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Abstract— The goal of this paper is to develop modeling
techniques for complex systems for the purposes of control,
estimation, and inference:

(i) A new class of hidden Markov models is introduced, called
the optimal feature prediction (OFP) model. It is similar to
the Gaussian mixture model in which the actual marginal
distribution is used in place of a Gaussian distribution. This
structure leads to simple learning algorithms to find an
optimal model.

(ii) The OFP model provides a unification of other modeling
approaches including the projective methods of Shannon,
Mori and Zwanzig, and Chorin, as well as a version of the
binning technique for Markov model reduction.

(iii) Several general applications are surveyed, including in-
ference and optimal control. Computation of the spectrum,
or solutions to dynamic programming equations are possible
through a finite dimensional matrix calculation without
knowledge of the underlying marginal distribution on which
the model is based.

I. INTRODUCTION

These words are often attributed to Mark Shaney: Oh yes,

I was looking for. I’m so glad I remembered it. Yeah, what

I have wondered if I had committed a crime. Don’t eat with

your assessment of Reagon and Mondale... Mr. Shaney is in

fact a fictional person. The true architect is Don P. Mitchell1,

but the inspiration comes from Claude Shannon.

Shannon introduced the idea of low dimensional Markov

models to replicate features of English language. This ap-

pears as motivation for the notion of entropy in his famous

1948 paper A mathematical theory of communication, which

is regarded as the birth of modern information theory [25].

There have been similar independent efforts in the physics

community by Mori [22] and Zwanzig [29] to derive reduced

order models to describe complex systems. In the Mori-

Zwanzig formalism, a low-dimensional model for phase

variables (what we call “features”) is given by a generalized

Langevin equation that has a Markovian element, a non-

Markovian “memory” element and a random element. The

so-called (first-order) optimal prediction model developed

more recently by Chorin and co-workers [6], [7] coincides

with the Mori-Zwanzig formalism when the non-Markovian

dynamics are removed.
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The optimal prediction model is described in Proposi-

tion 1.1. From the construction it can be seen that this

is precisely the same as Shannon’s Markovian model first

introduced in [25].

Proposition 1.1: Suppose that Z is a stationary process on

Z, let µ denote its marginal distribution, and let µ2 denote

the bivariate distribution,

µ2(dz0, dz1) = P{Z(0) ∈ dz0, Z(1) ∈ dz1}.
Suppose that Radon-Nikodym derivative,

T (z0, A) =
µ2(dz0, A)

µ(dz0)
, z0 ∈ Z, (1)

exists for each z0 ∈ Z and A ∈ B(Z) (the Borel sigma field

on Z). Assume moreover that T ( · , A) is measurable for each

A, T (z0, · ) is a probability measure on B(Z) for each z0.

Then T defines a transition kernel on Z×B(Z) with invariant

measure µ. ⊓⊔
In this paper we survey a range of new applications and

new formulations of feature-based Markovian models. Of

particular interest in current research are applications to

spectral theory, hypothesis testing, and to machine learning.

In this paper emphasis is focused on applications to machine

learning.

The paper is organized as follows. In the following section

we introduce the optimal feature prediction (OFP) model.

This is a generalization of the optimal prediction model

designed to combine the statistical flexibility of Shannon’s

model with the computational features of finite state space

hidden Markov models. Among the most compelling ap-

plications of this technique is to decentralized control of

complex networked systems. Optimal solutions are in general

intractable since even a Markov model with finite state

space gives rise to an infinite dimensional Markov decision

process [9], [4], [3]. In Section III we illustrate with a single

network example the application of Markovian modeling to

decentralized control. Section IV contains conclusions and

some unanswered questions.

II. MARKOV MODELING

Proposition 1.1 is a trivial consequence of the definitions,

yet its implications are surprisingly rich. A roadblock to

its application is that the transition kernel T is not known.

Moreover, in general it remains an infinite dimensional

object, in which case learning the entire transition kernel

is not feasible.

Here we introduce a simplified class of models for which

learning the transition kernel amounts to a finite-dimensional
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optimization problem. The model class retains the important

feature of the optimal-prediciton model that certain steady-

state statistics are captured exactly.

To define the OFP model for a stationary process Z we

begin with the following structural assumption. Let µ denote

the marginal distribution of Z, and µ2 the bivariate distri-

bution defined in Proposition 1.1. Hence µ is a probability

measure on B(Z), and µ2 is a probability measure on B(Z2).
It is assumed throughout the paper that µ2 possesses a density

with respect to the product distribution,

µ2(dz0, dz1) = p(z0, z1)µ(dz0)µ(dz1) (2)

where p : Z
2 → R+ is measurable. We also use the more

compact form µ2 = pµ ⊗ µ where for two probability

measures on B(Z) and two functions s, r on X the outer

products are defined by,

µ⊗µ (dz0, dz1):=µ(dz0)µ(dz1), s⊗r (z0, z1):=s(z0)r(z1).

The existence of a density in (2) is guaranteed when the

state space Z is countable. An example of a model for which

this fails is the Markov process defined by the n-dimensional

Ornstein Uhlenbeck process X(t+1) = AX(t)+BW (t+1).
Suppose that W is i.i.d. N(0, I) and (A,B) is controllable.

In this case µ is a full-rank Gaussian distribution, and hence

possesses a density with respect to Lebesgue measure. The

condition (2) holds with Z = X if and only if the matrix B
has rank n. However, if this rank condition is relaxed then

(2) does hold with Z(t) := X(nt), t ≥ 0 (see [21], where

these results are a consequence of the irreducibility structure

of the linear model).

The OFP model is obtained using an approximation to

the density p. Let {ri : 1 ≤ i ≤ N} denote measurable,

real-valued functions on Z, and define for given parameters

{Θij : 1 ≤ i, j ≤ N},

µ2
Θ
(dz0, dz1) :=

N∑

i,j=1

θi,jri(z0)rj(z1)µ(dz0)µ(dz1). (3)

The transition kernel TΘ is then defined using (1):

TΘ(z,A) =
µ2

Θ
(dz,A)

µΘ 1(dz)
, z ∈ Z, A ∈ B(Z).

where µΘ 1(dz0) := µ2
Θ
(dz0,Z) is the first marginal.

The choice of basis {ri : 1 ≤ i ≤ N} and the parameter

Θ will depend on which features we wish to capture in the

Markov model. We will see that the steady-state first and

second order statistics of an appropriate function class can

be captured precisely in the finite rank model.

We first explain how this model class is related to hidden

Markov models.

A. Finite rank models and HMMs

The transition kernel has finite rank, in the sense that there

are functions {si} and probability measures {µi} satisfying,

TΘ(z,A) =

N∑

i=1

si(z)µi(A), z ∈ Z, A ∈ B(Z). (4)

Some properties of finite-rank transition laws are summa-

rized in the following:

Proposition 2.1: The Markov chain Ẑ with finite-rank

transition kernel (4) has the following properties:

(i) Ẑ is, of course, a Markov chain on the state space Z.

(ii) The N -dimensional stochastic process defined by

(s1(Ẑ(t)), . . . , sN(Ẑ(t)))T, t ≥ 0, is a Markov chain on

R
N .

(iii) Ẑ is also a hidden Markov model: There is a finite

state space Markov chain I on the finite set {1, . . . , N},
an i.i.d. process W on R, and a function ϕ : {1, . . . , N}×
R→ Z such that,

Ẑ(t+ 1) = ϕ(I(t),W (t + 1)), t ≥ 0.
⊓⊔

The parameter Θ is chosen so that µ2
Θ
∼ µ2. In the fol-

lowing subsections we introduce several optimization criteria

and describe their properties. Section II-E briefly describes

how an optimal parameter can be computed using Monte-

Carlo techniques.

The simplicity of computation of an optimal parameter

is remarkable, given the difficulties associated with model

construction for general HMMs. One reason for the sim-

plicity is that there is less to be learned: Never do we

attempt to estimate µ. We shall see that in many applications

this full information is not needed. For example, solutions

to dynamic programming equations can be obtained using

finite-dimensional statistics.

B. L2 optimal model

The L2-mismatch-criterion is defined for any Θ by,

E(Θ) = 1
2

∫
(pΘ(z0, z1)− p(z0, z1))2µ(dz0)µ(dz1) (5)

Computing the gradient of E with respect to Θ and

setting this equal to zero gives the minimizer. The form of

the solution and other conclusions are summarized in the

following:

Proposition 2.2: Suppose that {ri} are linearly indepen-

dent in L2(µ). Then, the vector Θ∗ minimizes E if and only

if the optimal-prediction constraints hold for each i and j:

EΘ
∗ [ri(Ẑ(t))rj(Ẑ(t+ 1))] = E[ri(Z(t))rj(Z(t+ 1))], (6)

where the expectations are in steady-state. The unique solu-

tion is expressed,

Θ∗ = {Θ∗

ij} = [Rr(0)]−1Rr(1)[Rr(0)]−1 (7)

where Rr
i,j(0) = µ(rirj) and Rr

i,j(1) = µ2(ri ⊗ rj).

C. Positivity and optimal prediction

What is left out in Proposition 2.2 is the constraint

that a transition kernel must be non-negative valued, with

TΘ(z,Z) ≡ 1. The latter constraint is automatic under

the assumptions of Proposition 2.2 provided the constant

function 1 lies in the span of the {ri}. One approach to
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guarantee non-negativity is through barrier function methods.

For example, define the augmented cost function,

EB(Θ, ε) = E(Θ) + ε

∫
log

(
pΘ(z0, z1)

)
µ(dz0)µ(dz1)

Minimization of E can be cast as a convex program.

Alternatively, a parameter can be chosen by directly im-

posing the optimal prediction property on a subspace: For a

given collection of functions {φi} in L2(µ) we can choose

Θ = Θ∗ to guarantee, for each i, j,

EΘ
∗ [φi(Ẑ(t))φj(Ẑ(t+ 1))] = E[φi(Z(t))φj(Z(t+ 1))] (8)

This may not be possible while still respecting positivity,

but we can construct a convex cost function to capture an

approximate fit subject to positivity.

D. Relative entropy metric

The long-run entropy rate n−1D(µn‖µn
Θ
) converges under

general conditions to the following function of Θ:

ED(Θ) = 〈µ2, log(p2
Θ
)− log(pΘ1)〉+ b(µ2) (9)

where the inner-product notation denotes integration, and

b(µ2) is independent of Θ. This is known as the Donsker-

Varadhan rate function that appears in the generalization of

Sanov’s Theorem for Markov chains [8], [14].

The rate function is known to be convex, and hence

minimizing ED can be cast as a convex optimization problem.

This can be refined to include optimal prediction constraints

of the form (8).

E. On-line computation

Computation of Θ∗ based on the form given in Proposi-

tion 2.2 is possible by naive Monte-Carlo given observations

of Z in steady-state.

For either the convex, non-quadratic cost functions

EB(Θ, ε) or ED(Θ) the gradient and Hessian have simple

forms that facilitate the application of stochastic gradient or

stochastic Newton-Rapshon techniques that are convergent

to the unique optimizer.

Note that the Baum-Welch and EM algorithms are de-

signed to achieve the same computational goals for HMMs.

These algorithms are only known to converge to a local

optimum in general.

III. OPTIMIZATION

Optimal prediction models have clear applications to pol-

icy improvement or approximate optimization in controlled

stochastic systems. In this section we describe the extension

to controlled Markov models (or MDPs).

The basis approach utilized in the construction of the

OFP MDP model is similar in spirit to the use of bases to

approximate value functions or policies in machine learning

[26], [2], [28], [23], [18]. The contribution of this paper is

the new class of models, as well as novel application. In

particular, in Section III-D we show how these ideas can

be used to construct decentralized policies based on local,

distributed MDP models.

We begin with Markov model construction for non-

Markovian models.

A. MDP models

Suppose that (Z,U) are a state and control process.

It is assumed that U is defined by a stationary, perhaps

randomized policy defined for some feedback law φ via,

P{U(t) = u | Zt
−∞

;Z(t) = z} = P{U(t) = u | Z(t) = z}
= φ(u | z)

We can construct a Markov model for (Z,U) using Proposi-

tion 1.1. This defines the transition law T on (Z×U)×(Z×U)
by,

T
((

z0

u0

)
,
(

z1

u1

))
= P

{(
Z(t+1)
U(t+1)

)
=

(
z1

u1

) ∣∣ (
Z(t)
U(t)

)
=

(
z0

u0

)}
(10)

where the expectation is in steady-state. A controlled transi-

tion law is then defined for each triple u, z0, z1 by,

Tu(z0, z1) =
∑

u1
T

((
z0

u

)
,
(

z1

u1

))
(11)

Alternatively, suppose that we are given a basis {ri :
1 ≤ i ≤ N} of functions on Z × U. We can then

construct an approximation to the bivariate distribution of((
Z(t)
U(t)

)
,
(

Z(t+1)
U(t+1)

))
in steady state, and then a transition law

of the form,

T
((

z0

u0

)
,
(

z1

u1

))

=

N∑

i,j=1

Θ∗

ijsi(z0, u0)rj(z1, u1)µ(z1)φ(u1 | z1)

with Θ∗ obtained using (7) based on the joint process

(Z,U). With (10) obtained using a basis, the MDP model is

again obtained using (11). The resulting controlled transition

law is expressed,

Tu(z0, z1) =
∑N

i,j=1 Θ∗

ijsi(z0, u0)rj(z1)µ(z1) (12)

where with a slight abuse of notation we define rj(z1) =∑
u rj(z1, u)φ(u | z1), and µ is the marginal distribution of

Z.

B. Q Learning

Given a Markov model, of the form (11) or (12), and given

a cost function c : Z × U → R+, the average-cost dynamic

programming equation is expressed,

min
u

{
c(z, u) + Tuh

∗ (z)
}

= h∗(z) + η∗

where η∗ is the optimal average cost, typically independent

of the initial condition z, and h∗ : Z→ R is the relative value

function. Watkin’s approach is based on the substitution of

h∗ by the so-called “Q-values”,

H∗(z, u) = c(z, u) + Tuh
∗ (z), z ∈ Z, u ∈ U.

Letting H∗(z) = minuH
∗(z, u), we find that H∗ satisfies

the fixed point equation,

H∗(z, u) + η∗ = c(z, u) + TuH
∗ (z), z ∈ Z, u ∈ U

(13)

If U is defined by a randomized policy that assigns positive

probability to each feasible (z, u), then we can estimate

H∗ using a simple Monte-Carlo recursion. Stability of the
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algorithm is simplified using the ODE method for stability

of stochastic approximation introduced in [5].

Estimation of H∗ is facilitated when the MDP model is of

finite rank, of the form (12). In this case we conclude from

(13) that, for some vector α∗,

H∗(z, u)+η∗−c(z, u) =
∑

α∗

i si(z, u), (z, u) ∈ Z×U.

Computation of α∗ is straightforward. We thus arrive at

an alternative approach to finite-dimensionally parameterized

Q-learning. The only other such approach, introduced re-

cently in [18], is known to be convergent only under strong

conditions on the basis that parameterizes H∗ [18], [17].

Once H∗ is obtained, the optimal policy for the MDP

model is given by the minimizer,

φ∗(z) = arg min
u

H∗(z, u), z ∈ Z.

Conditions on Tu and on (Z,U) will be required to ensure

that the resulting policy will be optimal, or even stabilizing

for Z if this process is not Markovian.

C. Sensitivity

Schweitzer’s approach for sensitivity analysis in Markov

models [24] can be extended to optimal-prediction models

for non-Markovian processes. Suppose we have a family of

processes Z
α, indexed by a parameter α that lies in a convex

set. For simplicity it is assumed that the parameter is scalar,

and that the common state space Z is finite. Let Tα denote

the optimal prediction model, and let µα denote the invariant

measure for Tα, interpreted as a row vector. Assume that a

cost function c on Z is given, and let ηα =
∑
c(z)µα(z)

denote the steady-state cost.

Let 1⊗µα denote the rank-one matrix with all rows equal

to µα. The inverse Uα = (I − Tα + 1⊗ µα)−1 is known as

the fundamental matrix [21]. The function ĉα :=Uαc solves

Poisson’s equation, Tαĉα = ĉα − c+ ηα.

The formula (14) is well-known for Markov chains [24].

We believe that this formula can be used to construct

algorithms for policy improvement based on steepest descent,

following [12], [13].

Proposition 3.1: Suppose that Tα is irreducible and that

the derivative with respect to α exists for each α. Then the

marginal µα is differentiable, and its derivative is given by

µ′

α = µαT
′

αUα (14)

In particular, for any function c, the sensitivity of the mean

is given by

η′α =
∑

z0,z1

µα(z0)T
′

α(z0, z1)ĉα(z1)

⊓⊔

D. Local Markov Models and Distributed Control

We now show how the OFP MDP model can be used

to construct decentralized control laws in complex systems.

For simplicity we restrict to a special case consisting of two

locations, each subject to local control.

Suppose that X is a state process that can be decomposed

as a pair of processes X(t) = (X1(t), X2(t)), t ≥ 0. In

the numerical experiments described below the process X

is assumed to be defined by an MDP model, but this is

not necessary. We view Z = X
1 as the feature variable:

It together with its local control process U will be used

to construct a local OFP MDP model. A second model is

obtained based on X
2.

Suppose that a cost function has been defined with respect

to the full state X . To complete the construction of an MDP

model for Z it is necessary to define a cost function on this

feature variable. For a fixed policy, consider the following,

c(z, u) := E[c(X(t)) | Z(t) = z, U(t) = u] (15)

where the conditional expectation is taken in steady-state.

For the optimal prediction model this is consistent: By the

smoothing property of the conditional expectation,

E[c(Z(t), U(t)) = E[c(X(t))] (16)

In this way we have projected the cost onto the local process

(Z,U).
Standard MDP methodology suggests several approaches

to policy improvement by adapting value iteration or policy

iteration [11], [1], [10], [26], [2]. A direct approach based

on policy iteration is described as follows: We begin with

a randomized policy φ(0) that assigns positive probability

to any feasible control value — The motivation for this

initialization is exactly as for simulated annealing or actor-

critic methods [26], [2]. Based on this initial condition we

generate a sequence Markov models {T (n) : n ≥ 0}, and a

sequence of policies {φ(n) : n ≥ 0} inductively: For n ≥ 0,

given the nth policy,

(i) Obtain the optimal-prediction MDP model T (n)

u

(ii) Obtain the conditional cost (15),

c(n)(z, u) := E
φ(n)

[c(X(t)) | Z(t) = z, U(t) = u]

The right hand side is the expectation in steady-state,

based on the policy φ(n).

(iii) Obtain an optimal policy φ(n*) for the MDP model with

controlled transition law T (n) and cost function c(n).

(iv) Define a new randomized policy via,

φ(n+1) = φ(n) + γn(φ(n*) − φ(n)) (17)

where {γn} ⊂ (0, 1) is a non-negative gain sequence.

The reason for using φ(n+1) and not φ(n*) in (iv) is that the latter

is typically a deterministic policy — For each state Z(t) = z,

there is a unique optimal control value U(t) = u∗ defined

by φ(n*)(z). A deterministic policy is undesirable since some

state-control pairs are never visited, and hence learning is

inhibited.

The application of a basis can be used to streamline

estimation of the projected cost (15).

Let {ψc
i : 1 ≤ i ≤ ℓc} denote a collection of functions of

(z, u), and for β ∈ R
ℓc define,

cβ(z, u) =
∑

βiψ
c
i (z, u), z ∈ Z, u ∈ U.
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To approximate the projected cost, recall that the conditional

expectation in (15) is nothing but a projection: The L2

projection of the random variable c(X(t)) onto the subspace

of all random variables that can be expressed as a function

of the pair (Z(t), U(t)). Consequently, the conditional ex-

pectation satisfies

E
[(
c(X(t))− c(Z(t), U(t))

)
g(Z(t), U(t))

]
= 0

for every function g for which E[(g(Z(t), U(t))2] < ∞.

We relax this requirement, and instead project onto the

finite-dimensional space of random variables spanned by

{ψc
i (Z(t), U(t)) : 1 ≤ i ≤ ℓc}. The value β∗ that achieves

the projection satisfies for each i,

E
[(
c(X(t))− cβ(Z(t), U(t))

)
ψc

i (Z(t), U(t))
]

= 0

We thereby obtain the explicit representation,

β∗ = Σ−1
c E[c(X(t))ψc(Z(t), U(t))]

Σc := E[ψc(Z(t), U(t))ψc(Z(t), U(t))T] ,
(18)

with ψc = (ψc
1, . . . , ψ

c
ℓc

)T. This representation is similar to

the expression for Θ∗ given in (7), and in fact the derivation

is analogous. It is clear that β∗ can be estimated using

Monte-Carlo, just as Θ∗ is estimated.

E. Example: Completely decentralized control of a network

Figure 1 shows a network example to illustrate the con-

struction of a decentralized policy. This network consists

of two stations, four buffers, with two exongenous arrival

processes. We take a controlled random walk (CRW) model

of the form,

Q1(t+ 1) = Q1(t)− S1(t+ 1)U1(t) +A1(t+ 1)

Q4(t+ 1) = Q4(t)− S4(t+ 1)U4(t) + S3(t+ 1)U3(t)
(19)

where the dynamics at Station 2 are defined analogously.

The sequence Si is taken Bernoulli with parameter µi. The

two arrival processes (A1,A3) are i.i.d., taking values in the

positive integers. In the numerical results that follow they are

scaled Bernoulli: For a fixed integer κ ≥ 1, the distribution

of κ−1Ai is Bernoulli for i = 1, 3.

We let c : X → R+ denote a cost function on the state

space X = Z
4
+ of buffer levels. In the numerical results that

follow we take c(x) = ‖x‖1, the ℓ1 norm.

Station  1

µ1

µ4

Q1(t)

Q4(t) Station  2

µ2

µ3

Q2(t)

Q3(t)

α1

α3

Fig. 1. A two-station network

We restrict to decentralized Markov policies, possibly

randomized. Hence, for some feedback law φ : X→ [0, 1]4,

P{Ui(t) = 1 | Qt
0, U

t−1
0 } = φi(x), Q(t) = x, t ≥ 0.

By decentralized we mean that the functions φ1(x), φ4(x)
should only depend on

(
x1

x4

)
, and φ2(x), φ3(x) should only

depend on
(
x2

x3

)
. The goal is to build an approximate model

described as an MDP model at Station 1.

This setting is optimistic since control is based on virtually

no information. It is far more restrictive then the setting of

the MaxWeight policy, which assumes knowledge of buffer

levels at down-stream nodes of one-hop distance [27], [20].

For the purposes of model and policy construction we

set Z(t) = X1(t) = (Q1(t), Q4(t)) and X2(t) =
(Q2(t), Q3(t)). The local control is the pair (U1(t), U4(t)),
subject to the constraint that U1(t) +U4(t) ≤ 1. We assume

that the policy is non-idling, meaning that U1(t)+U4(t) = 1
whenever Q1(t) +Q4(t) ≥ 1.

We follow the four steps outlined above: Given the nth

policy,

(i) Obtain the optimal-prediction MDP model

T (n)

u1,u4
(
(
x1

x4

)
,
(
y1

y4

)
) =

P

{(
Q1(t+1)=y1

Q4(t+1)=y4

)∣∣∣
(
Q1(t)=x1

Q4(t)=x4

)
,
(
U1(t)=u1

U4(t)=u4

)}

where the conditional probability is taken in steady-state.

(ii) Obtain the conditional cost,

c
((

x1

x4

)
,
(
u1

u4

))
= E

[
c(Q1(t+ 1))

∣∣∣
(
Q1(t)=x1

Q4(t)=x4

)
,
(
U1(t)=u1

U4(t)=u4

)]

again taken in steady-state.

(iii) Obtain the optimal policy φ(n*) for the MDP model

with transition law T (n) and cost c. For the average-cost

optimality criterion this is obtained by solving the dynamic

programming equation,

h(n*)
(
x1

x4

)
= −η(n*)+

min
{
c
((

x1

x4

)
,
(
u1

u4

))
+

∑
y T

(n)

(u1
u4

)
(
(

x1

x4

)
,
(
y1

y4

)
)h(n*)

(
y1

y4

)}
(20)

where η(n*) is a constant — equal to the average cost

under the optimal policy for the nth model. For each(
x1

x4

)
, the value φ(n*)(x1, x4) ∈ {0, 1} × {0, 1} is taken as

any minimizer in (20), where the minimum is over all

admissible controls.

(iv) Define a new randomized policy via (17).

A sequence of policies is obtained at Station 2 following the

symmetric procedure.

In the numerical results below the following parameter

values were used: µ1 = µ3, µ2 = µ4 = 3µ1, and α1 = α3 =
1
4µ2ρ, where ρ is the network load, taken to be ρ = 9/10.

The burstiness parameter for the arrival process was taken to

be κ = 2. The model was constructed so that only one event

can occur at a time: For each t, i 6= j, and each k,

Si(t)Sj(t) = Si(t)Ak(t) = 0

This model is of the form obtained via uniformization [15],

[20].

Observe that the system is completely symmetric, and

hence local models at the two stations can be assumed iden-

tical. Details of the implementation of the four estimation-

modeling-control steps are described as follows.

(i) The optimal-prediction MDP model T (n) was obtained

after 106 samples. Only the conditional statistics of arrivals

to buffers 4 and 2 are required to specify this model. The
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conditional probability is defined for a = 0, 1 by,

pAI

4

(a |
(
x1

x4

)
) =

P{S3(t+ 1)U3(t) = 1 | Q1(t) = x1, Q4(t) = x4]

Estimates were obtained via Monte-Carlo, exploiting sym-

metry of the model. Given Q1(t) = x1, Q4(t) = x4,

and Q3(t) = x3, Q2(t) = x2, updates of the entries

pAI

4

(1 |
(

x1

x4

)
) and pAI

4

(1 |
(

x3

x2

)
) were obtained at time

t via the Monte-Carlo recursions,

pAI

4

(1 |
(
x1

x4

)
)←− pAI

4

(1 |
(
x1

x4

)
)

+ (−pAI

4

(1 |
(
x1

x4

)
) + µ3U3(t))/(t+ 1)

pAI

4

(1 |
(
x3

x2

)
)←− pAI

4

(1 |
(
x3

x2

)
)

+ (−pAI

4
(1 |

(
x3

x2

)
) + µ1U1(t))/(t+ 1)

(ii) The conditional cost was obtained after 106 samples.

Again exploiting symmetry, the Monte-Carlo recursions at

time t, given Q(t) = x = (x1, x2, x3, x4), are expressed

c
((

x1

x4

)
,
(
u1

u4

))
←− c

((
x1

x4

)
,
(
u1

u4

))

+ (−c
((

x1

x4

)
,
(
u1

u4

))
+ c(Q(t)))/(t+ 1)

c
((

x3

x2

)
,
(
u3

u2

))
←− c

((
x3

x2

)
,
(
u3

u2

))

+ (−c
((

x3

x2

)
,
(
u3

u2

))
+ c(Q(t)))/(t+ 1)

(iii) The optimal policy φ(n*) for the MDP model with

transition law T (n) was approximated via 5, 000 steps of

value iteration [20].

(iv) The new randomized policy was obtained using the

update rule (17) with γn = 1/(2
√
n+ 1).

Iterations

Average Cost

Estimated Using Monte Carlo

0 5 10 15 20 25
20

25

30

35

40

45

50

55

Fig. 2. Average cost for the nth policy, n = 1, 2, . . . 25, estimated from
two million observations.

Figure 2 shows the average cost, estimated using two mil-

lion Monte-Carlo steps, for each of the 25 policies obtained.

The initial policy was a perturbation of serve the longest

queue:

P{U1(t) = 1} =

{
0.85 if Q1(t) ≥ Q4(t);

0.15 if Q1(t) < Q4(t) and Q1(t) ≥ 1.
(21)

Note that the average cost shown in Figure 2 is not monotone

in the number of iterations. The cost drops quickly, and

then increases slightly. Similar behavior was seen in all

experiments.

The four-step algorithm is intended to mimic the policy

improvement algorithm (PIA) for which it is known that the

average cost from successive policies is monotone decreasing

[19]. The lack of monotonicity seen here may be a product

of the fact that the model T (n)

u1,u4
(
(
x1

x4

)
,
(
y1

y4

)
) changes with n.

Another factor that impairs performance is the imposition of

randomization in Step (iv) of the procedure.

Shown on the right in Figure 3 is an illustration of the

fifth policy obtained using this algorithm. As in the “serve

the longest queue” policy shown on the left, Buffer 1 receives

higher priority if its contents are larger. However, the policy

shown on the right in the figure is more similar to a threshold

policy of the form “Serve buffer 4 whenever Q1 ≤ x̄1 and

Q4 ≥ 1”, where x̄1 ∼ 10.

Q4

Final Policy

50 10 15 20 25 30 35 40 45 50

5

0

10

15

20

25

30

35

40

45

50Q1

Q4

Initial Policy

50 10 15 20 25 30 35 40 45 50

Fig. 3. Plot illustrating the initial policy and the fifth policy. Each is
randomized — The color indicates the probability that U1(t) is equal to
one (which is one minus the probability that U4(t) is equal to one, provided
Q1(t)+Q4(t) ≥ 1). The dark blue indicates a value of approximately 0.1,
and dark red approximately 0.9.

The average cost for the decentralized policy illustrated in

Figure 3 is approximately 25. We consider two classes of

policies for comparison: Versions of the MaxWeight policy

(MW) and logarithmic safety-stock policies (LogSS). See

Section 4.8 of [20] for an introduction to the MW policy.

Each of the policies considered is non-idling. Hence u1 =
1 whenever x4 = 0 and x1 ≥ 1. If x4 > 0 then, provided

x1 ≥ 1, the policies are specified by the following decision

regions:

MW : u1 = I
{
µ1(x1 − x2) >

1
5nµ4x4

}

LogSS : u1 = I
{
x2 + x3 < 2n log

(
1 + |x|/(2n)

)}

where |x| denotes the ℓ1 norm. The parameter n was varied

from 0 to 10, where for n = 0 we take 0 log(∞) = 0.

The first equation describes the MW policy defined by

the diagonal matrix D = diag (1, n/5, 1, n/5). The standard

MW policy is obtained with n = 5. The LogSS policy is

intended to approximately minimize the workload process,

while minimizing c(Q(t)) subject to the current workload

value for each time t — see [20] for further discussion (in

particular, Example 6.7.2).

Results from simulations using these policies are shown

in Figure 4. The performance of the decentralized policy is

approximately equal to that of the standard MW policy. The

LogSS policy with n ∈ {2, . . . , 10} is clearly the best of

the three policies in terms of performance, but this policy

requires complete global information.

Once again, the quantity of information utilized by the

decentralized policy is much lower than would be expected
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Fig. 4. Average cost performance of the decentralized policy compared to
MaxWeight and LogSS.

in applications. In the cooperative setting considered here it is

not unrealistic to assume sharing of global information, such

as generalized workload in the routing model, or a global

cost variable in other models.

IV. CONCLUSIONS

The optimal-prediction method is a standard work-horse

in many areas. Its application in machine learning is either

unrecognized, or taken for granted - nobody believes the

real world is Markovian! By recalling the optimal prediction

properties of Shannon’s construction we have identified

generalizations and new applications.

In particular, the standard approach to decentralized con-

trol of MDP models is through the introduction of a belief

state to transform the partially observed optimal control

problem to one with full observations. While this approach

can in principle lead to an optimal policy, the complexity

is severe. We have demonstrated an alternative approach to

decentralized control through the construction of multiple

local Markovian models. Further details and other examples

are described in the working paper [16].

Among the other applications considered in current re-

search are,

(i) Applications in other decision making domains such as

finance.

(ii) Hypothesis testing and change detection.

(iii) Control variates for simulation variance reduction

The open problems are too long to list. Among the most

interesting is the question of how to construct suitable local

variables for application in decentralized control.
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