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Abstract— This paper presents a method for constructing an
empirical simplified model of the fluid flow in the well during
drilling operations. The model is fitted towards a snapshot of
data generated by a detailed model. An observer is designed for
the simplified model, utilizing the fast updated measurements at
the surface, instead of slow updated and time-lagged downhole
measurements. The observer is evaluated against the detailed
fluid flow model. The results show that the designed observer
is capable of following the detailed model sufficiently accurate.

I. INTRODUCTION

Stabilizing the pressure throughout a wellbore is of par-

ticular interest in oil well drilling applications so as to

take advantage of ensuring safety, increasing the penetration

rate of the drill bit, and avoiding formation damage in the

reservoir which eventually increases the production rate of

the oil. Several different types of equipment can be employed

in stabilizing the pressure during drilling [9]. However, such

kind of equipment is rather expensive to procure. Moreover,

most wells nowadays are still drilled using conventional

drilling equipment where the annulus section of the well is

open to the atmosphere.

Typically, drilling systems are operated manually by the

drilling crew where various actuators of the drilling system,

such as pumps and valves, are adjusted independently. In

this case, several measurements are available for the drilling

crew. However, some of the main parameters are not typically

measured, such as the downhole pressure and the flow rate in

the annulus section. And even if the downhole measurements

are available, the downhole measurements are sampled at a

much lower rate. These measurements are also time lagged

due to the data transmission method using standard mud

pulse telemetry. Moreover, the accuracy of the measurements

may not be reliable. This leads to the need of defining an

observer for the system.

An observer for the drilling system can be designed in

several ways. In [18], an observer in the form of ensemble

Kalman filter [3], [4] is designed based on a detailed two-

phase fluid flow model. The ensemble Kalman filter calcu-

lates the model parameter variance using several instances

of the model. The ensemble Kalman filter is designed based

on high-order models. Another work by [7] utilizes the

unscented Kalman filter [14] for evaluating the frictional

fluid flow parameters during drilling applications. This work
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shows that by tuning the frictional parameters of a detailed

fluid flow model, a fairly good match between the measured

data and the model can be obtained. This method has

also been evaluated in an actual drilling application with

promising results [13], where the focus has been on using

the model to optimize and safe-guard the drilling process.

The ensemble Kalman filter and the unscented Kalman filters

have also been used to estimate the reservoir parameters

during drilling operations [21], [22].

However, using an observer based on a detailed model is

computationally intensive, especially for a model predictive

control setting [11], [23]. Another direction will be to design

an observer based on a more simplified model [24]. In

this case, a model based on a first order approximation is

combined with an unscented Kalman filter. The filter is used

as an observer for a model predictive control scheme. The

resulting controller shows fairly well results in stabilizing

the pressure during large fluid flow rate changes. A recent

work [31] describes an adaptive observer for a simplified

model. The simplified model is tuned with respect to a

detailed flow model. The observer shows good convergence

when being used towards the same simplified model.

This paper presents a method for constructing another

type of simplified model using a data set generated by a

detailed flow model. The simplified model is in the form of

polynomial differential equations. The polynomial structure

of the model gives an advantage from computational point of

view. The structure benefits from the use of sum of squares

programming [26] which is amenable to computer solution.

In short, the model will be easier to handle for analysis

and synthesis purposes. As a starting point in this direction,

an observer is designed based on the simplified model. The

observer is evaluated towards the detailed model using only

the surface measurements.
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Fig. 1. Drilling of a well into an oil reservoir.
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II. PROCESS DESCRIPTION

An oil well is typically drilled by using a drill string with

a drill bit attached to it; see Figure 1. During this process,

drilling fluid is circulated through the drill string and the

drill bit. The drill bit is equipped with a check valve, which

prevents the drilling fluid in the annulus to return into the

drill string.

The drilling fluid is non-Newtonian where one of the

important properties is the ability to transport cuttings from

the drill bit and up through the annulus. The fluid flow

through the drill string is typically in a turbulent regime.

The drilling fluid has then a low viscosity and has reduced

frictional effects. When the drilling fluid is flowing through

the drill bit nozzles, then the velocity is being reduced.

This is due to the fact that the flow area in the annulus

is larger than the flow area in the drill string. When the

drilling fluid changes velocity, the viscosity of the drilling

fluid changes, giving better cuttings transportation properties,

and also increased frictional effects.

In a drilling operation, the drilling crew might need to

adjust the cuttings transportation properties. This is normally

done by changing the velocity of the drilling fluid at the bit.

However, this causes fluctuations in the downhole pressure.

The pressure itself is one of the most important factors to

determine the success of a drilling process into a formation.

If the pressure is too low, then the fluid from the reservoir

might enter the wellbore. On the other hand, if the wellbore

pressure is too high, then the pressure might fracture the

formation. These limitations leads to a need for a coordinated

control of both the downhole pressure and the cuttings

transportation properties.

III. REVIEW OF DRILLING FLUID FLOW MODELS USED

FOR OBSERVER DESIGNS

This section presents different modeling efforts for de-

scribing the dynamic pressure variations in drilling opera-

tions, ranging from detailed models where the focus is to

model the process as detail as possible, to more simplified

models that are able to represent the most important dynamic

behaviour of the well.

A. Detailed flow modeling

In principle, the dynamics of the downhole pressure should

be modeled accurately to describe a more realistic drilling

process as a whole. However, since the downhole pressure

is very dependent on other parameters such as the density

and friction pressure losses, the modeling efforts can be very

complex. This is especially true when the pressure in the well

is below the reservoir pore pressure, resulting in an influx of

gas when drilling in gas reservoirs. The annulus part of the

well will then have two-phase flow conditions which, in this

case, add even more complexity to the modeling of the well

fluid flow.

To this end, the research on dynamic well modeling had

been mainly focused on model designs for accurately de-

scribing the fluid flow along a well, using multi-phase, multi

component dynamic models. The model is derived from

momentum and mass balance principles which come in the

form of partial differential equations. A numerical scheme,

which takes multi-phase fluid dynamics into account, has

been developed over several years by [10], [29], [30] and

verified with several experimental tests by [12], [16], [17].

The type of models used here calculates the behaviour of the

fluids in more detail. The spatial discretization divides the

well into several boxes, and the mass balance for each box

is calculated along with the pressure balance, giving mass

for each phase and velocity of the mixture as well as the

pressure in the box. This results in a high-order state vector

for a model with several boxes.

B. Low-order model based on mass balance and pressure

balance

In the model of [20], the flow pattern in both the drill string

and the annulus is assumed to be uniform. Therefore, the well

is divided into two compartments with different dynamics,

the drill string and the annulus. The inter-connection between

these two compartments is modeled using mass balances

and pressure balances. In addition to the mass balances,

a pressure balance is set up. This is because the friction

pressure in the well is strongly related to the flow rates in

the well, causing unsteady flow conditions [19]. The pressure

balance is set up at the drill bit at the bottom of the well,

and at the choke valve at the exit of the well. The closure

relations between masses, flow rates and pressures are further

described in [23]. This type of simple modeling methodology

can be used for design and analysis of a control system for

the pressure in the well.

C. Simplified model using direct pressure modeling

Another drilling model has been developed to be used

for control purposes during drilling [15]. The idea of this

approach is to model the pressure dynamics directly, and

design the model sufficiently simple so that analysis and

synthesis can be performed by utilizing Lyapunov theory. An

observer scheme designed for this model is further described

in [31].

D. Simplified model using first order approximations of flow

velocity

The model in [24] is based on a first order approximation

of the fluid flow velocity in a pipe segment. The pressures

in the well are influenced by the frictional pressure losses in

the drillstring, the annulus and the choke line. This model

layout is able to capture the most important dynamics that

are present during a pipe connection operation. In [24] an

observer scheme in the form of an unscented Kalman filter

is designed for this type of model.

IV. SIMPLIFIED MODEL FROM EMPIRICAL DATA

The model in [15] describes the dynamics of the pres-

sures in the topside and in the bottomhole during drilling.

The model consists of nonlinear differential equations with

dimension three in the case of closed annulus, and dimension

two in the case of open annulus. The model parameters are
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TABLE I

WELL GEOMETRY AND FLUID DATA

Parameter Value

Well length, ha 2580 m
Well vertical depth, La 1950 m

Casing inner diameter, Da 0.2169 m
Drill string outer diameter, Dd 0.1270 m
Drill string inner diameter, Dd 0.1087 m
Initial main pump flow rate, qp 1000 l/min

Oil density, ρ 854 kg/m3

Water density, ρ 1000 kg/m3

Baryte density, ρ 4027 kg/m3

Oil-Water Ratio 3.11

Drilling fluid mixture density, ρ 1610 kg/m3

tuned to fit the trajectories generated by the detailed model of

drilling in the simulator WeMod [25] for adaptive observer

design [28].

In this section we construct an empirical simplified model

based on the snapshot of data which are also generated by the

detailed model in WeMod [25]. As an example, we consider

the detailed model representing an actual off-shore drilling

operation in the North Sea. The well is partly vertical and

partly inclined, that is 1950 m deep and 2580 m long. The

fluid used in the simulations is a mixture of oil, water and

baryte. The various simulation parameters are found in Table

I.

The input to the simulator is the main pump rate in

the topside. From practical point of view in real drilling

operations, there are some restrictions on how the rate of

the topside pump should be fed to enhance safety during

drilling. In our case, since we are working with a simulator,

we have more freedom to apply a wider possibilities of

inputs to excite the detailed model in order to obtain a better

identification result. However, as a starting point, this paper

mainly concentrates on the construction of the empirical

model. The subject of persistent excitation of the inputs

is beyond the scope of the paper and will be considered

in the future. Thus, we will only show how to construct

an empirical model based on the data generated by the

sinusoidal inputs to the simulator WeMod. Similarly, the

method may also be used for the data generated by other

types of inputs.

The empirical simplified model describes a particular

dynamics of the pressure in the topside and the pressure in

the bottomhole during drilling process. The model is in the

form of polynomial differential equations where the number

of the monomial terms of the vector fields depends on the

accuracy and purpose of the model. The model is given by

ẋ1 =

m1
∑

j=1

a1jp1j (x) +

r1
∑

j=1

b1jq1j (x) u (1a)

ẋ2 =

m2
∑

j=1

a2jp2j (x) +

r2
∑

j=1

b2jq2j (x) u (1b)

where x1 is the mudpump pressure in the topside, x2

is the downhole pressure, pij and qij are monomials in

x and u is the main pump rate. The parameters aT
1 =

[

a11 . . . a1m1

]

, aT
2 =

[

a21 . . . a2m2

]

, bT
1 =

[

b11 . . . b1r1

]

, bT
2 =

[

b21 . . . b2r2

]

determine

the characteristics of the drilling system.

The problem of estimating the parameters

β =
[

aT
1 aT

2 bT
1 bT

2

]

∈ R
nθ

is the center of this section. To be more precise, the problem

of estimating the parameters is formulated as follows.

Problem 1 Suppose that the parameters in β are time in-

variant. Given are the collection of data, in the form of the

inputs u and the outputs x =
[

x1 x2

]T
. Determine an

appropriate scheme to estimate the parameters.

As the dynamics of the drilling system are much slower

than the sampling time Ts we could consider the case when

the forward difference method, i.e. ẋ (t) ≈ x(t+Ts)−x(t)
Ts

, is

applied to solve (1). The sampling time Ts is considered to

be constant. The discrete-time version of (1) can be written

as

zi (k) = φi (k) βi, i = 1, 2 (2)

where

zi (k) =
xi (k + 1) − xi (k)

Ts

,

ψi (k) =
[

pi1 (x (k)) . . . pimi
(x (k))

qi1 (x (k)) u (k) . . . qiri
(x (k))u (k)

]

βi =
[

aT
i bT

i

]

.

Let the data be the sets of input {u (k)}
N−1
k=1 with output

response {x (k)}
N

k=1. For the number of data measurement

N , (2) gives

Zi = Υiβi, i = 1, 2

where

Zi =
[

zi (1) . . . zi (N − 1)
]T

,

Υi =
[

ψT
i (1) . . . ψT

i (N − 1)
]T

.

Notice that Zi ∈ R
N−1 and Υi ∈ R

(N−1)×nθi . Computing

the solution βi from the data Zi and Υi might result in an

ill-posed problem if the matrix Υi is ill conditioned. This

problem arises if the data are not rich enough to excite the

modes representing the behaviour of the system. One way to

solve this problem is by seeking an approximate solution by

regularization so that the solution is smooth.

To improve the condition of the matrix Υi we define

v
p
ij =

[

pij (x (1)) . . . pij (x (N − 1))
]T

,

v
q
ij =

[

qij (x (1))u (1) . . .

qij (x (N − 1)) u (N − 1)]
T

,

φi (k) =

[

pi1(x(k))

‖v
p

i1‖
. . .

pimi
(x(k))

∥

∥

∥
v

p

imi

∥

∥

∥

qi1(x(k))u(k)

‖v
q

i1‖
. . .

qiri
(x(k))u(k)
∥

∥

∥
v

q

iri

∥

∥

∥

]

,
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Φi =
[

φT
i (1) . . . φT

i (N − 1)
]T

,

where

Zi = Φiθi,

with

θi =
[

ai1 ‖v
p
i1‖ . . . aimi

∥

∥v
p
imi

∥

∥

bi1 ‖v
q
i1‖ . . . biri

∥

∥v
q
iri

∥

∥

]T
.

In this case, the condition number of Φi is better than that

of Υi. It is standard in the textbooks [1], [6], [27] that the

regressor matrix Φi can be written in terms of the singular

value decomposition, that is

Φi = UiSiV
′

i .

This decomposition is one of the most celebrated and is

called SVD (Singular Value Decomposition). This decom-

position can be used for solving the least squares method,

that is

θ̂i =

p
∑

j=1

U ′

ijZi

σij

Vij (3)

where p ≤ min (m,N − 1) is the rank of the matrix Φ,

the vectors Uij and Vij are the j-thorhonormal column of

the orthonormal matrices Ui and Vi, respectively and the

singular value σij is the j-th diagonal element of Si.
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e
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Fig. 2. Sinusoidal input to the detailed model

In most practical cases, numerically computing the pseu-

doinverse of the matrix Φi will, at best, produce the pseu-

doinverse of a perturbed matrix Φi + Ei. In this case the

mathematical notion of rank is not appropriate [1]. Therefore,

a definition of numerical rank is used as follows.

Definition 1 [1] A matrix Φi has numerical δ-rank equal to

k if

σi1 ≥ . . . ≥ σik > δ ≥ σi,k+1 ≥ . . . ≥ σip

where σi1 ≥ . . . ≥ σip > 0 are the singular values of Φi.

When there is a well-defined gap between σik and σi,k+1,

Definition 1 can be used to determine the rank of Φi [1].

Apparently this is not in the situation for some datasets we

encounter. By way of example we consider a set of data

generated by the detailed model representing the drilling

process in the North Sea. The data are with respect to the

inputs in the form of sinusoidal as shown in Fig. 2. The

response of the detailed model to the sinusoidal input can
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mudpump pressure
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340
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Fig. 3. The response of the detailed model to the sinusoidal input

be seen in Fig. 3. The set contains 18,000 time-steps of data

(N = 18, 000) with sampling time Ts = 1 second. Suppose

we consider

ψi =
[

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x3

2 u

x2
1u x2

2u
]

for i = 1, 2. The singular values of the matrix Φi with respect

to the data can be seen in Fig. 4. The singular values decay

gradually to zero and there is no gap in its singular value

spectrum. In this case, it is difficult to define the numerical

rank because we deal with a discrete ill-posed problem which

is defined as follows.

1 2 3 4 5 6 7 8 9 10 11
-7

-6

-5

-4

-3

-2

-1

0

1

singular values of Φ
i

lo
g

 σ
ij

j

Fig. 4. Singular values of the matrix Φi for i = 1, 2

Definition 2 [8] Consider a system in the form

Zi = Φiθi, Φi ∈ R
(N−1)×nθi , N − 1 > nθi

,

the problem of determining θi from the given Φi and Zi is

a discrete ill-posed problem if both of the following criteria

are satisfied:

1) the singular values of Φi decay gradually to zero,

2) the ratio between the largest and the smallest nonzero

singular values is large.

Criterion 2 indicates that the condition number of the matrix

Φi is large which means that the matrix is ill-conditioned.

Discrete ill-posed problems mostly arise from discretiza-

tion of ill-posed problems and the solutions to discrete ill-

posed problems are very sensitive to errors [5], [8]. As shown
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by (3), division by a very small singular value σij might

dominate the solution of θ̂i with the errors in Zi. To limit

the effect of the noisy data, the solution is to truncate the

sum at k ≤ p, that is

θ̂
trunc,k
i =

k
∑

j=1

UT
ijZi

σij

Vij . (4)

Equation (4) is the least squares solution of

Zi = Φi,kθi,

where

Φi,k =
k

∑

j=1

σijUijV
T
ij .

This means that by truncating at k, the matrix Φi is approx-

imated by the lower-rank matrix Φi,k.
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Fig. 5. The L − curve of the mudpump pressure based on the data
generated by the detailed model
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Fig. 6. The L−curve of the downhole pressure based on the data generated
by the detailed model

Truncating the SVD at k as in (4) leads to the question

how to choose the appropriate k. Rather than observing the

shape of the singular values spectrum of Φi, Hansen proposes

the L − curve to deal with the problem of ill-determined

numerical rank [8]. The curve is a logarithmic plot of

the norm of the truncated solution
(
∥

∥

∥
θ̂

trunc,k
i

∥

∥

∥

2

)

against

the corresponding residual norm
(
∥

∥

∥
Φiθ̂

trunc,k
i − Zi

∥

∥

∥

2

)

. The

curve displays the compromise between minimization of

these two quantities. With the compromise in mind, the

number k can be chosen based on the corner of the curve.

The idea behind this choice is that the corner separates

the flat and vertical parts of the curve where the solution

is dominated by truncation errors and perturbation errors,

respectively.

We take again the set of data from the previous case. The

plots of the L − curve for the mudpump pressure and the

downhole pressure can be seen in Fig. 5 and 6, respectively.

It is quite clear that the corner is around 7 and 6, respectively.

Thus we can choose k around 7 for the mudpump pressure

and around 6 for the downhole pressure. By truncating the

solution at k we obtain the estimate of the parameters for

our empirical model.
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Fig. 7. Comparison between the response of the detailed model and that
of the empirical model

To see how well the response of the empirical model fits

to that of the detailed model we perform a simulation using

the empirical model. The results can be seen in Fig. 7 where

the empirical model gives good accuracy for the mudpump

pressure in the topside (x1) while for the downhole pressure

(x2) the result is quite accurate after the transient period.

The same procedure can be carried out for other types

of representation of ψi or for other specific windows of

trajectories (for example during transient time). We need to

point out that not all type of data will result in the discrete ill-

posed problem. Nevertheless, the L−curve can still provide

indication for selecting the truncation number leading to

more stable solutions on the least mean squares problems.

An important issue worth mentioning on the method of

constructing a simplified model in this section is on choosing

the right representation of the vector fields. There is no

systematic means yet on choosing which monomial terms

and how many monomial terms needed to accurately capture

a specific behaviour of the drilling processes. One possible

direction will be on the use of the Akaike’s information

criterion (AIC) for choosing the number of monomial terms.
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V. OBSERVER DESIGN

In this section, we consider the problem of designing

observer as follows.

Problem 2 Given the system (1), design an observer for the

system based on the measurement of the mudpump pressure

in the topside, i.e. y = x1.

For the general structure of (1), this is a difficult task. How-

ever, there exist several observer designs from the literatures

which can fit to several classes of the system (1). The easiest

one is for linear representation

ψi =
[

x1 x2 1 u
]

for i = 1, 2 where a Luenberger observer can be de-

signed provided a certain observability condition is satisfied.

However, this observer might perform poorly especially in

the region with high nonlinearity. Indeed, an observer for

representation which captures nonlinearity is an advantage.

In this section, we consider another type of observer

designed for nonlinear representation

ψi =
[

x1 x2 x1x2 1 u
]

for i = 1, 2 which can capture the transient dynamics of the

drilling process. The observer is given as follows.

Proposition 1 Consider the system

ẋ1 = a11x1 + a12x2 + a13x1x2 + a14 + b11u, (5a)

ẋ2 = a21x1 + a22x2 + a23x1x2 + a24 + b21u, (5b)

y = x1. (5c)

If there exist a positive-definite symmetric matrix Q ∈ R
2×2

and a matrix M ∈ R
2×1 such that

QAT + MC + AQ + CT MT ≺ 0

Q G = CT

where

A =

[

a11 a12

a21 a22

]

, C =
[

1 0
]

, G =

[

a13

a23

]

,

then for L =
[

L1 L2

]T
given by

L = Q−1M −
y2

ε
Q−1CT

where ε > 0 is sufficiently small we can guarantee that the

system

˙̂x1 = a11x̂1 + a12x̂2 + a13yx̂2 + a14 + b11u + L1 (ŷ − y) ,

˙̂x2 = a21x̂1 + a22x̂2 + a23yx̂2 + a24 + b21u + L2 (ŷ − y) ,

ŷ = x̂1.

is a globally asymptotically stabilizing observer for the

system (5).

Proof: Denote

Φ(x, y) = yx2, φ (u) =

[

a14 + b11u

a24 + b21u

]

,

where

‖Φ(x, y) − Φ (x̂, y)‖ ≤ |y| . ‖x − x̂‖ .

The result follows from Theorem 7 of [2].
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Fig. 8. Comparison between the response of the detailed model and that
of the empirical model based on the first 2000 steps of the dataset
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Fig. 9. Step input to the detailed model

As an example, we consider the first 2000 steps of the

dataset from the previous section. Using the scheme from the

previous section we construct the empirical model (5). From

Fig. 8 we can see how well the response of the empirical

model is with respect to the dataset generated from the

detailed model. The observer from Proposition 1 can be

applied to estimate the state x2 based on the measurement

y = x1.

To asses the observer against the model error between the

detailed model and the simplified model (5) we generate a set

of different trajectories from the detailed model using a series

of inputs related to a realistic drilling operation, see Fig. 9.

In this case, initially, the drilling fluid is flowing through

the main pump at volume flow rate of 1000 l/min. Then the

flow rate is gradually increased in steps until 2000 l/min is

reached. The downhole pressure is gradually increasing due

to the frictional pressure losses in the well. The simulations

are performed using the Matlab-interface described in [25].

Instead of using the measurement y = x1 from (5) we use the

measurement from the detailed model to feed the observer.

The results are shown in Fig. 10 where the observer can

estimate the downhole pressure from the measurement of

the mudpump pressure of the detailed model, up to a certain

degree of accuracy.
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Fig. 10. The estimate and the real downhole pressure from the detailed
model

VI. CONCLUSION

This paper presents a dynamical model of the fluid flow

in drilling operations. This model is based on empirical

evaluation of the pressure dynamics during flow rate changes,

and is suitable to be used for observer design.

The results show that the model representation presented

is able to describe the dynamics during flow rate changes

sufficiently accurate to fit the pressure measurements. The

results also indicate the designed observer for the downhole

pressure might use only the surface pressure measurements.

For future research, we will focus on observer design

for a wider class of system. This is of interest to cover

broader operational changes during a drilling operation, such

as drillstring movements. The observer will also be evaluated

using real drilling data, to verify the observer in an actual

drilling operation.
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