∆Ad7

(63g)

where ||∆Ai|| ≤ 0.05, ||∆Adi|| ≤ 0.05, and ||∆Bi|| ≤ 0.05
for i = 1, ..., 7, such that || · || denotes the 2-norm. Using the
method developed in [5], 50 controllers are designed to cover
the whole parameter space corresponding to the uncertain
time-delay and state-space matrices given above. Switching
sequence between different subsystems in (63a)-(63g) along
with time-delay profile are depicted in Fig. 1. Using the
50 controllers mentioned above and following Algorithm 1,
the state trajectories sketched in Fig. 2 are obtained. These
trajectories clearly show that the system is stable (or more
precisely, µ̄-exponentially stable) in the presence of the
uncertain time-delay and state-space matrices. The switching
instances between different controllers are given in Fig. 3.

V. CONCLUSIONS

An adaptive switching control algorithm is developed for
uncertain discrete-time systems with time-varying delay, in
the presence of disturbances. A set of discrete-time con-
trollers are designed with the property that at least one
of them can stabilize the system with adaptive switching
algorithm is then established which a stabilizing controller
through fast model falsification. The proposed switching
scheme is convergent and guarantees the stability of the
closed-loop system. Simulation results elucidate the effec-
tiveness of the method in stabilizing a highly uncertain time-
delay system with a relatively large upper bound on delay.
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