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Abstract— The optimal exponential-quadratic control prob-
lem and exponential mean-square filtering problems are con-
sidered for stochastic Gaussian systems with polynomial first
degree drift terms and intensity parameters multiplying diffu-
sion terms in the state and observations equations. The closed-
form optimal control and filtering algorithms are obtained
using quadratic value functions as solutions to the correspond-
ing Hamilton-Jacobi-Bellman equations. The performance of
the obtained risk-sensitive regulator and filter for stochastic
first degree polynomial systems is verified in a numerical
example against the conventional linear-quadratic regulator
and Kalman-Bucy filter, through comparing the exponential-
quadratic and exponential mean-square criteria values. The
simulation results reveal strong advantages in favor of the
designed risk-sensitive algorithms in regard to the final criteria
values.

I. INTRODUCTION

After the optimal linear stochastic control problem was

solved (see [1], [2]), the optimal control theory for nonlin-

ear stochastic systems is based on dynamic programming

(Hamilton-Jacobi-Bellman) equation [2] and the maximum

principle of Pontryagin [3]. A long tradition of the optimal

control design was developed for nonlinear systems with re-

spect to a quadratic Bolza-Meyer criterion (see, for example,

[4]-[10], [11]). The optimal control problems with respect to

nontraditional criteria were also considered: the stochastic

linear exponential-quadratic regulator (LEQR) problem was

introduced in [12]. Further connection between the LEQR

problem and H∞−control via a minimum entropy principle

was given in [13]. Whittle ([14], [15]) considered problems

on a finite-time horizon, using ”small-noise” asymptotics.

When the process being controlled is governed by stochastic

differential equation, the Whittle’s formula for the optimal

large-derivations rate was obtained using partial differential

equation viscosity solution method in [16], [17], [18], [19].

Runolfsson [20], [21] used Ponsker-Varadham-type large-

derivations ideas to obtain a corresponding stochastic dif-

ferential game for which the game payoff is an ergodic

(expected average cost per unit time) criterion. In [22], [23],

[18], and [19] the risk-averse LEQR optimal control problem

for a stochastic system with white Gaussian noises whose
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intensities depend on parameters was stated and solved using

a value function, which is a viscosity solution to the dynamic

programming equation (HJB). An advantage of risk-sensitive

criteria is the robustness of the obtained solution with respect

to noise level. Indeed, since the solution to the classical

LQ problem is independent of noise level, it occurs to be

too sensitive to parameter variations in noise intensity. On

the other hand, the risk-sensitive problem assumes explicit

presence of the small parameters in the criteria. This leads to

a more robust solution, which correctly responds to param-

eter variations and results in close criterion values for both,

large and small, parameter values. The optimal mean-square

filtering theory was initiated by Kalman and Bucy for linear

stochastic systems, and then continued for nonlinear systems

in a variety of papers (see for example [24] - [28], [29] and

for systems with delays see [30]). More than thirty years

ago, Mortensen [31] introduced a deterministic filter model

which provides an alternative to stochastic filtering theory. In

this model, errors in the state dynamics and the observations

are modeled as deterministic ”disturbance functions,” and a

mean-square disturbance error criterion is to be minimized.

Special conditions are given for the existence, continuity

and boundedness of a drift f(x) in the state equation and

a linear function h(x) in the observation one. A concept

of the stochastic risk-sensitive estimator, introduced more

recently by McEneaney [32], in regard to a dynamic system

including nonlinear drift f(x), linear observations, and inten-

sity parameters multiplying diffusion terms in both, state and

observation, equations. Again, the exponential mean-square

(EMS) criterion, introduced in [33] for deterministic systems

and in [22] for stochastic ones, is used instead of the con-

ventional mean-square criterion to provide a robust estimate,

which is less sensitive parameter variations in noise intensity.

This paper presents the explicit closed-form solutions to the

optimal exponential-quadratic control problem and exponen-

tial mean-square filtering problems for stochastic first degree

polynomial (affine) systems including intensity parameters

multiplying diffusion terms in both, state and observation,

equations. The optimal control and filtering algorithms are

derived seeking quadratic value functions as solutions to the

corresponding Hamilton-Jacobi-Bellman equations in both

problems. Undefined parameters in the value functions are

calculated through ordinary differential equations composed

by collecting terms corresponding to each power of the state-

dependent polynomial in each of the HJB equations. The

closed-form risk-sensitive regulator and filter equations are

explicitly obtained in the control and filtering problems.

The performance of the obtained risk-sensitive regulator

and filter for stochastic first degree polynomial systems is
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verified in a numerical example against the conventional

linear-quadratic regulator and Kalman-Bucy filter, through

comparing the exponential-quadratic and exponential mean-

square criteria values for both regulators and both filters,

respectively. The simulation results reveal strong advantages

in favor of the designed risk-sensitive algorithms in regard to

the final criteria values uniformly for all considered values of

the intensity parameters multiplying diffusion terms in state

and observation equations. Tables of the criteria values and

simulation graphs are included.

This paper is organized as follows. The optimal risk-

sensitive stochastic control problem for linear polynomial

systems with an exponential-quadratic criterion is stated in

Section 2, and Section 3 gives the optimal solution. The

dual filtering problem for linear polynomial systems with

an exponential mean-square criterion is stated in Section 4,

and Section 5 provides the optimal solution. A numerical

example is simulated for the risk-sensitive and L-Q optimal

control algorithms and the risk-sensitive and Kalman-Bucy

filtering algorithms in Section 6. Section 7 presents conclu-

sions to this study.

II. OPTIMAL RISK-SENSITIVE STOCHASTIC CONTROL

PROBLEM

The following stochastic risk-sensitive problem is given
with state dynamics:

dXt = f(t, Xt, ut)dt +

√

ǫ

2γ2
dWt (1)

Xs = x,

with the exponential-quadratic cost criterion

I(s, X, u) = ǫlogEs,X{exp{1

ǫ
[

∫ T

s

L(t, Xt, ut)dt + ψ(XT )]}. (2)

where Xt = X(t) is the state at time t, Xt ∈ R
n, X is the

initial state at time s ≥ 0, f(t,Xt, ut) is a nonlinear function,
which represents the nominal dynamics with control ut

taking values in U ∈ R
l and {W, F} is an m-dimensional

Brownian motion on the probability space (Ω, F, P) The
parameter ǫ is a measure of the risk-sensitivity and scales the
diffusion term in (1) above so that the cost remains bounded
(for each X as a function of ǫ), 0 ≤ s ≤ T < ∞, T is a fixed
terminal time, L(t,Xt, ut) is the quadratic running cost, and
ψ(XT ) is the quadratic terminal cost. Define:

A(s, X, u, ω) =

∫ T

s

L(t, Xt, u)dt + ψ(XT ),

and

J(s, X, u) = Es,Xexp[
1

ǫ
A(s, X, u, ω)], (3)

so that

I(s, X, u) = ǫlogJ(s, X, u) = ǫlogEs,X{exp[
1

ǫ
A(s, X, u, ω)]}

Taking into account that the controller ut is minimizing, the
following value function is considered:

V (s, X) = infu∈As,ν I(s, X, u) (4)

where As,v is the set of progressively measurable controls
with values in U. It is shown in [23] that under certain

conditions, if f(t,Xt, ut) is a nonlinear function, V is a
viscosity solution of the dynamical programming equation

0 = Vs +
ǫ

2γ2

∑

VXiXj
+ minu∈U{f(t, Xt, ut) ×

∇xV + L(t, Xt, ut) +
1

2γ2
∇V T∇V } (5)

V (Xt, T ) = ψ(X)

This paper shows that if f(t,Xt, ut) = At+A1tXt+Btut, a

viscosity solution V of the dynamical programming equation

(5) can be explicitly found. The optimal control problem

is to find explicitly a viscosity solution V to the dynamic

programming equation (5) when f(t, Xt, ut) is linear, and

to find the optimal control which minimizes the exponential-

quadratic criterion I and the optimal trajectory X∗, substitut-

ing u∗ into the state equation. The conditions cited in [23] for

f, L, ψ, U are supposed throughout the paper, which remain

true for f(t,Xt, ut) = At + A1tXt + Btut. U is a compact

subset of R
n.

As in [23], first consider the ”cut off” problem, where the

possibly unbounded functions f, L and ψ are replaced by

bounded counterparts. We obtain analogous results for this

”cut off” problem and then take a limit to obtain the desired

result. It is proved [23] that V k is the unique, bounded,

classical solution to (5), considering that f(t,Xt, ut) is

nonlinear.

III. OPTIMAL RISK-SENSITIVE REGULATOR

Taking into account that f(t,Xt, ut) = A+A1tXt +Btut

and substituting it in (1), the following state equation is
obtained:

dXt = (At + A1tXt + Btut)dt +

√

ǫ

2γ2
dWt, (6)

Xs = x,

where Xt, At ∈ R
n, A1t ∈ Mnxn, Mnxn denotes the

field of matrices of dimension nxn, and Wt is as in (1). If
L(t, Xǫ

t , u) = XT
t GXt + uT

t Rut, the exponential-quadratic
cost criterion has the form:

Ik(s, X, u) = ǫlogEs,X{exp[
1

ǫ
[

∫ T

s

(XT
t GXt + (7)

uT
t Rut)dt + XT

T ψXT ]]}

Theorem 1: The solution to the stochastic control problem
for the dynamical system (6) with criterion (7) takes the
form:

Ṗ = P T (−BtB
T
t

2
− 1

γ2
)P − AT

1tP − (8)

PsA1t − 2G, Ċ = AT
1tC + 2CT GP−1 + At

with terminal conditions:P (T ) = ψ, C(T ) = 0. The optimal
control law that minimizes the exponential-quadratic crite-
rion (7) is given by:

u∗

t = −1

2
PBT

t R−1(X − C) (9)

Proof: The value function is proposed:

V (s, X) =
1

2
(Xt − C)T P (Xt − C) + r. (10)
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(C, P, r are functions of s ∈ [0, T ], C ∈ R
n, P is a

symmetric matrix of dimension n × n and r is a scalar
function) as a viscosity solution of the PDE:

0 = Vs +
ǫ

2γ2

∑

Vxixj
+ minu∈U{(A + A1tXt

+Btut)∇xV + XT
t GXt + uT

t Rut + (11)

1

2γ2
∇V T∇V }, V (Xt, T ) = XT

T ψXT ,

where Vs, Vx are the partial derivatives of V with respect to
s, x, respectively, G,ψ are non-negative symmetric matrices,
R is a positive definite symmetric matrix, and ∇V is the
gradient of V. Then, the partial derivatives of V are given
by:

Vs =
1

2
(X − C)T Ṗ (X − C) + ṙ − 1

2
ĊT P (X −

C) − 1

2
(X − C)T PĊ (12)

Vx =
1

2
P (X − C) +

1

2
(X − C)T P,

Vxx = P

Substituting (12) to the HJB-PDE (11); yields

0 =
1

2
(X − C)T Ṗ (X − C) + ṙ − 1

2
(X − C)T

(13)

×PĊ − 1

2
ĊT P (X − C) +

ǫ

2γ2

∑

P + (A +

A1X)P (X − C) − 1

4
(X − C)T P T (BtR

−1

×BT
t )P (X − C) + XT

t GXt +
1

2γ2
(X −

C)T P 2(X − C).

Collecting the second degree terms, the first equation

of (8) is obtained. Collecting the first degree terms the

second equation of (8) is obtained. Doing the same for

independent terms of X , the following equation is obtained.

ṙ = −CT GC − ǫ
2γ2

∑n
i,j=1

pij , where pij are the elements

of the symmetric matrix P.

The optimal control law (9) that minimizes the

exponential-quadratic criterion (7) is obtained from:

minu∈U{fk(t, Xt, ut)∇xV + Lk(t, Xt, ut) + 1

2γ2∇V T∇V } ⋄ .

IV. OPTIMAL RISK-SENSITIVE FILTERING PROBLEM.

Consider the following stochastic model, Xt satisfies the
diffusion model given by:

dXt = f(Xt)dt +

√

ǫ

2γ2
dWt (14)

where f(Xt) represents the nominal dynamics, and W is
a Brownian motion,and the observation process Yt satisfies
the equation:

dYt = h(Xt)dt +

√

ǫ

2γ2
dW̃t, Y0 = 0, (15)

here, ǫ is a parameter and W and W̃ are independent
Brownian motions, which are also independent of the initial
state X0. X0 has probability density kǫexp(−ǫ−1φ(x0)) for

a certain constant kǫ. The mean-square cost criterion to be
minimized is given by:

J = ǫlogE{exp
1

ǫ

∫ T

0

H(Xt, mt, t)dt/Yt}, (16)

where H(Xt,mt, t) = eT he and e = (Xt − mt), mt is
the estimate of the state Xt. In the rest of the paper the as-
sumptions (A1)-(A4) from [18] hold. Let q(T, x) denote the
unnormalized conditional density of XT , given observations
Yt for 0 ≤ t ≤ T. It satisfies the Zakai stochastic PDE,
in a sense made precise, for instance in [7], sec. 7. Since
the normalizing constant kǫ above is unimportant for q, it is
assumed that

q(0, x) = exp(−ǫ−1φ(x)) (17)

q(s, x) = p(s, x)exp[ǫ−1Yt · h(x)]

where p(s, x) is called pathwise unnormalized filter density.
Then p, satisfies the following linear second-order parabolic
PDE with coefficients depending on YT .

∂p

∂s
= (L(s))∗p +

K

ǫ
p,

where, for every g ∈ R
n, let

Lg =
ǫ

2
tr(gxx) + f · gx, (18)

K(t, x) =
1

2
(Yt · h)x · (Yt · h)x − L(Yt · h) − 1

2
|h|2,

and L denote the differential generator of the Markov
diffusion Xt in (14). By assumptions (A1) and (A3) in [18],
K is bounded and continuous. Since Y0 = 0, p(0, x) =
q(0, x). The initial condition for (18) is given by (17). We
rewrite (18) as follows:

∂p

∂s
=

1

2
tr(pxx) + A · px +

B

ǫ
p, (19)

where

A = −f(x) + (Yt · h(x))x (20)

B(t, x) = −ǫdiv[f(x) − (Yt · h(x))x] + K(t, x)

Taking log transform: Z(T, x) = ǫlogp(T, x), the nonlinear
parabolic PDE is obtained

∂Z

∂s
=

ǫ

2
tr(Zxx) + A · Zx +

1

2
Zx · Zx + B, (21)

with initial data Zx(0, x) = −φ(x). The risk-sensitive
optimal filter problem consists in finding the estimate CT

of the state xt, verifying that

Z(s, x) =
1

2
(x − C)T Q(x − C) + ρ − Yt · h(xt), (22)

is a viscosity solution of (21). The notation for all the

variables is X(t) = Xt, xt ∈ Rn, wt ∈ Rm, yt, vt ∈
Rp, f, h ∈ Rn where fx, hx are assumed bounded. Here, hx

is the matrix of partial derivatives of h. The same notation

holds for Zx.
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A. Risk-sensitive optimal filter

Taking f(Xt) = At + A1tXt, h(Xt) = Et + E1tXt,
with At ∈ Rn, A1t,∈ Mn×n, Et ∈ Rp, E1t ∈ Mn×p where
Mi×j denotes the field of matrices of dimension i × j. The
following stochastic equations system is obtained:

dXt = At + A1tXt +
√

ǫ̃dWt (23)

dYt = Et + E1tXt +
√

ǫ̃dW̃t,

where ǫ̃ = ǫ
2γ2 .

Theorem 2: The solution to the filtering problem, for the
system (23) with mean-square criterion (16) takes the form:

Ċ = At + AT
1tC − Q−1E1(dy − E1tC − Et), (24)

Q̇ = −AT
1tQ − QA1t + QT Q − ET

1tE1t.

Proof: The value function is proposed: Z(s, X) = 1

2
(Xt −

C)T Q(Xt −C) + ρ− Yt · (Et + E1txt), Zx(0,X) = −φ(X),
( C, Q, ρ are functions of s ∈ [0, T ], C ∈ R

n, Q is a
symmetric matrix of dimension n × n and ρ is a scalar
function) as a viscosity solution of the nonlinear parabolic
PDE (21), where Zx, Zxx are the partial derivatives of Z
respect to x, and ∇Z is the gradient of Z. Then the partial
derivatives of Z are given by:

∂Z

∂s
=

1

2
(Xt − C)T Q̇(Xt − C) + ρ̇ − 1

2
ĊT Q(Xt

−C) − 1

2
(Xt − C)T QĊ − dYt · (Et + E1tXt)

∂Z

∂x
=

1

2
Q(X − C) +

1

2
(X − C)T Q − YtE1t,

∂2Z

∂x∂x
= Q. (25)

Substituting (25) and the expressions for A,B in (21), col-

lecting the second degree terms, equalizing them to zero, and

doing it again for the terms with coefficient of first degree,

the filtering equations (24) are obtained. Similarly to the

case of the risk-sensitive control, collecting the independents

terms, the equation for ρ is obtained. ⋄
Here QT is a symmetric negative definite matrix, and the

initial condition Q0 = q0 is derived from initial conditions

for Z. If φ(Xt) = XT
t KXt, Q(0) = −K.

V. EXAMPLE

A. Risk-sensitive optimal stochastic control

Consider the following linear stochastic state equation:

dX1t = X2tdt +

√

ǫ

2γ2
dW1t, (26)

dX2t = 1 + u1tdt +

√

ǫ

2γ2
dW2t,

where At ∈ R2, A1t ∈ M2x2, γ = 2, X0 = xo The
quadratic cost criterion takes the form:

I(Xt, ut) = ǫlogEs,X{exp(
1

ǫ

∫ T

0

(XT
t GXt + uT

t Rut)dt

+XT
T ψXT )} (27)

We suppose that there exists solution V (s,X) of (11) given
by: V (s,X) = 1

2
(X − C)T P (X − C) + r. Substituting the

values of At, A1t into the equations (8) and (9), the following
equations for the risk-sensitive optimal control are obtained,

where pij are the components of the P matrix, and Ci are
the components of the vector C.

dp11

dt
= −2 + (p2

11 + p2

12)(
1

2
− 1

γ2
), (28)

dp12

dt
= −p11(p11p12 + p12p22)(

1

2
− 1

γ2
),

dp22

dt
= −2 + (p2

11 + p2

22)(
1

2
− 1

γ2
) − 2p12,

dC1

dt
= 2

C1p22 − C2p11

p22p11 − p2

12

,

dC2

dt
= 1 + C1 + 2

C2p11 − C1p21

p22p11 − p2

12

,

u∗

1 = −1

2
(p12(X1 − C1) + p22(X2 − C2)), u

∗

2 = 0.

With terminal conditions: p11(0.5) = 1, p12(0.5) =
0, p22(0.5) = 1, C1(0.5) = 0, C2(0.5) = 0. The system
(28), is stable, if |γ| ≥ 1.40. Solving this system of equations
(28), we can obtain the values of the optimal control law u∗

and the optimal value of X∗, as the solution of the equation:

dXt = (At + A1tXt −
1

2
BtPtB

T
t R−1(X − C))dt +

√

(ǫ/2γ2)dWt. (29)

The initial conditions are given by X(0) = 0. The value

of the exponential-quadratic criterion to be minimized is

obtained through Monte Carlo method for time T = 0.5
The simulation is made in MatLab7.

B. Linear quadratic stochastic control

The optimal linear quadratic control takes the form:
u∗(t) = −R−1BT (Q(t)X(t)+p), where Q(t) is the solution
of the gain equation:

dQ

dt
= −Q(t)At − AT

t Q(t) + L − Q(t)BR−1BT Q, (30)

Q(T ) = I and p is the solution of the differential equation:

ṗ = −Q(t)A1t − (pT At)
T − Q(t)BR−1BT p; p(T ) = 0, (31)

Taking into account the state equations (26), the following
equations for the components of the gain matrix Q and the
vector p are obtained:

q̇11 = 2 − q2

12

2
(32)

q̇12 = −q11 −
q12q22

2

q̇22 = 2 − q2

22

2
− 2q12

ṗ1 = −q11 −
q12p2

2

ṗ2 = −p1 − q12 −
q22p2

2
u∗

1 = −q21X1 − q22X2 − p2

u∗

2 = 0.

With terminal conditions: q11(0.5) = −2, q12(0.5) =
0, q22(0.5) = −2, p1(0.5) = 0, p2(0.5) = 0 The optimal

trajectory satisfies the equation: dXt = (At + A1tXt −

BtR
−1BT

t (Q(t)X(t) + p))dt +
√

ǫ
2γ2 dWt. The quadratic

criterion is the same as in the risk- sensitive optimal control

problem. The results of the simulation show better perfor-

mance for the linear exponential-quadratic control for all
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ǫ I(r-s control) I(trad. control)

0.01 0.4055 2.0913

0.1 0.4051 2.0835

1 0.4038 2.059

10 0.401 116.9832

100 0.4048 1.7597

1000 0.5436 1.2167

TABLE I

COMPARISON OF EXPONENTIAL QUADRATIC CRITERION (16) FOR R-S

AND LQ CONTROL

values of ǫ. The graphs of the state, the optimal control,

the criterion I for both cases can be observed in Figures 1

and 2.
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Fig. 1. Graphs of the optimal state variable xt, optimal control u∗

and exponential-quadratic criterion I for traditional L-Q control, with
ǫ = 1, γ = 2.

Table 1 presents values of the exponential-quadratic crite-

rion to be minimized for different values of ǫ, comparing

the equations of risk-sensitive control and LQ traditional

regulator.

C. Risk-sensitive optimal filter

For the dynamical system (23), if xt ∈ R2, yt ∈ R, ut ∈
R, the following stochastic state and output equations are
considered:

dX1t = (1 − X1 + X2)dt +
√

ǫdW1, (33)

dX2 = −X2dt +
√

ǫdW2, Xi0 = xi

dYt = X1tdt +
√

ǫdW̄t

where W1, W2, dW̄t are independent Brownian motions,
which are also independents of xi0 = xio. ǫ is a varing
parameter. Proposing (22) as a viscosity solution of (21),
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Fig. 2. Graphs of the state variable xt, optimal control u∗, and exponential-
quadratic criterion I for risk-sensitive control, with ǫ = 1, γ = 2.

getting the derivatives Zx, Zxx, ∂Z
∂T

of (22), and substituting
them into (21), the following equations are obtained for the
estimate CT and the symmetric matrix QT , upon substituting
the corresponding values into (24):

Ċ1 = (1 − C1 + C2) −
q22

q22q11 − q2

12

(Ẏt − C1)

Ċ2 = −C2 −
q12

q22q11 − q2

12

(Ẏt − C1), (34)

where q12, q22, q11 are the solutions of the following Riccati
matrix equation :

˙q11T = 2q11 − 2q12 + q2

11 + q2

12 − 1 (35)

˙q12T = 2q12 − q22 + q11q12 + q12q22

˙q22T = 2q22 + q2

12 + q2

22

The last equations (34) are simulated using Simulink in

MatLab7. The initial conditions for the simulation are x0 =
0, q11(0) = −2.9, q12(0) = −1.7598, q22(0) = −2, C1 =
10, C2 = 10, T = 5. The graphs of the difference between

the state xt, and the estimate CT , that is, ei = |xi −Ci|, for

i = 1, 2 are shown in Figure 3.

D. Kalman-Bucy optimal filter.

Applying the Kalman-Bucy optimal filter algorithms [34]
to the state equations (33), the equations for the estimate
vector m(t) and symmetric covariance matrix P (t) are
obtained:

dm1(t) = (−m1(t) + m2(t) + 1)dt +

p21(dYt − m1(t)dt)

dm2(t) = −m2(t)dt + p12(dYt − m1(t)dt)

ṗ11(t) = −2p11(t) + 2p12(t) −
p2

11(t)

ǫ
+ ǫ

ṗ12(t) = −2p12(t) + p22(t) −
p11(t)p12(t)

ǫ

ṗ22(t) = −2p22(t) −
p2

12(t)

ǫ
+ ǫ

This system of equations is simulated with the initial

conditions: m1,2(0) = 10, p11(0) = 0.73059, p12(0) =
−0.639269, p22(0) = 1.059360. The graph of the value of

the difference between state xi, and the estimate mi(t), that

is: ei = |xi − mi|, for ǫ̂ = 1 and γ = 2 can be observed in

Figure 4.
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Fig. 3. Graphs of the absolute values of the difference between the state
xt and the risk-sensitive estimate CT , for ǫ̃ = 1.

Table 2 presents some values of the risk-sensitive and

Kalman-Bucy mean-square criterion values, it can be ob-

served that the Jr−s values are uniformly less that the JK−B

values.
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Fig. 4. Graphs of the absolute values of the difference between the xt and
the Kalman-Bucy estimate m, for ǫ̃ = 1.

ǫ
2γ2

value JR−S JK−B

1 128.2699 129.082

10 116.7305 168.764

100 90.6002 376.683

1000 111.5718 4, 165.163

TABLE II

COMPARISON OF MEAN-SQUARE CRITERION (16) FOR R-S FILTER AND

K-B FILTER.

VI. CONCLUSIONS

This paper presents the optimal solutions to the risk-

sensitive optimal control and filtering problems for stochas-

tic first degree polynomial systems with Gaussian white

noises, an exponential-quadratic criterion to be minimized,

and intensity parameters multiplying the white noises, using

quadratic value functions as solutions to the corresponding

Hamilton-Jacobi-Bellman equations. Numerical simulations

are conducted for both cases to compare performance of the

obtained risk-sensitive regulator and filter algorithms against

the conventional linear-quadratic regulator and Kalman-Bucy

filter, through comparing the exponential-quadratic and expo-

nential mean-square criteria values. The simulation results re-

veal strong advantages in favor of the designed risk-sensitive

algorithms in regard to the final criteria values uniformly for

all considered values of the intensity parameters multiplying

diffusion terms in state and observation equations. The tables

of the criteria values in both cases are included.
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