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Abstract— A reduced stability-testing set for a diamond-
like quasipolynomial family is obtained. This family is a
generalization of a multivariate diamond-like family, and is the
extension to the case of multiple uncertainty bounds. Both delay
dependent and delay independent stability conditions are given,
based on a finite set of vertices and a set of edges, respectively.

I. INTRODUCTION

In this work the problem of determining the robust sta-
bility of linear time-delay systems subjected to parametric
uncertainty is adressed in the following way: given an infinite
family of quasipolynomials, find a reduced (possibly finite)
subset whose stability is equivalent to that of the whole
family. This subset is called the testing set. The results for
interval monovariate polynomials given in [11], triggered the
search for extreme point stability results for several types
of dynamical systems, as can be seen in [2]. The vertex
results were extended for diamond families of univariate
polynomials in [1]. Reduced testing set for multivariate
polynomials have been found in [3], [6], [14] . In the case
of quasipolynomials, a general result on polytopic families is
given in [9], and further criteria for reduction of the testing
set were given in [12], [7], [18], but no vertex type results
were obtained before [17], where this sort of results were
given for an interval-like family of quasipolynomials, and [8]
where similar results are stated under additional assumptions
on coefficients. The results in [19] attacks a case where the
underlying uncertainty structure is the diamond.

In the remainder of this section, the terminology and
preliminary results are given. In section II, the polynomial
family with multi-diamond uncertainty structure is intro-
duced, followed by the associated quasipolynomial family.
Then, stability results are given. A brief example is given in
section III, where application of Theorem 1 is ilustrated. In
section IV conclusion are given.

A. Preliminaries

1) Time delay systems: The time-delay systems which are
studied are of the form

d

dt

[
l∑

ν=0

Cνx(t− hν)

]
=

l∑
ν=0

Aνx(t− hν), C0 = E, (1)

where x(t) is an n-dimensional vector, E is the identity
matrix and Aν , Cν , ν = 0, 1, . . . , l are real n× n matrices.
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Definition 1: [4] The system (1) is said to be exponen-
tially stable if there exist constants α > 0 and γ > 1 such
that the inequality

‖x(t)‖ ≤ γ ‖ϕ‖H e
−αt (2)

holds for all t ≥ 0.
In (2), ‖ϕ‖H = supθ∈[−H,0] ‖x(θ)‖ is the norm of the intial
condition of (1), defined as ϕ(θ) ∈ Rn for −H ≤ θ ≤ 0,
‖ · ‖ is the euclidian norm and H = maxν∈{1,...,l}{hν}.

2) Quasipolynomials: The characteristic equation of (1)
is

f(s) = det

(
l∑

ν=0

[Cνs−Aν ]e−hνs
)

= 0 (3)

The left-hand side of (3) is an entire function called
quasipolynomial, which is of the form

f(s) =
n∑
i=0

m∑
k=0

aiks
n−ie−τks, (4)

where aik are the real coefficients, and 0 = τ0 < τ1 < · · · <
τm are shifts which depend on the delays hν , ν = 1, . . . , l.
The function (4) has an infinite number of roots (excepting
the case m = 0), which are distributed through logarithmic
chains on the complex plane [4]: if one of these chains goes
deeply into the right half plane, the quasipolynomial is said
to be of the advanced type, if it has no such chain, but has a
vertical strip containing an infinite number of roots, it is of
neutral type, and if it has no advanced chains and no such
vertical strip, but all of its roots lie in a left half plane, then
it is said to be of the retarded type.

Definition 2: The quasipolynomial (4) is said to be stable
if there exists a number σ > 0 such that all of its roots have
real parts less than (−σ).
It is easily seen from Definition 2 that only the retarded and
neutral types of quasipolynomials may be stable. The system
(1) is stable if and only if the quasipolynomial (4) is stable.

Remark 1: Unlike the case of univariate polynomials,
there may be unstable time delay systems corresponding
to quasipolynomials with all of their roots on the left half-
plane, this instability is due to the presence of chains of roots
which asymptotically approach the imaginary axis. This may
occur when the quasipolynomial is of neutral type, so special
care should be taken when analizing the stability of these
quasipolynomials.
The coefficients of the quasipolynomial (4) may be grouped
in a coefficient vector a = (a00, a01, . . . , anm), such that the
quasipolynomial (4) is expressed as f(s) = f(s,a). Given
a compact, pathwise connected set Q ⊂ RM , where M =
(1+n)(1+m), a family of quasipolynomials is defined as the
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set F = {f(s,a)|a ∈ Q}. The family F is said to be stable if
it consist only of stable quasipolynomials. Given the complex
number s(0), the value set of the quasipolynomial family F
evauated at s(0) is the set VF (s(0)) = {f(s(0),a)|a ∈ Q} ⊂
C. The value set is a key concept on robust stability.

Lemma 1: [12] Let F be a quasipolynomial family with at
least one stable member. Assume that, for at least one real
number ω(0), the value set of the family does not contain
the origin, and the boundary ∂VF (jω) does not intersect the
origin for all ω ∈ R. Then, all the members of the family F
are stable polynomials.
Next definition is an extension to the convex stability direc-
tion, as defined in [23], to quasipolynomials

Definition 3: [12] A quasipolynomial g(s) is said to be
a quasipolynomial convex direction if, for every stable
quasipolynomial such that for all λ ∈ [0, 1], the quasipoly-
nomial f(s)+λg(s) has degree n and the fixed maximum τ0
and minimum τm shifts, the stability of f(s) + g(s)implies
the stability of the whole segment {f(s)+λg(s) |λ ∈ [0, 1]}.
A characterization of the convex direction property is given
in [12]

Lemma 2: [12] The real quasipolynomial g(s) is a convex
direction if and only if the inequality

∂ arg{g(jω)}
∂ω

≤ −τ0 + τm
2

+
∣∣∣∣ sin{2 arg[g(jω)] + (τ0 + τm)ω}

2ω

∣∣∣∣ (5)

holds for all ω > 0 such that g(jω) 6= 0.
Note that multiplication by any real or imaginary number
does not modify the convex direction property.

3) Multivariate polynomials: An m-variate real polyno-
mial is a function

p(s) = p(s1, . . . , sm) =
n1∑
k1=0

· · ·
nm∑
km=0

sk11 · · · skmm . (6)

A root of the polynomial p is a complex vector s(0) =
(s(0)1 , . . . , s

(0)
m ) such that p(s(0)) = 0. Unlike univariate

polynomials, two coprime multivariate polynomials may
have a root in common. The coefficients of the multivariate
polynomial (6) may be grouped in the coefficient vector b =
(b0...0, b1...0, . . . , bn1,...nm) ∈ RN , where N = (n1+1)(n2+
1) · · · (nm+1). In this way, the multivariate polynomial may
be expresed both as a function of the independent variables
and its coefficient vectors p(s) = p(s,b). The polynomial (6)
may be expressed like a polynomial of any of its variables
sk, for k = 1, 2, . . . ,m:

p(s) =
nk∑
i=0

b
(k)
i (. . . , sk−1, sk+1, . . .)sik. (7)

The m polynomials in (m − 1) variables
b
(k)
nk (. . . , sk−1, sk+1, . . .) are called main coefficients.

The degree of the multivariate polynomial p is the vector
deg(p) = (n1, . . . , nm), its entries being the highest powers
of the variables s1, . . . , sm. Given a vector with integer

entries n = (n1, . . . , nm), we define the set of constant
degree polynomials

Pn = {p(s)|deg(p) = n}. (8)

Let us define the region

Γ(0)
m = {(s1, . . . , sm) ∈ Cm|Re sk ≥ 0, k = 1, . . . ,m},

(9)
which includes its distinguished boundary

Ω(m) = {(s1, . . . , sm) ∈ Cm|Re sk = 0, k = 1, . . . ,m}.
(10)

A multivariate polynomial p is said to be strict sense stable
(SSS) if p(s) 6= 0 for any s ∈ Γ(0)

m . A disadvantage of this
definition of stability is that, in general, it is not preserved
under small parametric changes.

Definition 4: [13] An m-variate polynomial of degree
(n1, . . . , nm) is said to be stable if

1) For m = 1, the polynomial is Hurwitz-stable.
2) For m > 1,

a) The polynomial is strict sense stable (SSS);
b) The main coefficients b

(k)
nk (. . . , sk−1, sk+1, . . . )

are stable polynomials of degree
(. . . , nk−1, nk+1, . . . ).

Note the recursive character of this definition: in order to
check for stability of a three variate polynomial, one must
check for stability of three bivariate polynomials, which in
turn needs the Hurwitz stability checking of two monovariate
polynomials. This definition of stable polynomial is robust in
the sense that, for each such polynomial, there is neighbor-
hood of its coefficient vector such that the coefficient vectors
belonging to this neighborhood correspond to stable polyno-
mials. Note also that part 2-b) of Definition 4 guarantees
that the distance of any of the roots of p to the distinguished
boundary Ω(m) is greater than zero [16], as it will be seen
later, this has strong implications when analizing neutral
quasipolynomials. A familiy of multivariate polynomials is
defined as follows P = { p(s,b) | b ∈ R}, where R is
a compact, pathwise connected set. Given a fixed complex
m-dimensional vector s(0) = (s(0)1 , . . . , s

(0)
m ), the value set

of the polynomial family value set of the family is the set
VP(s(0)) = {p(s(0),b)|b ∈ R}.

Definition 5: [17] An m-variate polynomial q(s) is said
to be convex direction if the following condition holds: given
any stable polynomial p(s) ∈ Pn such that p(s)+q(s) is also
a stable polynomial and p(s)+λq(s) ∈ Pn for all λ ∈ [0, 1],
then p(s) + λq(s) is stable for all λ ∈ [0, 1].
As in the case of quasipolynomials, there exists a generaliza-
tion of a condition for a polynomial to be a convex direction;
however, this is only a sufficient condition.

Lemma 3: [6] A polynomial q(s) is a convex direction for
m variate polynomials if the inequality

m∑
k=1

|ωk|
∂q(jωωω)
∂ωk

≤
∣∣∣∣ sin{2 arg[q(jωωω)]}

2

∣∣∣∣ , (11)

holds for all ωk ∈ R, k = 1, . . . ,m, for which q(jωωω) 6= 0.
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A straightforward calculation shows that polynomials of the
forms

(1± sν)(α0 + α2s
2
k + · · ·+ α2ls

2l
k )(sα1 s

β
2 · · · sγm),

(1± sν)(α1 + α3s
2
k + · · ·+ α2l+1s

2l+1
k )(sα1 s

β
2 · · · sγm),

(12)

or any of their factors, are convex directions.
Lemma 4: (Zero exclusion principle [15]) Let P a con-

stant degree polynomial family with at least one stable
element. Then P is stable if and only if

1) for m = 1: the value set VP(jω) does not include the
origin for all ω ∈ R;

2) for m > 1:
• the value set VP(jω1, . . . , jωm) does not include

the origin for all (jω1, . . . , jωm) ∈ Ω(m),
• the sub-families of main coefficients P1, . . . ,Pm

satisfy the conditions of this lemma.
4) Relation between quasipolynomials and multivariate

polynomials: Let us assume that there are r positive numbers
η1, . . . , ηr, called basic delays such that the system delays
can be expressed as linear combination of them, namely

hν =
r∑
i=1

cνiηi, for nonegative integers cνi. (13)

In this way, each quasipolynomial can be written as

f(s) = q(e−η1s, . . . , e−ηrs, s)

= det

{
l∑

ν=0

[Cνs−Aν ]e−cν1η1s · · · e−cνrηrs
}
.

(14)

Now let us introduce a change of variables

e−ηks =
1− sk
1 + sk

, for k = 1, . . . , r; and s = sk, (15)

then the quasipolynomial f(s) = q(e−η1s, . . . , e−ηrs, s) is
transformed as follows

p̃(s1, . . . , sr+1)

= (1 + s1)k1 · · · (1 + sr)krq
(

1−s1
1+s1

, . . . , 1−sr
1+sr

, sr+1

)
,

(16)

where deg(p̃) = (k1, . . . , kr, n). On the other hand, given
an m-variate polynomial of the form (6), may originate a
quasipolynomial by applying the mapping

f(s) = Q(p(s))

=
r∏

k=1

(
1 + e−ηks

2

)nk
p

(
1− e−η1s

1 + e−η1s
, . . . ,

1− e−ηrs

1 + e−ηrs
, s

)
.

(17)

Not that the maximal and minimal shifts are τ0 = 0 and
τm ≤

∑r
k=1 ηknk It turns out that the coefficient vector

of the transformed quasipolynomial f(s) = Q(p(s)) is in
one-to-one relation with the coefficient vector of p(s) by a
nonsingular matrix with integer coefficients [21]. There is a
useful property relating stability of both functions

Lemma 5: [17] If p(s1, . . . , sr+1) is stable in the sense of
Definition 4, then the corresponding quasipolynomial f(s) =
Q(p(s1, . . . , sr+1)) is stable in the sense of Definition 2, for
all non-negative values of the basic delays η1, . . . , ηr.
Not that, from (15)-(17), the distance of a root of q to the
imaginary axes grows as the distance of the correspondent
root of p to the distinguished boundary grows, this allows to
include the delay independent stability of neutral quasipoly-
nomials.

5) Families of quasipolynomials and multivariate poly-
nomials: Let us consider a multivariate polynomial family
given by

P = {p(s,b)|b ∈ R} , (18)

where R ⊂ RN1 with N1 = (n1 + 1)(n2 + 1) · · · (nr + 1)
is a polytope. One may associate to family P a family of
quasipolynomials by applying the transformation

F = {Q(p(s,b)) | p(s,b) ∈ P} , (19)

which is also a polytopic quasipolynomial family. Consider
now the value set of P

VP (s(0)) =
{
p(s(0)) | p(s) ∈ P

}
, (20)

and the value set of F

VF (s(0)) =
{
f(s(0)) | f(s) ∈ F

}
, (21)

where s(0) =
(
s
(0)
1 , . . . , s

(0)
r+1

)
and s(0) are a complex vector

and a complex number, respectively. Then

VF (s(0)) = %ejϕ · VP(jω1, . . . , jωr+1), (22)

where

%ejϕ =
r∏

k=1

(
1 + e−jηkω

2

)nk
. (23)

The value set VF (jω) has the same shape as VP(jωωω), but
scaled by a factor % and rotated an angle ϕ.

Remark 2: It is worth to notice that the boundary of
VF (jω) is directly determined by the boundary of VP(jωωω),
this implies that Q tranforms polynomials generating vertices
and edges of VP(jωωω) into vertices and edges of VF (jω)

II. MAIN RESULTS

A. Multivariate polynomial family
The polynomial family studied in this work is

D =
{ nr+1∑

ν=0

pν(s1, . . . , sr) · sνr+1

∣∣∣∣
pν(s1, . . . , sν) ∈ D1

ν , ν = 0, 1, . . . , nr+1

}
, (24)

the 1 + nr+1 polynomial ordinary diamond families D1
ν are

in turn

D1
ν =

{ n1∑
k1=0

· · ·
nr∑
kr=0

bk1···krνs
k1
1 · · · skrr

∣∣∣∣
n1∑
k1=0

· · ·
nr∑
kr=0

∣∣∣bk1···krν − b(0)k1···ν∣∣∣ ≤ %ν}, (25)
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where %ν > 0, ν = 0, 1, . . . , nr+1. The coefficients b(0)k1...krν
correspond to central polynomial of the ν-th diamond

p(0)
ν (s1, . . . , sr) =

n1∑
k1=0

· · ·
nr∑
kr=0

b
(0)
k1...krν

sk11 · · · skrr . (26)

The shape of each value set VD1
ν
(jω1, . . . , jωr) is a rhombus

with horizontal and vertical axis, and its vertex polynomials
are of the form

p(0)
ν (s1, . . . , sr)± %νskαα s

kβ
β · · · s

kγ
γ , (27)

the selection of exponents in (27) depends on the region of
Ω(m) in which the value set V1

Dν (jω1, . . . , jωr) is computed.
It turns out that the value set VD(jω1, . . . , jωr+1) is an
eight-sided convex polygon with simmetry axis parallel to
the real and the imaginary axis of the complex plane [21].
The structure of D determines that the value set is the sum
of several value sets, each rotated by a multiple of π

2 :

VD(jω1, . . . , jωr+1)

=
{ nr+1∑

ν=0

pν(jω1, . . . , jωr) · (jωr+1)ν∣∣∣∣ pν(jω1, . . . , jωr) ∈ VD1
ν
, ν = 0, 1, . . . , nr+1

}
=
nr+1∑
ν=0

VD1
ν
(jω1, . . . , jωr) · (jωr+1)ν

(28)

Since those sets are convex, this value set is also convex;
furthermore, its vertices are obtained from the sum of vertices
of each VD(jω1, . . . , jωr), i.e., polynomials of the form (27)
evaluated at (s1, . . . , sr) = (jω1, . . . , jωr) and multiplied by
a power of jωr+1. In order to determine whether a certain
polynomial produces, when evaluated at (s1, . . . , sr) =
(jω1, . . . , jωr), it is necessary determine: which of the first
r components of (jω1, . . . , jωr, jωr+1) that are equal or less
than 1, let l be this number. Let µµµ = (µ1, . . . , µr) the index
vector for these first r components with entries defined as

µk =
{

0 if |ωk| ≤ 1
1 if |ωk| > 1 (29)

There are 2r regions, each corresponding to an index vector
µ. A further clasification follows from the definition of
dominant variable. Given a µµµ, a variable ωi is said to be
dominant if the following equation holds

|ωi|(−1)µi > |ωk|(−1)µk , (30)

for k = 1, 2, . . . , r and k 6= i. Let σ1, . . . , σl the indices
corresponding to the components of µµµ that are greater than
zero.

For each subregion Ωµµµi of the distinguished boundary
Ω(r+1), the vertex polynomials of the family are

p(0)(s)± ξ1 ± ξ2,
p(0)(s)± ξ1 ± ξ3,
p(0)(s)± ξ3 ± ξ4,

if µi = 0,

(31)

as well as

p(0)(s)± δ1 ± δ2,
p(0)(s)± δ1 ± δ3,
p(0)(s)± δ3 ± δ4,

if µi = 1.

(32)

The combination of the signs of a particular combination
ω1, . . . , ωr, ωr+1, determines the eight polynomials of the
twelve (31) or (32) which correspond to the vertices of
VD(jω1, . . . , jωr, jωr+1). From 2r different subregions Ωµµµ,
each one with r distinct values of i, we conclude that Ω(r)

may be partitioned into r · 2r distinct subregions Ωµµµi . This
yields the total 12 · r · 2r vertex polynomials.

In (31) and (32) p(0)(s) stands for the central polynomial
of the family D:

p(0)(s1, . . . , sr, sr+1) =
nr+1∑
ν=0

p(0)
ν (s1, . . . , sr) · (sr+1)ν ,

(33)
and

δ1 =
∑
k

%2ks
2k
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )

δ2 =
∑
ν

%2ν+1s
2ν+1
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )si

δ3 =
∑
ν

%2ν+1s
2ν+1
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )

δ4 =
∑
k

%2ks
2k
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )si

(34)

and

ξ1 =
∑
k

%2ks
2k
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )

ξ2 =
∑
ν

%2ν+1s
2ν+1
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )s−1

i

ξ3 =
∑
ν

%2ν+1s
2ν+1
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )

ξ4 =
∑
k

%2ks
2k
r+1 · (s

nσ1
σ1 · · · s

nσl
σl )s−1

i

(35)

Let us form the convex combination of polynomials cor-
responding to two adjacent vertex of the value set, e.g.,
p(0)(s) + δ1 + δ2 and p(0)(s) + δ1 + δ3:

(1− λ)(p(0)(s) + δ1 + δ2) + λ(p(0)(s) + δ1 + δ3)

= p(0)(s) + δ1 + δ2 + λ(δ3 − δ2). (36)

Let us repeat the procedure with polynomials p(0)(s)+δ1−δ2
and p(0)(s) + δ1 + δ3:

(1− λ)(p(0)(s) + δ1 − δ2) + λ(p(0)(s) + δ1 + δ3)

= p(0)(s) + δ1 − δ2 + λ(δ3 + δ2). (37)

It is interesting to analyze the form of the polynomial which
appears multiplied by λ, since this may lead to a reduction
of the testing set:

δ3 − δ2 = (1− si) · (s
nσ1
σ1 , . . . , s

nσl
σl )

∑
ν

%2ν+1s
2ν+1
r+1 (38)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB11.4

2883



in view of (12) it is easily seen that these polynomials
are convex stability directions. Thus in order to asses the
stability of the set of polynomials which, when evaluated
at s = (jω1, . . . , jωr+1), generate an edge of the value set
VD(jω1, . . . , jωr+1), it suffices to verify the stability of the
two vertex polynomials.

Theorem 1: The diamond polynomial family (24) is stable
if and only if the 12 · r · 2r vertex polynomials are stable.

B. Quasipolynomial family

Given the nonnegative basic delays η1, . . . , ηr, a
quasipolynomial family is obtained from the diamond poly-
nomial family as follows

F = Q(D). (39)

The vertex quasipolynomials are

f (0)(s)± β1 ± β2,

f (0)(s)± β1 ± β3,

f (0)(s)± β3 ± β4,

(40)

and

f (0)(s)± π1 ± π2,

f (0)(s)± π1 ± π3,

f (0)(s)± π3 ± π4,

(41)

where f (0)(s) = Q(p(s)) is the central quasipolynomial,
which is the image of the central polynomial of the family
D under the mapping Q. the terms are

βi = Q(ξ1), πi = Q(δi), i = 1, 2, 3, 4. (42)

Some properties of convex combinations from the vertex
quasipolynomials may be inferred from the way they are
constructed:

(1− λ)
(
f (0)(s) + π1 + π2

)
+ λ
(
f (0)(s) + π1 + π3

)
= f (0)(s) + π1 + π2 + λ(π3 − π2),

(1− λ)
(
f (0)(s) + π1 − π2

)
+ λ
(
f (0)(s) + π1 + π3

)
= f (0)(s) + π1 − π2 + λ(π3 + π2).

(43)

As in the case of polynomials, it is interesting to search for
convex directions:

π3 − π2 = Q(δ3 − δ2)

=
r∏

k=1

(
1 + e−ηks

2

)nk ( 2e−ηis

1 + e−ηis

)
·

·
l∏

w=1

(
1− e−ησw s

1 + e−ησw s

)nσw ∑
ν

%2ν+1s
2ν+1

(44)

a straightforward calculation shows that

∂

∂ω
arg{[π3 − π2](jω)} = −

r∑
k=1

ηknk
2
− ηi

2
< −τ0 + τm

2
,

(45)

thus, according to (5), π3 − π2 is a convex direction.
Similarly, for the other quasipolynomial

π3 + π2 = Q(δ3 + δ2)

=
r∏

k=1

(
1 + e−ηks

2

)nk ( 2
1 + e−ηis

)
·

·
l∏

w=1

(
1− e−ησw s

1 + e−ησw s

)nσw ∑
ν

%2ν+1s
2ν+1,

(46)

this time, a new calculation shows

arg[π3 + π2](jω) = −
r∑

k=1

ηknkω

2
+
ηiω

2
+ n1

π

2
,

for some integer n1, and

∂

∂ω
arg[π3 + π2](jω) = −

r∑
k=1

ηknk
2

+
ηi
2
>
τ0 + τm

2
,

(47)

replacing the above results in (5), the second term of the
right hand side of the inequality becomes∣∣∣∣ sin(ηiω)

2ω

∣∣∣∣ , (48)

and, for ηi > 0, there is an infinite number of roots of this
function; this implies that π3 + π2 is not a convex direction
and, in order to asess the stability of the set{

(1− λ)
(
f (0)(s) + π1 − π2

)
+ λ

(
f (0)(s) + π1 + π3

)
| λ ∈ [0, 1]

}
,

the stability of the extreme points is not enough and the
whole family should be verified.

1) Stability results:
Theorem 2: The quasipolynomial family (39) is stable if

the 12 · r · 2r vertex polynomials (31) and (31) of the family
D are stable.
PROOF. By Theorem 1 the stability of the 12 · r · 2r vertex
polynomials implies the stability of the family D, then
applying Lemma 5, the result is established Q.E.D.

The following is the delay dependent stability result
Theorem 3: The quasipolynomial family (39) is stable if

and only if 12 · r · 2r uniparametric families of quasipolyno-
mials, corresponding to edges of the value set, are stable.

PROOF. The necessity is obvious, since the 12 · r · 2r

segments of quasipolynomials belong to the family. To prove
sufficiency, first note that all of the vertex quasipolynomial
are included in these families, quasipolynomial of the form
±(βi−βk) and ±(πi−πk) are convex direction, while those
of the form ±(βi + βk) and ±(πi + πk) are not, therefore,
the families corresponding to these quasipolynomials need
to be checked for stability. Finally, apply the zero exclusion
principle. Q.E.D.
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III. CASE STUDY

Let a/(b+ cs) the open-loop, first-order transfer function
of a system with delay in the output, let us introduce a
proportional integral derivative controller (K + Ds + I/s).
The characteristic quasipolynomial is

f(s) = cs2 + bs+Das2e−ηs +Kase−ηs + aIe−ηs. (49)

Quasipolynomial (49) is a quasipolynomial with the basic
delay η, (r = 1) and the second degree with respect to s.
The polynomial which corresponds to (49) according to (16)
is

p(s1, s2) = aI − aIs1 +
(
(b+Ka) + (b−Ka)s1

)
s2

+
(
(c+Da) + (c−Da)s1

)
s22.

(50)

Now define the polynomial

p(0)(s1, s2) = 1 + s1 + s2 + s1s2 + s22 + s1s
2
2, (51)

along with inequalities

|aI − 1|+ |aI + 1| ≤ %0

|b+Ka− 1|+ |b−Ka− 1| ≤ %1

|c+Da− 1|+ |c−Da− 1| ≤ %2,

(52)

define a family D. Note that the coefficent variations are not
independent, therefore interval coefficient is not a suitable
model for this uncertainty. The vertex polynomials corre-
sponding to this family are

p(0)(s1, s2)± (%0 − %2s
2
2)± %1s1s2

p(0)(s1, s2)± (%0 − %2s
2
2)± %1s2

p(0)(s1, s2)± (%0s1 − %2s1s
2
2)± %1s2

p(0)(s1, s2)± (%0s1 − %2s1s
2
2)± %1s1s2.

(53)

Note that, when forming the set of vertex polynomials , the
low degree of the family causes that some of them appear
more than once, thus instead of 12 · 1 · 21 = 24, there are
only 16 different vertex polynomials. By Theorem 2, given
the values %0, %1 and %2, the family is stable independently
of the value of the delay η ≥ 0, if the polynomials (53)
are stable. In particular the family is stable for the bounds
%0 = 0.5, %1 = 0.5 and %2 = 0.5.

IV. CONCLUSIONS

A. Conclusions

A new family of diamond-type quasipolynomial presenting
general reduced testing set stability conditions was intro-
duced. This family is derived from a generalized diamond
polynomial structure through a linear operator. Both nec-
essary and sufficient stability conditions are given, which
depend on a reduced subset of the edge members of the
family. This conditions are obtained from the convex direc-
tion property possesed by the vertex quasipolynomial. The
theorems presented here paralell the results for the families
described in [17], [19].
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