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Abstract— The optimal motion of a rigid segment in the
plane is determined for starting from some giving position
and orientation and terminating at a prespecified position
and orientation. Optimality is with respect to the sum of the
distances traveled by the endpoints. As such, the solution is
relevant for applications in optimal path planning for certain
robotic vehicles. A new proof and geometric characterization is
given. It adds to a growing repertoire of optimal path planning
curves, and solves a problem posed by Ulam in 1960.

I. INTRODUCTION

In [18, p.79] Ulam posed the following problem:

Suppose two segments are given in the plane, each

of length one. One is asked to move the first

segment continuously, without changing its length

to make it coincide at the end of the motion with a

second given interval in such a way that the sum of

the lengths of the two paths described by the end

points should be a minimum. What is the general

rule for this minimum motion?

While the Dubins [6], [15], [20], [16] and Reeds-Schepp

problem come to mind with this simply posed problem,

this problem is more intricate. The author has not found

any discussion of this problem in the monumental works of

LaValle [13] or Jurdjevic [11] and the collection [12]. This

problem bears similarity to the Monge problem, but here

rigidity is required throughout the entire motion. Envision

the object as a bicycle-like robotic vehicle, but with two

independent steering wheels. For simplicity we assume it

has full actuation, unbounded acceleration, and is massless.

It generalizes the problem solved by Balckom and Mason

where the wheels were fixed transversally to the “bicycle”

frame. We shall refer to the performance index for Ulam’s

problem as the bi-path length.

Under various assumptions on the class of extremals,

a solution was given by Gurevich [9] and Goldberg [8].

Dubovitskii discussed the problem for the motion of a

segment in R
n, but for which the endpoints lie on prescribed

surfaces. His solution, without any a priori assumptions, is

based on the integral maximum principle by Dubovitskii and

Milyutin [7]. A whole chapter is devoted to the construction

of an “atlas” of all possible extremals. A new solution

based entirely on Cauchy’s surface area formula is given

in [10] and provided interesting new insights. A variant, the

minimum time problem with maximum velocity constraints,

is solved in [4]. Optimality of postulated motions is shown

algorithmically and by geometric means. However, velocity

constrained minimum time paths are not the shortest bi-paths.

In this paper a new solution method is given by combining

the classical maximum principle with geometric methods.

It is shown that only two types of motions generate the

extremals: Rotation about an endpoint and a Glide. The

latter is a motion where both endpoints follow straight line

paths (not necessarily parallel). In addition, we derive new

geometric properties of the solution such as the glide ellipse,

discussed in the text. These characterizations and properties

add to a growing family of optimal path planning solutions

and tools [12], [13], [14], [17], [19], and references therein.

II. CONFIGURATION SPACE AND REACHABILITY

Considering the endpoints non-interchangeable (i.e.,

“colored”), we denote them as blue (B) and red (R) with

coordinates (xb, yb) and (xr, yr). The rigidity constraint

requires that at all times (xr − xb)
2 + (yr − yb)

2 = 1.
Parameterizing the segment by the coordinates (x, y) of its

blue end point (B) and its orientation with respect to the

horizontal, θ. Thus (see Figure 1), B and R are given by

θ

(xr, yr)

(xb, yb)
B

R

Fig. 1. Parameterization

xb = x, yb = y, xr = x + cos θ, and yr = y + sin θ. The

natural state space is X = R
2 × S1. The kinematics of

the segment are completely specified by the state equations

ẋ = u, ẏ = v, and θ̇ = ω, where u, v and ω are the controls.

In view of what is to follow, we shall introduce two

types of elementary motions: These are the pure rotation

about one of the endpoints, and a glide. Denote the rotation

about B over an angle θ by RotB(θ). RotR(θ) is similarly
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defined. A glide Gli(b,r) is defined as the sliding of the

endpoints B and R of the rod respectively along the fixed

lines b and r (Figure 2). If b and r are parallel, at most 1

unit distant from each other, any glide Gli(b,r) results in a

new position B’R’ of the rod, parallel to its initial position.

However, a glide is defined also if b and r are not parallel.

With such a glide, the rod has two limiting positions,

because of the fixed length of the rod (rigidity). It is also

important to point out that with a single glide, the motion

of the endpoints is not necessarily unidirectional. A point P

on b will be called a turning point if, after the endpoint B

reaches P its motion reverses direction. Likewise, turning

points on r may exist. For instance, the reader may easily

be convinced that the glide from (0, π/4) to (1 +
√

2, π)
requires a turning point for endpoint B at (2

√
2, 0) on b and

a turning point at (1 +
√

2,−1) for endpoint R on r. Here,

r is the line through (
√

2/2,
√

2/2) and (
√

2, 0).

Let us first consider the problem of reachability. Let the

initial configuration be specified by endpoint B at P in R
2,

and θ ∈ S1. Can we find a motion such that endpoint B

moves to B’=P’ and the orientation is θ′? Clearly, translation

and rotation invariance simplifies the problem. Thus assume

that B lies initially at the origin (B=P=O), and that OB’ is

aligned with the x-axis. The reachable set under rotation

about B is the submanifold {O} × S1.

O=B B’

R’
R

R0

θ′
π/2 − θ

θ

r

b

Fig. 2. Glide-reachable configuration (b fixed)

Which configurations in X are accessible by a single

glide from {O} × {θ}? Consider first an arbitrary but fixed

endpoint B’, different from B on the x-axis. (The line b,

on which endpoint B lies, coincides with the x-axis.) If θ =
±π/2, the rod can only translate horizontally (r parallel to b).

If θ 6= ±π/2, all but one configuration B’R’ can be obtained

by a glide Gli(b,r), where r is the line RR’. The exception is

the case with final angle θ′ = π−θ. Indeed, if a single glide

existed, it would have to be a glide with r = RR0 parallel

to b. But as discussed, only a pure translation is possible

then. Hence, for a fixed glide axis b, the reachable manifold

contains the submanifold {(b \ {O}) × θ′ | θ′ 6= π − θ}. If

θ = ±π/2, all configurations on b×S1 are reachable by the

glide. Furthermore, it is always possible to find a glide (with

turning points, i.e., points where the notion of B and/or R

becomes stationary) returning the rod with B’=B and giving

it an arbitrary orientation. Since b may be chosen arbitrarily,

the manifold, reachable by a single but arbitrary glide, is

{O} × S1 ∪ {(P, θ) |P ∈ R
2 \ {O}, θ ∈ S1 \ {argOP}}.

Projected on the hyperplane for a fixed nonzero distance,

OP , this is a torus with a path of winding number 1 taken

out. This can be modeled by a Möbius strip. Combining one

glide and a rotation, all points in R
2×S1 are reachable. Due

to the occurence of turning points, the sum of the lengths of

the segments BB′ +RR′ may only be a lower bound for the

bi-pth length from configuration BR to B’R’.

III. SOME PRELIMINARY RESULTS

The performance index is the sum of the path lengths

traveled by B and R: J =
∫ 1

0 (|dSB | + |dSR|). In terms
of the chosen states and controls this is

J =

∫

1

0

(

√

u2 + v2 +
√

(u − ω sin θ)2 + (v + ω cos θ)2
)

dt.

(1)

In order to illustrate the nontriviality of the problem, we

consider first some specific cases, which can be solved in a

purely geometric way.

Consider the initial configuration BR and desired final

configuration B’R’ in Figure 3. It is clear that the direct

B

R
R’

B’

Fig. 3. Nontrivial glide P→ P’ and Q → Q’.

glide B → B’ and R → R’ is feasible. Moreover since both

BB’ and RR’ are straight lines, it is not possible to find

a shorter bi-path (in the absence of turning points). Now

consider a final configuration with B’≡ B. Let BR and BR’

making an angle β. A simple rotation about B, gives a path

along the arc RR’ of length β. Alternatively, consider the

glide GliRR′,PQ. Point Q is the intersection of the bisector

of (BR,BR’) and the straight line RR’. Let P be the point on

the bisector at distance 1 from Q (Figure 4). A glide path,

P

R

B

R’

Q
β
2

β
2

Fig. 4. Glide versus rotation P≡ P’ and Q → Q’.
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R→ Q→ R’, B→ P→ B exists. The path taken by B has

length 2|PB| = 2(1 − cos β
2 ), while the path by R takes

2 sin β
2 . The ratio of this total bi-path length with β is

Dglide

Drot

=
√

2
sin β

4 cos(β−π
4 )

β
4

For all β in the interval (0, π), this ratio is larger than 1,

thus proving that rotation is more efficient than the suggested

glide (but this does not yet prove the rotation to be optimal.)

Lemma 3.1: If B and B’ coincide, the optimal bi-path is

symmetrical about the bisector PQ.

Proof: By contradiction.

The following theorem is then easily proven:

Theorem 3.1: If one of the endpoints at the end of the

motion must coincide with its initial position, the optimal

bi-path is a pure rotation about that endpoint.

A. Turning Points

A detailed discussion of turning points is simplified by

first considering a simpler related problem: Find the optimal

bi-path to align the rod with a given line ℓ.

We shall here only consider the special case when one

of the endpoints of the rod lies already on ℓ, keeping B’

free. Let BR make an angle β with ℓ, assuming first that

0 < β < π/2 (Figure 5). We solve the problem in two

β

α

ℓ

R

B

U

B’

P

M=R’

S
m

Fig. 5. Optimal bi-path to a wall.

steps. First, require that the endpoint R’ coincides with a

fixed location M on ℓ. This allows us to solve a family of

optimization problems parameterized by M. In doing this

we characterize the turning points. Then proceed to find the

minimizing bi-path length in case the position along ℓ is free,

i.e., M may be chosen arbitrarily. Let the path RM have angle

α with the perpendicular PR to the line ℓ. Put the origin of the

coordinate system at the initial point B. The endpoint R has

coordinates (sin β, cosβ). Let M have coordinates 1 + y, so

that when R has moved to M, the other endpoint is at B’ with

coordinates (0, y). Let the point S on RM be parameterized

by s ∈ [0, 1], i.e., S(s) = ((1 − s) sin β, s(1 + y) + (1 −
s) cosβ), thus with S(0)≡ R and S(1) ≡ M. While S moves

on MR, B glides along ℓ to U(s). Let |PU(s)| = p(s). From

the quadratic equation |US| = 1, we get, picking the smallest

root, p(s) = s(1+y)+(1−s) cosβ−
√

1 − (1 − s)2 sin2 β.

A turning point is a stationary point for p(s). Straightforward

manipulations yield the coordinate of U:

p∗ = p(s∗) = 1+y− 1

sin β

√

(1 + y)2 − 2(1 + y) cosβ + 1.

Theorem 3.2: The turning point conditions corresponds

to a parameter s such that SU is perpendicular to MR.

The following cases (noting that B=B’ corresponds to α =
β/2) can be discerned:

1) α > β There is no turning point on RM. Here y > 0
and the optimal bi-path length is J = |RM| + y.

2) β/2 < α < β. The turning point lies below B, and

y > 0.

3) 0 < α < β/2. Similar to the previous case, except that

now B’ lies between B and U (with y < 0).

4) β − π/2 < α < 0 Now y < 0 and J = |RM| + |y|.
The optimal bi-path distance with gliding along RM and ℓ
respectively requires a total bi-path length

J∗(y) = y+2+(1− 2

sin β
)
√

(1 + y)2 − 2(1 + y) cosβ + 1

It is clear that y < 0 cannot be minimizing. The angle α
relates to y by 1+y−cos β

sin β
= tan α. The optimal α occurs in

the interval (0, β): α∗(β) = arctan sin(β)

2
√

1+sin(β)
. The case

π/2 < β < π is similar and omitted. We conclude:

Theorem 3.3: The bi-path length for the alignment of the

rod with a wall, when one endpoint is already positioned

along the wall is a pure rotation about this endpoint.

IV. MAIN RESULT

Following standard optimal control methods (PMP) [3],

the Hamiltonian for Ulam’s problem with performance index

(1) is obtained by adjoining the dynamical equations with

Lagrange multiplier functions (the co-states).

H =
√

u2 + v2 +
√

(u − ω sin θ)2 + (v + ω cos θ)2 +

+λxu + λyv + λθω. (2)

A. Minimality of the Hamiltonian

The Hamiltonian (2) as function of u and v is convex, and

differentiable except at the tips (u=v=0) and at (u = ω sin θ
and v = −ω cos θ). It follows that, as function of u and v,

the minimum occurs either at one of these tips, or at a point

satisfying ∂H
∂u

= ∂H
∂v

= 0. Thus motivated, we consider first

the nondifferentiable cases:

Case 1: u = v = 0. The Hamiltonian evaluates to H =
|ω| + λθω. There are 5 subcases for ω∗, the optimal ω:

i) λθ < −1 ω∗ → −∞
ii) λθ = −1 ω∗ ∈ [0,∞)
iii) |λθ| < 1 ω∗ = 0
iv) λθ = 1 ω∗ ∈ (−∞, 0]
v) λθ > 1 ω∗ → ∞.

(3)
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Subcases i) and v) are obviously meaningless, as the

resulting path is discontinuous. The remaining cases lead

to the optimal H∗ = 0. However, subcase iii) implies that

the rod remains motionless, clearly a non-solution. This

leaves only the two border line cases, and we note that the

corresponding rate of rotation is only constrained by its

sign.

Case 2: Next we consider the tip u = ω sin θ, v = −ω cos θ.

The Hamiltonian is: H = |ω|+[λθ + (λx sin θ − λy cos θ)]ω.

which is of Case 1 form, but with λθ augmented by

(λx sin θ − λy cos θ). The conclusion is then similar, and

only the cases λθ + (λx sin θ − λy cos θ) = ±1 make the

optimization problem meaningful, resulting in H∗ = 0.

If u = v = 0, but ω 6= 0, it is a rotation of the rod about the

endpoint B, the other case a rotation about R. We conclude

that RotB and RotA are potentially parts of an optimal

solution.

Consider now the entire line segment between the two tips,

and set u = kω sin θ and v = −kω cos θ, for 0 ≤ k ≤ 1.

The full Hamiltonian evaluates on this line segment to

H = k|ω| + (1 − k)|ω| + [λθ + k(λx sin θ − λy cos θ)]ω

= |ω| + [λθ + k(λx sin θ − λy cos θ)]ω (4)

Since this is affine in k, an indifferent case (k anywhere

in [0,1]) occurs if λx sin θ − λy cos θ = 0. In this case all

points of the segment connecting (0, 0) to (ω sin θ,−ω cos θ)
are potential minima for fixed ω and θ. To optimize the

Hamiltonian (4), constrained to this line segment, note first

that it is of the form H = |ω| + λω, where we set λ =
λθ + k(λx sin θ − λy cos θ). If |λ| < 1, then ω∗ = 0. If

|λ| > 1, no minimum exists (the infimum is −∞). If λ = 1,

then ω∗ ≤ 0, and for λ = −1, ω∗ ≥ 0 are minimizing.

What is the character of these potential solutions? Note that

ω∗ = 0 implies in this case that u∗ = v∗ = 0, so that the

object is not moving at all. Obviously, this cannot be part

of a solution to Ulam’s problem. Also, the case when only

the infimum, but not a minimum exists, cannot correspond

to a solution, as this would allow an impulsive control which

would render the path discontinuous.

This leaves only the cases |λ| = 1 as potential solutions.

Indeed, choosing an ω′ 6= 0 satisfying the corresponding

constraints, a nonzero value for u and v results. The velocity

components for B are then uB = kω′ sin θ, and vB =
−kω′ cos θ, and the velocity components for R are

uR = u − ω′ sin θ = −(1 − k)ω′ sin θ

vR = v + ω′ cos θ = (1 − k)ω′ cos θ.

Geometrically, this means that the line BR rotates with

angular velocity ω′ about a point between B and R, exactly

k units from B and 1 − k from R.

This indicates that an instantaneous turn about B or R or

any point between B and R is a potential optimal segment

of the solution.

Another viewpoint is obtained from: vR/uR = uB/vB =
− tan θ. The heading of both endpoints is along the line

perpendicular to BR, but in opposite directions. Their speeds

are respectively kω′ and (1 − k)ω′. This means indeed a

rotation about the point k units from B.

Differentiable Case: If a minimizer exists outside the seg-

ment (0,0) to (ω sin θ,−ω cos θ), where H is convex and

differentiable, it must be unique. It is found by setting the

partial derivatives of H w.r.t. u, v and ω zero.

B. Adjoint Equations

The adjoint equations are

λ̇x = −∂H

∂x
= 0 (5)

λ̇y = −∂H

∂y
= 0 (6)

λ̇θ = −∂H

∂θ
=

(u − ω sin θ)ω cos θ + (v + ω cos θ)ω sin θ
√

(u − ω sin θ)2 + (v + ω cos θ)2

(7)

First, (5) and (6) tell us that λx and λy are con-

stant along the optimal solution. Substituted in the

smooth optimality conditions, they imply the constancy of

both u√
u2+v2

+ u−ω sin θ√
(u−ω sin θ)2+(v+ω cos θ)2

and v√
u2+v2

+

v+ω cos θ√
(u−ω sin θ)2+(v+ω cos θ)2

.

But, from the geometry, u√
u2+v2

= cosαb, and v√
u2+v2

=
sin αb, where αb is the heading of the blue endpoint B.

Likewise, expressing cosαr and sinαr the heading of R

is also expressible in terms of u, v, ω and θ, giving

cosαb + cosαr = ξ (8)

sin αb + sin αr = η, (9)

where ξ and η are constants. This sets the stage for the

geometric interpretation. There are either zero or two

solutions for these equations, as shown in Figure 6. The

circles centered at O, and (ξ, η), of radius one either intersect

or are disjoint. If ξ2 + η2 > 2 no solution is possible. If

0 < ξ2 + η2 < 2, then if (α∗
b , α

∗
r) is one solution, then its

permutation, (α∗
r , α

∗
b) is the second solution. The boundary

case gives a unique solution with equal angles. If ξ = η = 0,

αr

αl

αl

αr

(A,B)

Fig. 6. Path Angles

then αb = π +αr is the only constraint, and the value of αb
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is entirely free. Apart from an infinitesimal rotation about

a point on the rod, such a glide cannot satisfy the rigidity

constraint.

It follows from this that the corresponding path is such that

the endpoints travel in straight line segments. The double

solution indicates that abrupt switching may be a possibility.

The degenerate case (equal angles) corresponds to a parallel

translation of the rod.

Consider now (7), which states that along the optimal path

λθ = sin(θ − αr). (10)

An equivalent geometric form of (7) is

λ̇θ = ω(cosαr cos θ + sin αr sin θ) = ω cos(θ − αr),

and we note that the quantity αr−θ is the heading of R with

respect to the body BR of the rod. Hence, upon combining,

we obtain a first order nonlinear differential equation

λ2
θ +

1

ω2
λ̇2

θ = 1, (11)

with solution

arcsinλθ(t) − arcsinλθ(0) = ±Ω(t), (12)

where Ω̇ = ω, thus implying that Ω − θ is constant. Thus

again,

λθ(t) = sin(arcsinλθ(0) ± Ω(t)), (13)

and from (10)

sin
(

θ(t) − αr(t)
)

= sin
(

θ(0) − αr(0) ± Ω(t)
)

.

This gives a piecewise linear law, leaving the possibility of

switches

θ(t) − αr(t) = θ(τ) − αr(τ) ± Ω(t) − Ω(τ).

But assume there is a switch from α∗
r to α∗

b at time τ . By

the continuity of the above solution, this requires that

θ(τ+) − αr(τ+) = θ(τ+) − αb(τ−) = θ(τ−) − αb(τ−).

Unless αr = αb at the time of the switch, τ , this creates a

discontinuity in θ at τ , which cannot occur with a smooth

motion.

At once this precludes a zig zag motion (i.e. one for

which αb = −αr) from being optimal. In view of the

constancy of the sum of the cosines and the sum of

the sines of the angles, αb = −αr implies indeed that

ξ = cosαb +cosαb = 2 cosαb and η = sinαb +sinαr = 0,

which indicates a zig-zag motion of the segment in the

direction of its initial axis. But, it is clear that a simple

parallel translation outperforms the zig zag.

In the nondifferentiable case, if, for k ∈ [0, 1], uB =
kω′ sin θ and vB = −kω′ cos θ, then the costate equation

corresponding to θ gives

λ̇θ = 0. (14)

In such potentially optimal solutions, which all correspond

to rotations about a point B, R or somewhere in between (for

the degenerate case) the costate λθ must remain constant.

But we already found that this constant is either +1 or −1
for a rotation about B. In view of the constancy of the

Hamiltonian (and H∗ = 0), while θ changes, under the

rotation, this implies also that λθ has magnitude 1, and that

λx = λy = 0. We have thus shown

Theorem 4.1: Partial paths obtained by pure rotations

RotB or RotR about an endpoint, or such hat the headings

of the endpoints are constant, i.e., glides Gli(b,r), are

candidate optimal paths.

Finally we note for arbitrary µ, constant or not,

H(µu, µv, µω) = µH(u, v, ω). Without loss of generality,

we may restrict the problem to ω| = 1 and ω = 0. In this

case (13) leads to a piecewise linear law.

V. GEOMETRY

There are two modes of optimal motion: rotations and

glides. The behavior of λθ is the key. In the setup of

Ulam’s problem, initial and final configurations are specified.

Consequently, the initial and final value of the co-state are

not specified. Now it follows from the piecewise linear law,

that λθ(t) varies as the sine of a linearly (in time) increasing

or decreasing angle. Then either the motion is finished before

λθ(t) can reach the values +1 or −1, in which case the

solution is just a glide. Alternatively, after some intermediate

time, λθ(t) may reach one of the boundary values +1 or -1.

In this case λ̇θ is zero, and thus λθ keeps the value for the

rest off the motion. But, we have seen that this corresponds

to a rotation.

Hence, it is now clear that the entire solution takes either

the form of a glide, a rotation, a glide sandwiched between

two rotations, a glide combined with a rotation, or at most

a glide followed by a rotation, followed by the ‘permuted’

glide. There can never be more than two glides! These are

indeed all cases described in the atlas of Dubovitskii [7],

and makes the solution much more intricate than for the

Dubins problem which involves at most a rotation followed

by a translation, followed by a rotation.

A. Glide-ellipse

We derive here another geometric characterization of the

glide Gli(b,r), by analyzing the path of the midpoint of the

segment BR. We consider two cases:

1) Crossing Paths: Consider Figure 7.

We assume that the paths of the endpoints are crossing at

O. For convenience, we introduce a coordinate system with

the origin at O, and the x-axis along the bisector of the the

paths. Hence the two paths have the equation y = ±ax for

some a. It is easily shown, that the midpoint lies on the

ellipse specified by

(2axM )2 +

(

2yM

a

)2

= 1. (15)
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θ

B

R

B’

R’

O

θ

M

a
2

1
2a

a
2

1
2a

M’

Fig. 7. Path Geometry

Let’s refer to this ellipse as the glide ellipse. This ellipse

has semi-axes of length 1
2a

and a
2 respectively along the x

and y direction. This implies also the remarkable property

that the area of this glide ellipse is π
4 , and therefore is

independent of the angle between r and ℓ.

Note that in general each point on this ellipse corresponds

in a one-to-one way with a position and orientation of the

segment along the potential optimal path.

2) Parallel Paths: If the paths are parallel, obviously,

their distance must be less than 1. There are two possibilities,

the begin and end configurations, BR and B’R’, are parallel,

or they are symmetrical. In the first case it follows that the

segment can only slide parallel to itself. The midpoint M

travels along the line parallel to and halfway between the

endpoint paths. This is a degenerate ellipse.

Points along this degenerate ellipse correspond with two

possible orientations of the segment along the potential

optimal path. However, these two cannot be mapped into

each other along an optimal path.

Omitting intricate details, it follows from the previous

section that the optimal bi-path consists of one line of sight

connection between endpoints, while the other endpoint fol-

lows a glide-rotation-glide. The rotation connects the turning

points on the glide path straight path. During this rotation,

the corresponding midpoint follows a circular arc tangent to

the glide ellipses.

VI. CONCLUSIONS AND EXTENSIONS

We have solved a problem posed by Ulam. It was shown

that any optimal bi-path consists of either a glide, a rotation,

a combination of the two, or - at most - , a glide sandwiched

between two rotations or a rotation sandwiched between two

glides related by permutation of their glide angles.

We combined geometry with the maximum principle in

establishing this solution, as the maximum principle itself

does not directly lead to an analytic solution. We gave also a

new characterization of the glide solution by its glide ellipse

and the invariance of its area. We also discussed a special

case: the optimal bi-path to a given line. For a robot with

dual steering, this is a parallel parking problem.

Finally, interesting similar work in [5] and [1] was brought

to our attention. In the first, the endpoints are constrained to

move perpendicular to the rod. The second studies a related

problem of minimal orbit length for an arbitrary but fixed

point on the rod.
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