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Abstract— This paper presents a Variable Structure Adaptive
Backstepping Controller (VS-ABC) for plants with relative
degree one, using only input/output measurements. Instead
of traditional integral adaptive laws for estimating the plant
parameters, switching laws are used to increase robustness
to parametric uncertainties and disturbances, as well as, to
improve transient response. Moreover, the controller design is
easier when compared with the original adaptive backstepping
controller, since the amplitude relays are related to the plant
nominal parameters. Additionally, preliminary simulation re-
sults for an unstable second order system are shown.

I. INTRODUCTION

Traditionally, the main problem of adaptive systems is con-
cerned with their transient performance, which becomes an
important issue in real applications. For traditional adaptive
controllers, no results about bounds on the transient behavior
can be assured by the designer. Furthermore, the traditional
adaptive schemes normally present large initial oscillations,
since the system is learning about the process through the
parameter estimates. In order to solve these drawbacks, a
new adaptive technique for linear systems with unknown
parameters, namely, adaptive backstepping, was proposed in
[1].

When compared with the traditional adaptive controllers
for linear systems, e.g., MRAC (Model Reference Adap-
tive Control) in [2] and [3], and APPC (Adaptive Pole
Placement Control) in [4], the adaptive backstepping con-
troller guarantees stability without adaptation and presents a
better transient response. However, these new features are
obtained by increasing in control law complexity, which
is not interesting in practical implementations, particularly
in embedded systems. The parameter controller tuning is
another drawback, inherent of all adaptive controllers with
integral adaptive laws.

In this paper, we propose a Variable Structure Adaptive
Backstepping Controller (VS-ABC) where the integral adap-
tive laws are replaced by switching laws. The aim of this
strategy is to aggregate the best features of both techniques:
fast transient and robustness to parametric uncertainties and
disturbances. In addition, the controller design has been
simplified, because the amplitude relays are related to phys-
ical parameters (plant nominal parameters), e.g., resistance,
capacitance, inertia moments, etc.
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Similar approaches, combining variable structure with
adaptive control, have been presented in [5] and [6], where
the VS-MRAC (Variable Structure Model Reference Adap-
tive Control) and VS-APPC (Variable Structure Adaptive
Pole Placement Control) techniques were proposed, respec-
tively, in their direct and indirect versions. Moreover, the
indirect VS-MRAC has been presented in [7], which the
controller design is simplified as the same as mentioned
before, due to the amplitude relays simplicity.

A combined backstepping/variable structure control strat-
egy for a class of uncertain nonlinear systems is proposed
by the authors in [8]. This approach is characterized by the
generation of a second order sliding mode to compensate
uncertainty terms. The control algorithm is composed by
n−1 steps analogous to that presented in [9], and a final step
using a second order sliding mode. The VS-ABC scheme
differs from it in the variable structure approach, which is
proposed here to substitute the integral adaptive laws using
appropriate switching laws.

In [10], the authors shown that the original adaptive
algorithms get unstable in the presence of unmodeled high-
frequency dynamics and unmeasurable output disturbances.
Hence, over the last years, several researchers have pro-
posed additional modifications in the adaptive laws, e.g.,
normalized dead zone [11], parameter projection [12] and
σ modification [13]. The main idea behind these modifica-
tions is to bound the parameter estimates, avoiding system
instability from the traditional adaptive laws. The use of
variable structure in the adaptive controllers also bounds the
“parameter estimates”, since the relay terms are used.

This paper is organized as follows. Some necessary as-
sumptions for the controller designs are described in the next
section. The adaptive backstepping controller design and the
variable structure adaptive backstepping controller design are
presented, respectively, in sections III and IV, both using
Lyapunov theory. The simulation results are illustrated in
section V and finally, some conclusions are drawn in section
VI.

II. THE BACKGROUND DESIGN

Consider the Single-Input Single-Output (SISO) and Lin-
ear Time Invariant system (LTI) with relative degree one
(ρ = n−m = 1), described by

y(s) =
B(s)
A(s)

u(s) =
bms

m + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

,

(1)
where the coefficients bm · · · b0 and an−1 · · · a0 are constants
but unknown. Introducing the output error variable
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z = x1 − yr(t), (2)

the aim design is to force x1 to asymptotically track the ref-
erence signal yr(t), by regulating z to zero, while keeping all
the closed-loop signals bounded. The reference yr(t) may be
the output of a model reference with a piecewise continuous
input r(t) or a signal whose its first derivative is known,
bounded and piecewise continuous. Therefore, the reduction
in the output error z corresponds to the tracking problem or
the set-point regulation problem, depending on the kind of
yr(t). Some additional assumptions are necessary:

1) The sign of the high-frequency gain (sgn(bm)) is
known.

2) The plant is minimum phase, i. e., the polynomial
B(s) = bms

m + · · ·+ b1s+ b0 is Hurwitz.
3) The model reference relative degree must be equal or

greater than the plant relative degree (ρr ≥ ρ).
The assumptions described above are the same as pre-

sented in traditional model reference adaptive control.

A. State Estimation Filters

In the proposed control schemes, only input/output mea-
surements are considered and then state estimation filters will
be used in order to overcome this constraint. The adaptive
backstepping design will employ the K-filters developed by
Kreisselmeier in [14] for adaptive linear observers.

The system (1) for any relative degree can be represented
in the observer canonical form

ẋ1 = x2 − an−1y

...
ẋρ−1 = xρ − am+1y

ẋρ = xρ+1 − amy + bmu

...
ẋn−1 = xn − a1y + b1u

ẋn = −a0y + b0u

y = x1,

(3)

or, more compactly, as

ẋ = Ax− ya+

[
0(ρ−1)×1

b

]
u

y = eT1 x,

(4)

where

A =

 0 In−1

...
0 · · · 0

 , a =

 an−1

...
a0

 , b =

 bm
...
b0

 .
The system’s representation (4) can also be rewritten as

ẋ = Ax+ F (y, u)T θ
y = eT1 x,

(5)

where

F (y, u)T =

[ [
0(ρ−1)×(m+1)

Im+1

]
u −Iyn

]
,

and the parameter vector is

θ =
[
b
a

]
=



bm
...
b0
an−1

...
a0


=



θ1
...

θm+1

θm+2

...
θ2n


. (6)

For state estimation, the following filters will be used

ξ̇ = A0ξ + ky

Ω̇T = A0ΩT + F (y, u)T ,
(7)

where the vector k = [k1 · · · kn]T is chosen so that the matrix

A0 = A− keT1 , (8)

is Hurwitz, and hence P exists such that

PA0 +AT0 P = −I, P = PT > 0. (9)

Using (7), the state estimate is

x̂ = ξ + ΩT θ, (10)

and it is easy to demonstrate that the state estimation error

ε = x− x̂, (11)

vanishes exponentially, since

ε̇ = A0ε. (12)

The K-filters are summarized in Table I. More details can
be found in [14] and [15].

TABLE I
THE K-FILTERS FOR SISO LINEAR SYTEMS WITH ANY RELATIVE

DEGREE.

η̇ = A0η + eny

λ̇ = A0λ+ enu

Ξ = −
[
An−1

0 η, · · · , A0η, η
]

ξ = −An
0 η

υj = Aj
0λ, j = 0 · · ·m

ΩT = [υm, · · · , υ1, υ0, Ξ]
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III. THE ADAPTIVE BACKSTEPPING DESIGN

The adaptive backstepping design for plants with relative
degree one is deduced from the general case described in
[15]. Due to the minimum phase assumption, this design is
restricted to the equation

ẋ1 = x2 − an−1y + bmu = x2 − yeT1 a+ bmu. (13)

From (10) and (11), the x2 variable can be obtained as

x2 = ξ2 + ΩT(2)θ + ε2

= ξ2 +
[
υm,2, υm−1,2, · · · , υ0,2, Ξ(2)

]
θ + ε2.

(14)
Substituting the above result in (13), it yields

ẋ1 = ξ2 +
[
υm,2, · · · , υ0,2, Ξ(2) − yeT1

]
θ + ε2 + bmu

= ξ2 + [w1 · · ·w2n] θ + ε2 + bmu

= ξ2 + wT θ + ε2 + bmu,

(15)
where w is the “regressor” vector. Then, the first time
derivative of the output error (2) using (15) is given by

ż = ẋ1 − ẏr = ξ2 + wT θ + ε2 + bmu− ẏr. (16)

Scaling the control law u(t) as

u = %̂ū, (17)

where %̂ is an estimate of % = 1/bm and defining

θ̃ = θ − θ̂
%̃ = %− %̂, (18)

we obtain

ż = ξ2 + wT θ + ε2 + bm%̂ū− ẏr
= ξ2 + wT θ + ε2 − bm%̃ū+ ū− ẏr.

(19)

Consider the Lyapunov function candidate

V =
1
2
z2 +

1
2
θ̃TΓ−1θ̃ +

|bm|
2γ

%̃2 +
1

4d1
εTPε > 0, (20)

and its first time derivative using (9) and (12)

V̇ = zż − θ̃TΓ−1 ˙̂
θ − |bm|

γ
%̃ ˙̂%− 1

4d1
εT ε. (21)

By substituting (19) in (21),

V̇ = z(ξ2 + wT θ + ε2 − bm%̃ū+ ū− ẏr)

−θ̃TΓ−1 ˙̂
θ − |bm|

γ
%̃ ˙̂%− 1

4d1
εT ε,

(22)

and selecting the auxiliary control law as

ū = −c1z − d1z − ξ2 − wT θ̂ + ẏr, (23)

we have

V̇ = −c1z2 − d1z
2 + zε2 −

1
4d1

εT ε

+θ̃TΓ−1
[
Γwz − ˙̂

θ
]
− |bm|

γ
%̃
[
γsgn(bm)ūz + ˙̂%

]
.

(24)

To eliminate the unknown indefinite terms θ̃ and %̃ in (24),
the update laws can be chosen as

˙̂
θ = Γwz, (25)

˙̂% = −γsgn(bm)ūz, (26)

where Γ and γ are the adaptive gains. Then,

V̇ = −c1z2 − d1z
2 + zε2 −

1
4d1

εT ε

= −c1z2 − d1

(
z − 1

2d1
ε2

)2

− 1
4d1

(ε12 + ε3
2 + · · ·+ εn

2),

(27)

which yields
V̇ (z, θ̃, %̃, ε) ≤ c1z2 ≤ 0. (28)

The above result renders [z, θ̃, %̃, ε]T = [0, 0, 0, 0]T a
stable equilibrium point. From LaSalle-Yoshizawa theorem
[15], we can show that z(t)→ 0 as t→∞.

IV. THE VARIABLE STRUCTURE ADAPTIVE
BACKSTEPPING DESIGN

Following the steps described in the previous section,
switching laws will be proposed to replace the integral
adaptive laws (25-26), which were required to guarantee the
origin stability as shown in (28). Now, consider the Lyapunov
function candidate

V =
1
2
z2 +

1
2d1

εTPε > 0, (29)

and its first time derivative

V̇ = zż − 1
2d1

εT ε. (30)

By substituting (19) and (23) in (30), we obtain

V̇ = −c1z2 + wT θ̃z − bm%̃ūz −
1

4d1
εT ε

−d1z
2 + zε2 −

1
4d1

εT ε

= −c1z2 + wT θ̃z − bm%̃ūz −
1

4d1
εT ε

−d1

(
z − 1

2d1
ε2

)2

− 1
4d1

(ε12 + ε3
2 + · · ·+ εn

2).

(31)
Therefore,

V̇ ≤ −c1z2 +
2n∑
i=1

θ̃iwiz − bm%̃ūz −
1

4d1
, (32)

and using the switching laws

θ̂i = θ̄isgn(wiz), θ̂i > θi (33)

%̂ = −%̄sgn(bm)sgn(ūz), %̂ >
1
|bm|

, (34)
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in (32), it yields

V̇ ≤ −c1z2 − 1
4d1

εT ε+
2n∑
i=1

(θiwiz − θ̄i|wiz|)

−bm(%ūz + %̄|ūz|).
(35)

The new result is

V̇ ≤ −c1z2 − 1
4d1

εT ε < 0, (36)

which guarantees that [z, ε]T = [0, 0]T is globally asymp-
totically stable (GAS), because (36) is a negative definite
function.

The switching laws proposed (33-34) simplify the control
algorithm implementation, since the “parameter estimation”
is now obtained by using relays instead of integral adaptive
laws (25-26). For instance, the θ̂i calculation in (33) does not
require wi times z, but only their signal analysis which is a
very simple task in digital systems. Therefore, the number
of calculations is reduced, and consequently, the number of
instructions used. In embedded systems, this new feature is
welcome due to hardware and software constraints, such as,
reduced number of peripherals and limited Arithmetic Logic
Units (ALU).

V. SIMULATION RESULTS

In this section, simulation results for an unstable second
order system with relative degree one will be presented.
Robustness tests in the presence of parametric uncertainties
and disturbances for adaptive schemes from sections III and
IV are included. Consider the system described by

y(s) =
s+ 1

s2 − 3s+ 2
u(s), (37)

and a reference model by

yr(s) =
s+ 1

s2 + 4s+ 4
r(s). (38)

The K-filters were implemented as described in Table 1

η̇ = A0η + e2y

λ̇ = A0λ+ e2u
(39)

Ξ = − [A0η, η]
ξ = −A2

0η

υ1 = A0λ

υ0 = λ

ΩT = [υ1, υ0, Ξ] ,

(40)

where the matrix

A0 =
[
−k1 1
−k2 0

]
, (41)

is Hurwitz, due to the choice of the vector

k = [k1 k2]T = [2 1]T . (42)

The system’s behavior without parametric uncertainties and
disturbances is shown in Figs. 1 and 2, respectively, for

the adaptive backstepping controller and the VS-ABC. The
adaptive gains used in the former case were

Γ =
[

100 0
0 100

]
, γ = 100, (43)

and the auxiliary constants, c1 = d1 = 18. In the latter,
the relay amplitudes were θ̄1 = 1.5, θ̄2 = 1.5, θ̄3 = 3.5,
and θ̄4 = 2.5, while the auxiliary constants, c1 = d1 = 18.
In both situations, the reference input was r(t) = 1, the
plant initial condition was x1(0) = 0.15 and other initial
conditions were zero. The control signals are shown in
Figs. 3 and 4. Notice that the VS-ABC presents a transient
improvement when compared with the adaptive backstepping
controller. On the other hand, this result is achieved with a
higher control input u(t).

Figs. 5 and 6 show the simulation results for the same
system, however with an input additive disturbance (d = 2),
from t = 7s, and a parameter deviation of 20% in the
nominal values, from t > 13s. The control signals for
the adaptive backstepping and VS-ABC schemes can be
analyzed through Figs. 7 and 8. As can be observed, the
VS-ABC presents a better performance in the presence of
parametric uncertainties and disturbances, when compared
with traditional adaptive backstepping control. The parameter
estimates for the backstepping adaptive controller with an
input additive disturbance (d = 2) and a parameter deviation
of 20% in the nominal values are shown in Fig. 9, while
the parameter estimates without parametric uncertainties and
disturbances are presented in Fig. 10.

VI. CONCLUSIONS

In this paper, a Variable Structure Adaptive Backstepping
Controller (VS-ABC) was shown for plants with relative
degree one, using only input/output measurements. Simu-
lation results were presented for an unstable second order
system in order to corroborate the theoretical studies. As
previewed, the union of both techniques has improved the
transient performance and the robustness to parametric un-
certainties and disturbances, when compared with traditional
adaptive backstepping control. Even though they have the
same number of parameters, the VS-ABC design was easier,
since tuning process of the auxiliary constants and adaptive
gains required several preliminary tests in the backstepping
scheme.

In future papers, results for plants with arbitrary relative
degree will be presented as well as practical applications
in motion control, current control loop and process control
where industrial embedded components (FPGAs, MCUs
and DSPs) will be used. The Variable Structure Adaptive
Backstepping technique is not limited to controllers and can
be also applied to other areas in control systems as state
observers, allowing the same benefits as described here, in
particular inherent fast transient response and robustness to
parametric uncertainties and disturbances. In addition, com-
parisons with similar adaptive controllers, e.g., VS-MRAC
and VS-APPC, will be discussed.
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Fig. 1. Output system for the adaptive backstepping controller without
parametric uncertainties and disturbances.
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Fig. 2. Output system for the VS-ABC without parametric uncertainties
and disturbances.
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Fig. 3. Control signal for the adaptive backstepping controller without
parametric uncertainties and disturbances.
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Fig. 4. Control signal for the VS-ABC without parametric uncertainties
and disturbances.
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Fig. 5. Output system for the adaptive backstepping controller with an
input additive disturbance (d = 2) and a parameter deviation of 20%
in the nominal values.
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Fig. 6. Output system for the VS-ABC with an input additive
disturbance (d = 2) and a parameter deviation of 20% in the nominal
values.
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Fig. 7. Control signal for the backstepping adaptive controller with an
input additive disturbance (d = 2) and a parameter deviation of 20%
in the nominal values.
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Fig. 8. Control signal for the VS-ABC with an input additive
disturbance (d = 2) and a parameter deviation of 20% in the nominal
values
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Fig. 9. Parameter estimates for the backstepping adaptive controller
with an input additive disturbance (d = 2) and a parameter deviation
of 20% in the nominal values.
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Fig. 10. Parameter estimates for the backstepping adaptive controller
without parametric uncertainties and disturbances.
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