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Abstract— We propose a diagnosability notion that depends
on two parameters denoted as (δd, δm) for the general class
of transition systems where the observable output is given by
discrete symbols and by the delay between the generation of
two symbols. The first parameter specifies that if a trajectory
(state execution) has visited the faulty set, this can be detected
only using the external trajectory (observable output) within
a delay upper-bounded by δd. The second parameter specifies
the available precision δm when measuring time delays of the
external trajectory. Given an approximate abstraction T1 of
a system T2 with precision ε, we derive a relation between
diagnosability properties of T1 and T2 with respect to the
parameters δd, δm, ε. We apply our results to an electromagnetic
valve system for cam-less engines.

I. INTRODUCTION

The increase of functionality offered by control systems
based on embedded systems requires more effort to verify the
controlled system, as a malfunction can yield catastrophic
results. Most of the plants of interest have continuous dy-
namics. Thus the controlled system has a mix of discrete and
continuous dynamics. Systems characterized by discrete and
continuous components in their dynamics are called hybrid
systems [2]. Hybrid systems are an example of very general
systems, whose great expressive power has to be paid by the
lack of strong theoretical results and consequent difficulties
in verifying the properties of a closed loop system. Formal
verification (e.g. model checking [5]) of properties where the
state space is semi–exhaustively searched are complicated by
the very large dimensions of the state space. Abstraction is
an important technique used to cope with this complexity
problem. By abstraction, we create a system with smaller
state space (even finite) that is equivalent to the original
system. System equivalence is usually defined by the notions
of language equivalence and bisimulation [3], [23]. These
notions are very restrictive, since they require perfect equiva-
lence of trajectories. Recently, approximate notions of system
equivalence [16], [15], [17], [18], [19] were developed to
relax the abstraction problem, where a metric is introduced
to quantify the distance between the original system and the
abstraction. Other results in approximation theory for timed
systems can be found e.g. in [4], [13].

We discuss in this paper automatic verification of diag-
nosability properties for general class of transition systems
using approximate abstraction methods. Diagnosability cor-
responds to failure detection in finite time, and has many
applications in several fields, e.g. the detection of an error
in an air traffic management procedure [6], [7], a failure in
an automotive system [14], in a component of an industrial
plant, or in a communication system [25]. Given a system,
we say that a fault occurs if an execution visits a given faulty
subset of the state space. A system is diagnosable if, within
a finite time bound and only using the observable output of
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the plant, it is possible to detect that a fault has occurred.
We consider the observable output only given by discrete
output symbols (possibly unobservable) associated to the
state transitions, and delay between the symbol generation.

Given a plant and a set of faulty states, an important
problem often addressed in the literature is verifying auto-
matically whether the system is diagnosable. For the class of
discrete event systems (DESs), the diagnosability verification
problem was treated in several papers by Feng Lin [20] and
Lafortune [24], [27], [22]. The diagnosability verification
problem was shown to belong to the complexity class P. In
these papers, since the concept of time flow is not present in
DESs, a plant is defined diagnosable if it is possible to detect
a failure after a finite number of transitions since the fault has
occurred, rather than after a time delay. For the class of timed
automata, a definition of δ–diagnosability has been proposed
by Tripakis [26]: a plant is δ-diagnosable if it is possible to
detect a failure after a time delay bounded by δ ∈ N since the
fault has occurred. The diagnosability verification problem
for timed automata was demonstrated to be in PSPACE.
Diagnosability of hybrid systems was considered by Fourlas
in [14], where a notion of diagnosability was proposed
for input–output automata, diagnosability conditions were
stated, but no complexity analysis was performed. In [21],
a hybrid diagnosis problem was formulated, and qualitative
techniques for the diagnosis of continuous time systems
were proposed. In [28], a design procedure for a diagnosis
system and a mode estimation algorithm for hybrid automata
are presented. Given a hybrid automaton, we proposed in
[8] a conservative abstraction procedure that allows to ver-
ify δ-diagnosability of the original system on a durational
graph abstraction. Durational graphs are a subclass of timed
automata, see [11] for more details). If the abstraction is
δ-diagnosable, then the original system is δ-diagnosable.
However, this approach has the following weak points: (1)
it is not known how conservative the approximation is, and
(2) if the abstraction is not δ-diagnosable, then nothing can
be implied on the original system.

In this paper, we extend our previous results to tackle
these problems. To address the first issue, we define a
metric to measure how closely the observations of our
abstraction match those of the original system, and relate
it to the notion of approximate bisimulation relations [15].
To solve the second issue, we build upon the results in
[11], where we proposed an algorithmic procedure to obtain
a durational graph abstraction of a given hybrid automa-
ton for any precision, and a δ–diagnosability polynomial
verification algorithm for durational graphs. The proposed
abstraction, however, is affected by an approximation error in
the discrete transitions time duration that diverges to infinity
as time goes to infinity. This error explosion introduces
technical problems when formally relating diagnosability of
the original system with respect to diagnosability of the
abstraction. For this reason, we propose a more general
diagnosability definition, which depends on two parameters
(δd, δm). The first parameter specifies that if a trajectory has
visited the faulty set, this can be detected only by using
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the external trajectory within a delay upper-bounded by δd.
The second parameter specifies the available precision δm
when measuring time delays of the external trajectory. We
propose necessary and sufficient conditions for this more
general definition. The main contribution of the paper is
formally relating the diagnosability of a general dynamical
system and an ε bisimilar abstraction. This result is proven
in the framework of transitions systems, and thus it applies
to very general classes of dynamical systems. We use our
result to verify diagnosability of a general hybrid automaton,
on the durational graph abstraction we proposed in [11],
and apply our theoretical investigation to an electromagnetic
valve system for cam-less engines.

The paper is organized as follows. In Section II we
introduce the basic definitions of transition systems and
approximate bisimulation. In Section III the definition of
diagnosability for transition systems is formalized, which
generalizes the notion of diagnosability given in [8]. In
Section IV, we formally relate diagnosability properties of
two ε bisimilar transition systems. Then, we specialize the
general result to verify diagnosability of hybrid automata on
durational graph abstractions. In Section V we apply our
verification procedure by abstraction to an electromagnetic
valve system for cam-less engines. Some concluding remarks
are offered in Section VI.

II. BASIC DEFINITIONS

We introduce the framework of metric transition systems
[15], which enable us to model continuous and discrete
dynamical systems:

Definition 1 (Metric transition system): A labeled metric
transition system is a tuple T = (Q,Q0,Σ, E, Ω, ω) that
consists of a possibly infinite set Q of states; a possibly
infinite set Q0 ⊆ Q of initial states; a possibly infinite set Σ
of labels; a transition relation E ⊆ Q × Σ × Q; a possibly
infinite set Ω; a map ω : Q → Ω; metrics dΣ, dΩ on Σ and
Ω.
In what follows, we write q

σ→ q′ to denote that (q, σ, q′) ∈
E. We assume that the systems we consider are non–
blocking, i.e. for all q ∈ Q there exists at least an outgoing
transition q

σ→ q′. We say that a transition system T is
deterministic, if for all q ∈ Q, σ ∈ Σ there exists at most a
unique transition q

σ→ q′, and the set Q0 contains a single
element.

A trajectory of T is a finite or infinite sequence of
transitions ρ = ω(q0)

σ1→ ω(q1) · · ·
σ|ρ|→ ω(q|ρ|), where

q0 ∈ Q0 and ∀i = 0 · · · |ρ| − 1, qi
σi+1→ qi+1. We define

the language L as the set of all trajectories generated by T .
To each trajectory ρ = ω(q0)

σ1→ ω(q1) · · ·
σ|ρ|→ ω(q|ρ|),

we associate an external trajectory as a sequence P (ρ) =
σ1, · · · , σ|ρ|. We define the language P as the set of all
external trajectories generated by T .

Let X (Σ) be the set of all strings over Σ, and let dX
be a metric on X (Σ). Let h−→X and hX denote the directed
and undirected Hausdorff distance associated to a metric
dX . Given T1, T2 and the corresponding languages P1,P2
subsets of X (Σ), we can define a language metric as the
Hausdorff distance between two languages: d−→P (T1, T2) =
h−→X (P1,P2), dP(T1, T2) = hX (P1,P2). A consequence of
the properties of the Hausdorff distance is the following:
d−→P (T1, T2) = 0 ⇔ cl(P1) ⊆ cl(P2), dP(T1, T2) = 0 ⇔
cl(P1) = cl(P2). We use the definition of approximate
simulation and bisimulation relations proposed by Julius and
Pappas in [18]. Let T1 = (Q1, Q

1
0, Σ1, E1, Ω1, ω1) and T2 =

(Q2, Q
2
0, Σ2, E2, Ω2, ω2) be two labeled metric transition

systems such that Σ1 = Σ2 = Σ and Ω1 = Ω2 = Ω.

Definition 2 (Approximate simulation relation): [18] A
relation Γ ⊆ Q1 × Q2 is called a (ε, δ) approximate
simulation relation of T1 by T2, if for all (q1, q2) ∈ Γ:

1) dΩ(ω1(q1), ω2(q2)) ≤ δ,
2) for all q1

σ→ q′1, there exists q2
σ′
→ q′2 such that

(q′1, q
′
2) ∈ Γ, dΣ(σ, σ′) ≤ ε.

Definition 3 (Approximate bisimulation relation): Given
T1 by T2, a relation Γ is called a (ε, δ) approximate
bisimulation relation when it is both a (ε, δ) approximate
simulation relation of T1 by T2, and a (ε, δ) approximate
simulation relation of T2 by T1.

Definition 4 (Approximate simulation): [18] T2 is a (ε, δ)
approximate simulation of T1 (denoted T1 �(ε,δ) T2) if there
exists Γ, a (ε, δ) approximate simulation relation of T1 by
T2, such that for all q1 ∈ Q1

0, there exists q2 ∈ Q2
0 such that

(q1, q2) ∈ Γ.
Definition 5 (Approximate bisimulation): Given T1 by T2,

if T1 �(ε,δ) T2 and T2 �(ε,δ) T1, then we say that T1 and T2

are approximately bisimilar with precision (ε, δ), and write
T1 ≈(ε,δ) T2.
We define a simulation metric, as the tightest precision
(ε, δ) (we use element-wise inequality as partial ordering
relation of pairs (ε, δ)) such that T1 �(ε,δ) T2: d−→S (T1, T2) =
inf{(ε, δ) : T1 �(ε,δ) T2}. We can also define a bisimulation
metric, as the tightest precision (ε, δ) such that T1 ≈(ε,δ) T2:
dB(T1, T2) = inf{ε : T1 ≈(ε,δ) T2}. The following diagram
summarizes the classical relations between language and
simulation metrics:

dB(T1, T2) ≥ dP(T1, T2)
≥ ≥

d−→S (T1, T2) ≥ d−→P (T1, T2)

If the transition systems are deterministic, then the following
classical result holds:

d−→S (T1, T2) = d−→P (T1, T2), dB(T1, T2) = dP(T1, T2)

We will state the theoretical results of this paper in the
framework of transition systems. However, we specialize
some definitions in order to use transition systems as a
unifying mathematical framework to model hybrid automata
(and thus timed automata, that is a subclass of hybrid
automata), according to the classical embedding of hybrid
automata into transition systems (see e.g. [12]). The state set
Q of the transition system is given by the cartesian product
of the continuous and the discrete state space. The set of
labels Σ = R+ ∪ {0} × Ψ ∪ {ε} models a continuous time
duration Δ ∈ R+∪{0} and a discrete output symbol ψ ∈ Ψ,
which can also be an unobservable output ε. The set Ω
models the set of discrete states. In this setting, a transition
(q, x)

Δ,ψ→ (q′, x′) is associated to a trajectory q
Δ,ψ→ q′,

and models that the discrete state q′ can be reached from
the discrete state q in time Δ and with observation ψ. We
define the minimum dwell time Δm as the minimum time
that can be spent in a discrete state. This implies that given
any transition (q, x)

Δ,ψ→ (q′, x′), q �= q′, then Δ ≥ Δm. We
will assume in the rest of the paper that Δm > 0, namely
two successive discrete transitions can not occur at the same
time instant.

Because of unobservable outputs, the external trajectory
P (ρ) = Δ1, ψ1, · · · , Δ|ρ|, ψ|ρ| is redefined by erasing all
unobservable outputs ψi = ε, and by adding up the adjacent
time delays Δi + Δi+1. This implies that |P (ρ)| ≤ |ρ|.
For instance, the external trajectory 3, ψ1, 4, ε, 5, ψ2, 2, ψ3
is redefined as 3, ψ1, 9, ψ2, 2, ψ3. Given external trajectories
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p1 = {Δ1
i , ψ

1
i }|p1|

i=1, p2 = {Δ2
i , ψ

2
i }|p2|

i=1 ∈ X (Σ), we define
the undirected distance dX :

dX (p1, p2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
i

dE
(
Δ1

i ,Δ
2
i

)
if |p1| = |p2| and ∀i = 1 · · · |p1|, ψ1

i = ψ2
i

+∞ otherwise
(1)

where dE is the Euclidean metric. This metric defines the
distance between two external trajectories with the same
sequence of discrete outputs, as the maximum duration
difference of two discrete transitions associated to the same
index. We will introduce in the next section a general
diagnosability definition, that leverages on the metric dX to
take into account the measurements uncertainty of the time
duration between two discrete outputs.

III. DIAGNOSABILITY DEFINITION

Given a transition system T , let Ωc ⊂ Ω be a set of states
that model a failure in T : Ωc is called faulty set. A δ–faulty
trajectory is a trajectory that enters the faulty set at a certain
time instant, and then continues flowing for a time duration
δ.

Definition 6 (δ–faulty trajectory): A trajectory

ρ = ω(q0)
Δ1,ψ1→ ω(q1) · · ·

Δ|ρ|,ψ|ρ|→ ω(q|ρ|) ∈ L
is δ–faulty if there exists a finite index kc ≥ 0, kc ≤ |ρ|
if |ρ| < ∞, such that ∀k < kc, ω(qk) /∈ Ωc, ω(qkc) ∈ Ωc,

|ρ|∑
k=kc+1

Δk = δ.

We define Fδ the set of all δ–faulty trajectories, and F =⋃
δ≥0

Fδ ⊆ L the set of all faulty trajectories.

We propose a diagnosability notion, that depends on two
parameters (δd, δm) ∈ R+∪{0}×R+∪{0}. The first param-
eter specifies that if a trajectory has visited the faulty set, this
can be detected only using the external trajectory within a
delay upper bounded by δd. The second parameter specifies
the available precision δm when measuring time delays of the
external trajectory. In other words, for any given external
trajectory p = Δ1, ψ1, · · · , Δ|p|, ψ|p| the corresponding
measured observation is p̂ = Δ̂1, ψ1, · · · , Δ̂|p|, ψ|p|, where
∀i = 1 · · · |p|, Δ̂i ∈ [Δi − δm, Δi + δm]. This is reasonable,
since a time counter is always affected by a measurement
error. When a new output symbol ψi is generated, the counter
provides the measure Δ̂i, ψi, and resets to measure the next
duration Δ̂i+1 up to the generation of ψi+1. The metric
dX has been defined with the purpose of considering the
measurement error described above, and can be used to state
necessary and sufficient diagnosability conditions.

Definition 7 ((δd, δm)-diagnosability): A pair (T , Ωc) is
(δd, δm)–diagnosable if and only if

∀ρ ∈
⋃

δ≥δd

Fδ, ∀ρ′ ∈ L \ F , dX (P (ρ), P (ρ′)) ≤ δm

When the measurement error is zero, i.e. δm = 0, the notion
of (δd, 0)–diagnosability coincides with δd–diagnosability as
defined in [8]. If Ωc models a set {Ω1, · · · ,ΩF } of faults

such that Ωc =
F⋃

i=1

Ωi, and we want to require that it is

possible to identify which fault has occurred, then we just
need to check whether (T , Ωi) is (δd, δm)–diagnosable for
each i = 1, · · · , F . That is, our diagnosability definition

allows to express both fault detection and fault isolation
properties.

Proposition 1: Given T and Ωc, the following statements
hold:

1) If (T , Ωc) is (δd, δm)–diagnosable, then it is (δ∗d, δm)–
diagnosable for all δ∗d ≥ δd.

2) If (T , Ωc) is not (δd, δm)–diagnosable, then it is not
(δ∗d, δm)–diagnosable for all δ∗d ≤ δd.

3) If (T ,Ωc) is (δd, δm)–diagnosable, then it is (δd, δ
∗
m)–

diagnosable for all δ∗m ≤ δm.
4) If (T , Ωc) is not (δd, δm)–diagnosable, then it is not

(δd, δ
∗
m)–diagnosable for all δ∗m ≥ δm.

The proposition above shows two interesting properties. By
a verification point of view, given an available measurement
precision δm, it is interesting to compute the minimum value
δmin
d (the delay needed in order to perform a fault detection)

for which (T , Ωc) is (δmin
d , δm)–diagnosable. By a design

point of view, given a required maximum delay δd for fault
detection, it is interesting to compute the maximum value
δmax
m (the coarsest measurement precision needed) for which

(T , Ωc) is (δd, δ
max
m )–diagnosable.

IV. VERIFICATION BY ABSTRACTION

Given two transition systems T1, T2 that are approxi-
mately bisimilar with precision ε according to the metric
dX , we state in this section a relation between (δd, δm)–
diagnosability of the two systems. According to the metric
dX , the timed trajectories of T1 and T2 diverge as the
number of transitions goes to infinity, since each transition
introduces a finite error. This issue introduces technical
problems when relating diagnosability of T1 and T2. We
show that, using a diagnosability definition that is also related
to a measurement uncertainty δm, it is possible to compare
(δd, δm)–diagnosability of T1 and T2. We introduce the main
result of this paper:

Theorem 1: Let a pair (T2, Ω2
c) be given, and let (T1, Ω1

c)
be an abstraction that satisfies the following:

T1 ≈(ε,0) T2, (2)

(q1, q2) ∈ Γ ⇒ (q1 ∈ Ω1
c ∧ q2 ∈ Ω2

c) ∨ (q1 /∈ Ω1
c ∧ q2 /∈ Ω2

c).
(3)

where Γ is the (ε, 0) approximate bisimulation relation for
T1, T2. Then the following hold:

1) If (T1,Ω1
c) is not (δd, δm)–diagnosable, then (T2, Ω2

c)
is not

(
δd

(
1 − ε

Δm

)
, δm + 2ε

)
–diagnosable.

2) If (T1, Ω1
c) is (δd, δm)–diagnosable, then (T2,Ω2

c) is(
δd

(
Δm

Δm−ε

)
, δm − 2ε

)
–diagnosable.

The above theorem, given for the general class of transition
systems, applies to many classes of systems, provided that
they can be formalized as transitions systems (e.g. continuous
and discrete time linear and non-linear systems, discrete
event systems, hybrid systems, etc.). On the basis of Theorem
1, we propose a procedure to check diagnosability of a hybrid
automaton on a durational graph approximate abstraction. In
[11] we proposed an algorithmic procedure to obtain, for any
precision ε, a durational graph abstraction G and a critical
set ΩG

c of a given hybrid automaton H and critical set ΩH
c

such that H ≈(ε,0) G according to the metric dX defined in
(1), and such that Condition (3) of Theorem 1 is satisfied.

Moreover, we proposed in [8] a procedure to compute in
polynomial time, for a given durational graph G, the mini-
mum value δmin

d for which (G,Ωc) is (δmin
d , 0)–diagnosable.

This algorithm can be extended in order to compute the
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minimum value δmin
d for which (G, Ωc) is (δmin

d , δm)–
diagnosable for any given δm.

In fact, the algorithm introduced in [8] exploits properties
of product automata composition to generate the language
of pairs of executions ρ ∈ F , ρ′ ∈ L \ F that produce
the same observation P (ρ) = P (ρ′). The exact product

q1 q1́e1

S ||1 S2

G = [a ,b ]1 11

q2 q2́e2

G = [a ,b ]2 22

(q , )1 q2 (q , )1 q2́

B B1 2) (G )�(G

(e , e )1 2

�m

�m �m

Fig. 1. Exact and approximate product automata composition operators.

automata composition operator || is illustrated at the top
of Figure 1: given two states q1, q2, and two edges e1 =
(q1, q

′
1), e2 = (q2, q

′
2) associated to transition time sets

G1, G2, they synchronize in the exact product automaton if
and only if G1∩G2 �= ∅, generating state q = (q1, q2), q′ =
(q′1, q

′
2), and an edge e = ((q1, q2), (q′1, q

′
2)) associated to

transition time set G = G1 ∩ G2.
The δm approximate product automata composition op-

erator ||δm is illustrated at the bottom of Figure 1: given
two states q1, q2, two edges e1 = (q1, q

′
1), e2 = (q2, q

′
2)

associated to transition time sets G1, G2 synchronize in the
δm approximate product automaton if and only if Bδm(G1)∩
Bδm

(G2) �= ∅, generating a state q = (q1, q2), and an
edge e = ((q1, q2), (q′1, q

′
2)) associated to transition time

set G = Bδm
(G1) ∩ Bδm

(G2). Using δm approximate
product automata composition in the algorithm proposed
in [8], one generates the language of pairs of executions
ρ ∈ F , ρ′ ∈ L \ F that generate δm close observations
dX (P (ρ), P (ρ′)) ≤ δm, and thus compute δmin

d .
Let a hybrid automaton H be given, and let G be a

durational graph abstraction such that H ≈(ε,0) G. For the
reasons above, given G and δm, it is possible to compute, in
polynomial time with respect to the cardinality of the state
space of a durational graph, the minimum value δmin

d for
which (G, Ωc) is (δmin

d , δm)–diagnosable. Since δmin
d can be

either a minimum or an inferior bound, we assume without
loss of generality that it is a minimum value. The following
hold by Proposition 1:

• (G, ΩG
c ) is (δd, δm)–diagnosable for any δd ≥ δmin

d ;
• (G, ΩG

c ) is not (δd, δm)–diagnosable for any δd < δmin
d .

Theorem 1 implies the following:
• (H, ΩH

c ) is (δd, δm − 2ε)–diagnosable for any δd ≥
δmin
d

(
Δm

Δm−ε

)
;

• (H, ΩH
c ) is not (δd, δm +2ε)–diagnosable for any δd <

δmin
d

(
1 − ε

Δm

)
.

This implies that the minimum value δ̄min
d for which

(H,ΩH
c ) is (δ̄min

d , δ̄m)–diagnosable belongs to the interval[
δmin
d

(
1 − ε

Δm

)
, δmin

d

(
Δm

Δm−ε

)]
, and δ̄m belongs to the

interval [δm − 2ε, δm + 2ε].
Notice that, without defining diagnosability also with

respect to the measurement error δm, there does not exist a
relation between diagnosability of the approximately bisim-
ilar systems. In fact, for any fixed ε > 0, δm, and if the

abstraction is (δd, δm)-diagnosable, it is not possible to infer
(δ∗d, δ∗m)-diagnosability of the original system with δ∗m = δm.
However, it is possible to relate δ∗m to a boundary of δm, and
this is not possible without our diagnosability definition also
given with respect to the measurement precision.

V. CASE STUDY

Camless electromagnetic valves are interesting devices
which can be used to command the opening and closing
phases of the intake and exhaust valves in an internal
combustion engine. Since they decouple the camshaft and
the valve lift dynamics, they may obtain the optimal engine
efficiency in all operating conditions. An open problem
is the control of the impact velocities between the valve
and the constraints, which should be sufficiently low in
order to eliminate acoustic noises and avoid damages of
the mechanical components. The problem is complicated
by the short travel time to make a transition between the
two valve’s terminal positions. At high engine speed this
time is ∼ 10−3 s. We consider a simplified model of
the electromagnetic valve (see [1], [9], [10] and references
therein for details). We suppose here to supply only one
electromagnet to complete the opening or closing phase.
The correct behavior of the valve controlled system can be
modeled by the hybrid automaton H1 shown in Figure 2: q1
corresponds to the closing phase, q2 to the valve completely
close, q3 to the opening phase, and q4 to the valve completely
open. The continuous dynamics can be described by the
following equations:

ẋv = vv, v̇v =
1
M

(
− kxv − bvv + Fm + Fd + Fc

)
(4)

describing the motion of the valve and of the connected
anchor, where M is the mass. The valve position xv ranges
from −ρ (open valve) to +ρ (closed valve). Moreover, an
elastic force −kxv , due to some springs and a torsion bar,
and a viscous friction −bẋv act on the valve steam. Finally,
Fd is a disturbance whose main contribution is due to the
force of the exhaust gases exiting the cylinder, and Fc(xv) is
the constrain force due to the valve seat and electromagnet
surfaces, and is always zero except when xv = ±ρ, when
Fc(±ρ) = ±kρ−Fm(±ρ, φm)−Fd. The anchor is attracted
by the supplied electromagnet to close and to open the valve
by means of the electromagnet force

Fm(xv, φm) = −1
2
Dm(xv)φ2

m, Dm = ame−bmxv + cm,

(5)
where am, bm, cm are some constants, and φm is the flux of
the supplied electromagnet m = 1, 2. The dynamics of φm
is here neglected for simplicity, since they are much faster
than the mechanical ones, so that the squared flux can be
considered as the control input of the system, i.e. u = φ2

m.
The signs of the constants are such that D1(xv) > 0 for
the discrete states q1, q2, namely when the valve is closing
and the electromagnet 1 is supplied, while D2(xv) < 0
for the discrete states q3, q4, namely when the valve is
opening and the electromagnet 2 is supplied. The discrete
dynamics depend on the system state (xv, vv) and the control
input u, according to the guard sets (defined on arrows in
Figure 2) and invariant sets (associated to the discrete states
in Figure 2). The reset functions are all identities. Without
loss of generality, we assume that the initial hybrid state
is (q1, (−ρ, 0)), but our results can be easily extended to
more complex sets of initial states. The output of the system
is a discrete symbol associated to the edges, i.e. ψ1 or
ψ2 when the anchor hits respectively electromagnet 1 or
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electromagnet 2. It follows from [9], [1] that the PD–like
control

u =
2

Dm(xv)

(
p1(xv − xr) + p2(vv − vr)

+ Fd − kxr − bvr − Mar

)
p1, p2 > 0 ensures the correct behavior of the valve. Here
xr = (−1)m+1ρ, m = 1, 2, vr = 0, ar = 0 are the reference
values for appropriately operating the valve.

Following [10] and setting e =
(
xv − xr vv − vr

)T
,

when Fc = 0 and using the above control, the error dynamics
are given by ė = Ace, where

Ac =

(
0 1

−k1 −b1

)
,

k1 =
k + p1

M
> 0,

b1 =
b + p2

M
> 0.

(6)

In this work we are interested to investigate if, for this elec-
tromagnetic valve, it is possible to assess the diagnosability
property introduced in the previous sections. Differently from
what done in [8], we consider uncertainty in the system
parameters, and not in the controller parameters. For, we
assume that the system parameters k, b are subject to abrupt
changes, due to possible malfunctions. Let k0, b0 be their
nominal values and k = k0 +Δk, b = b0 +Δb the real ones.
The controller parameters (p1, p2) must be chosen to satisfy
the following constraints for the nominal values k = k0 and
b = b0.

1) The tracking error goes asymptotically to zero;
2) The norm of the control input is bounded by umax;
3) The seating velocity, i.e. the velocity of the valve when

approaching the mechanical constraints, is less than or
equal to an appropriate value vmax.

From the first assumption we obtain p1 > −k, p2 > −b.
Setting Fd,max = max

t≥0
Fd(t) and ev,max the maximum

velocity error admissible, from the second we obtain

|u| ≤ 2
minxv

Dm(xv)

(
p12ρ + p2ev,max + Fd,max + kρ

)
≤ umax.

(7)
Since 2(Fd,max + kρ)/ minxv Dm(xv) − umax � −umax =
−a3, (7) can be approximated by

a1p1 + a2p2 − a3 + a0k � a1p1 + a2p2 − a3 ≤ 0 (8)

with a0 = 8 × 10−11, a1 = 1.6 × 10−10, a2 = 2 × 10−7,
a3 � 1×106, see Table I. For the third assumption, note that

TABLE I
ELECTROMAGNETIC VALVE SYSTEM PARAMETERS

k0 = 1.17 × 105 N/m b0 = 6 Ns/m M = 0.1054 Kg
Fd,max = 3410 N ρ = 4 × 10−3 m ev,max = 10 m/s
minxv D(xv) = 1 × 108 umax = 1 × 106 V vmax = 0.05 m/s

the raising time for the error dynamics is tr = π/
√

4k1 − b2
1,

where 4k1 − b2
1 > 0 to obtain a fast response, namely

p1 >
1

4M

(
b + p2

)2 − k. (9)

Hence, the velocity error has to satisfy |vv − vr|t=tr
=

2ρe−
b1
2 tr ≤ vmax, thus obtaining

p1 ≤ 1
4M

1 + n2

n2

(
b + p2

)2 − k if n =
2
π

ln
2ρ

vmax
≥ 0

p2 > b2 if n < 0.
(10)

A solution to (9), (10) exists since 1 + n2/n2 > 1. Con-
ditions (8), (9), (10) for k = k0, b = b0 define the set of
controller parameters ensuring the correct behavior. A pair
in this set is for instance (p∗1, p

∗
2) = (1.17×104, 0.6), which

corresponds to a travel time for the anchor of � 1.45 ms.
We assume that Δk can vary in the interval Ik =

[−k0, k0], where −k0 corresponds to k = 0 (the spring
is broken). Moreover, we assume that Δb can vary in the
interval Ib = [−0.9b0, 2b0]: in other words, the viscous
friction can increase up to 200% of the nominal value, and
can decrease up to 90% of the nominal value. We define
P = [−k0, k0] × [−0.9b0, 2b0].

When (k, b) changes, the controller may not ensure the
correct valve behavior. In fact, the variations Δk, Δb may
exit the safe set Psafe ⊂ P , and a faulty behavior may occur.
In order to determine Psafe, let us set p1 = p∗1, p2 = p∗2
in (8), (9), (10), with k = k0 + Δk, b = b0 + Δb:

Δk ≤ a3 − p∗1a1 − p∗2a2 − a0k0

a0
� a3 − p∗1a1 − p∗2a2

a0

Δk >
1

4M

(
b0 + Δb + p∗2

)2 − p∗1 − k0

Δk ≤ 1
4M

1 + n2

n2

(
b0 + Δb + p∗2

)2 − p∗1 − k0.

We assume that (Δk,Δb) may abruptly belong to a faulty
value in the set

Pfaulty � [−1.17 × 105,−0.8075 × 105) × [−5.4, 12].

In this case, the corresponding dynamics of the controlled
system switch to the faulty dynamics, modeled in Figure 2
by the hybrid automaton H2. The dynamics of each discrete
state of H2 is the same as in H1, except for the value of the
parameters k, b. The sudden change of the system parameters
to a faulty value may occur at any time instant from
discrete states q1, q3, and we assume that is associated to an
unobservable output. The overall model H takes into account
fault occurrence as illustrated in Figure 2: we assume that the
system does not return to a correct behavior once it switches
to a faulty behavior. Since the guards are 1–dimensional and
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Fig. 2. Hybrid model of the Electromagnetic Valve System H.

the dynamics are linear, we can construct a durational graph
abstraction G, such that H ≈(ε,0) G for any desired ε > 0.

In order to compute such G, the sets Ik, Ib are partitioned
in n, m subintervals of width δk = 2k0/n, δb = 2.9 b0/m.
Considering δk = 0.39 × 105, δb = 2.9 one gets 6 faulty
sets and 33 safe sets. To each element of these partition
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corresponds 4 discrete states of the abstraction G. The
discrete state space of G consists of 156 discrete states. We
compute the minimum and maximum time for the anchor
to touch electromagnet 1 starting from electromagnet 2 and
viceversa, for each element of the partition that belongs to
the faulty and non faulty set. Because of the geometry of
the partition elements, for each of the 6 faulty sets and 33
safe sets, it is possible to compute exactly the minimum
and maximum travel times for the anchor. Applying the
diagnosability verification algorithm developed in [8], and
using the approximate composition introduced in the above
section, one can verify that the minimum value δmin

d and
the maximum value δmax

m such that G is (δmin
d , δmax

m )–
diagnosable are given by δmin

d = 4.7 ms, δmax
m = 0.06 ms.

Moreover, because of the special dynamics and structure of
guards (switching times can be computed exactly) and resets
(the resets are memoryless, namely they do not depend on
the continuous state) of the hybrid model, it is easy to verify
that, for any partition of the faulty and safe parameter sets,
diagnosability conditions on G are the same for any precision
ε ≥ 0 such that H ≈(ε,0) G. Thus, we can apply the result of
Theorem 1 for ε = 0, and state that the minimum value δmin

d
and the maximum value δmax

m such that H is (δmin
d , δmax

m )–
diagnosable are δmin

d = 4.7 ms, δmax
m = 0.06 ms. Namely,

if we consider Pfaulty as the set of faulty behaviors, then
we can detect whether the system parameters enter the set
Pfaulty within 4.7 ms, by using measurements affected by
an error bounded by 0.06 ms.

VI. CONCLUSIONS

We proposed a novel diagnosability notion, i.e. (δd, δm)-
diagnosability, that also depends on the measurements un-
certainty δm. Given an approximate abstraction T1 of a
system T2 with precision ε, we derived a relation between
diagnosability properties of T1 and T2 as a function of
δd, δm, ε. We have shown that deriving such a relation is not
possible using the previous diagnosability definition, i.e. δd-
diagnosability. We applied our results to an electromagnetic
valve system for cam-less engines.
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