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Abstract— This paper presents an enhanced robust predictor
for uncertain discrete-time systems. Besides uncertainties in
both state and output matrices, it is also permitted dynamic and
measurement noises to be correlated with unknown correlation
covariance. All uncertainties in the proposed model are time-
varying and supposed norm-bounded. The filter is obtained
minimizing an upper bound of the variance error estimation,
that is, the design leads to a guaranteed cost for all allowed
uncertainties. Simulation examples are provided to show the
performance of the enhanced estimator.

I. INTRODUCTION

One of the problems with the Kalman predictor is that

it may not be robust against modeling uncertainties. The

Kalman predictor algorithm is the optimal estimator for a

system without uncertainties. In the presence of uncertainties,

it is well known that the performance of the estimator is

degradated. If a estimator can handle with the uncertainty,

i.e., can be used with guaranteed performance for all possible

values for the uncertain parameter within a given set, it is

called robust estimator (see [1]-[4] and references therein).

The robust estimation problem has been subject of in-

tensive study and many uncertainty modeling and solution

directions have been considered along the literature for a

wide sort of systems. Robust filters for linear fractional

transformation (LFT) uncertain systems are proposed in [5].

A robust Kalman filter for descriptor systems using a deter-

ministic procedure is given in [6]. Robust filtering for bilinear

uncertain systems is developed in [7]. Filters for systems with

missing measurements are obtained in [8]. Another technique

used in robust estimation is the H∞ estimation, where the

noise sources are signals with bounded energy or average

power. Although more robust than the Kalman estimator,

the H∞ estimator suffers from the same dependence on the

system matrices and therefore robust H∞ were also studied.

In the robust H∞ estimation is applied similar methodologies

used in robust Kalman estimation (see, e.g., [12] and [13]). In

[9], robust filtering is used for multisensor fusion estimation

for multisensor system with uncertain correlated noise using

H∞ filtering. Other robust estimators can be found in the

references of the aforementioned papers.

The analysis and the design of robust finite horizon

Kalman-type estimators for linear dynamic systems with

uncertainties have received great attention in recent years.

Researchers have been focusing basically on two method-

ologies to the robust estimation: the linear matrix inequality
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(LMI) and the Riccati equation approaches. The design of

using LMIs is able to deal with norm-bounded or polytopic

parameter uncertainty. Current effort has been done to design

less conservative estimators, e.g., using parametric Lyapunov

functions [10]. Other results include design methods without

a limitation on the order of the estimator and the possibility

to certify the performance quality [11].

Alternatively, according to [4], a Riccati equation approach

can be used with the advantage that the effect of param-

eter uncertainty on the structure and gain of the estimator

is clearly demonstrated, providing useful insights on the

problem. One technique is based on the resolution of two

discrete Riccati equations ([4], [7], [14], and [15]). Another

possibility is the resolution based on one Riccati equation,

see [16] and [17]. In the finite horizon case, unlike the classic

Kalman predictor, the robust optimal predictor at k may not

lead to an optimal state estimation at time k+1, see [1]-[4].

The guaranteed cost prediction problem is to design a

linear filter to ensure an upper bound on the estimation error

variances for all admissible parameter uncertainties. One of

the earliest guaranteed cost filtering design was proposed by

[19] for continuous time-invariant systems with uncertainties

in the state matrix. In [3], it was developed a robust Kalman

design for discrete-time systems subject to time-varying

norm-bounded parameter uncertainties in both the state and

output matrices. A bounded-variance filtered state estimation

of linear continuous and discrete-time systems, with an

unknown norm-bounded parameter matrix, is considered in

[16] for uncertainties allowed in the state dynamics and the

output mapping matrices. Necessary and sufficient conditions

to the design of robust filters over finite and infinite horizon

are given in [14]. Recently, [17] provided a guaranteed cost

robust filter for a model with uncertainties in the state and

output system matrices and in the covariance noises. The

proposed filter, however, have a constraint that both noise

signals in state and output equations must be uncorrelated

and have the same dimension.

In this paper, we intend to enhance the predictor of [17] in

order to allow correlated noise signals with possibly differ-

ent dimensions and uncertain correlation. The enhancement

proposed changes the structure of the uncertainties and adds

one more scaling parameter in the filter design, providing a

less conservative predictor with better performance.

This paper is organized as follows: in section II, we

describe the model and the structure of the uncertainties.

The enhanced predictor is obtained in section III. Numerical

examples are given in section IV. One comparing the perfor-

mance of the proposed predictor with the standard Kalman
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predictor for the system with correlated noises and another

simulation comparing with the robust predictor of [17] for

uncorrelated noises. Conclusions are drawn in section V.

Notation: ℜn represents the n-dimensional Euclidean

space, ℜn×m is the set of real n×m matrices, E {•} denotes

the expectation operator, cov {•} indicates the covariance op-

erator, diag {•} stands for a block-diagonal matrix, Z−1and

ZT are the inverse and the transpose of the matrix Z ,

respectively, Z > 0 means that Z is positive-definite, x̂k+1|k

denotes the estimated vector xk+1 at the time k given the

measurements {y0, y1, ... yk} and Z∗ indicates a matrix Z

that minimizes a cost functional.

II. PROBLEM FORMULATION

Consider the following class of uncertain systems

xk+1 = (Ak + ∆Ak)xk + w̃k, (1)

yk = (Ck + ∆Ck)xk + ṽk, (2)

where xk ∈ ℜn is the state vector, yk ∈ ℜm is the output

vector and w̃k ∈ ℜp and ṽk ∈ ℜq are noise zero mean

signals. The noise signals w̃k and ṽk are allowed to be

correlated with uncertain covariance and correlation. We

suppose that the noise signals can be written as following

w̃k = (Bw,k + ∆Bw,k)wk + (Bv,k + ∆Bv,k) vk, (3)

ṽk = (Dw,k + ∆Dw,k)wk + (Dv,k + ∆Dv,k) vk. (4)

We assume that the initial conditions {x0} and the noises

{wk, vk} are uncorrelated with the statistical properties

E
{[

wT
k vT

k xT
0

]T
}

=
[
0 0 xT

0

]T
, (5)

cov {x0 − x0} = X0, (6)

E
{[

wT
k vT

k

]T [
wT

j vT
j

]}
= diag {Wkδkj , Vkδkj} , (7)

where Wk, Vk and X0 denotes the noises and initial state

covariance matrices and δkj is the Kronecker delta function,

i.e., δkj = 1 if k = j and δkj = 0, otherwise.

Using the definitions (3) and (4), the system (1)-(2) can

be rewritten as

xk+1 = (Ak + ∆Ak)xk + (Bw,k + ∆Bw,k)wk

+ (Bv,k + ∆Bv,k) vk, (8)

yk = (Ck + ∆Ck)xk + (Dw,k + ∆Dw,k) wk

+ (Dv,k + ∆Dv,k) vk. (9)

Although wk and vk are independent, the model (8)-(9)

with direct feedthrough is equivalent to one with only one

noise vector at the state and output equations with explicit

correlation [21]. The predictor proposed in [17] is restricted

to the case where p = q. In this paper this restriction is

relaxed, allowing different dimensions for wk and vk. The

nominal matrices Ak, Bw,k, Bv,k, Ck , Dw,k and Dv,k are

known, time-varying and with appropriate dimensions. The

matrices ∆Ak, ∆Bw,k, ∆Bv,k, ∆Ck, ∆Dw,k and ∆Dv,k

represent the associated uncertainties and have the following

structure[
∆Ak ∆Bw,k ∆Bv,k

∆Ck ∆Dw,k ∆Dv,k

]
=

[
H1,k

H2,k

]
Fk

[
Gx,k Gw,k Gv,k

]
,

with H1,k ∈ ℜn×r, H2,k ∈ ℜm×r, Gx,k ∈ ℜs×n, Gw,k ∈
ℜs×p and Gv,k ∈ ℜs×q are known. This structure allows

us to use p 6= q. The matrix Fk ∈ ℜr×s is unknown, time-

varying and norm-bounded, i.e.,

FT
k Fk ≤ I, ∀k ∈ [0, N ] . (10)

This paper proposes an enhanced design of a finite horizon

robust predictor for state estimation of the uncertain system

described by (8)-(9). The predictor has the following struc-

ture

x̂0|−1 = x0, (11)

x̂k+1|k = Φkx̂k|k−1 + Kk

(
yk − Ckx̂k|k−1

)
. (12)

The predictor is intended to ensure an upper limit in the

variance error estimation. In other words, there is a sequence

of positive-definite matrices P k|k−1 that, for all allowed

uncertainties in k ∈ [0, N ], satisfy

cov
{
xk − x̂k|k−1

}
≤ P k|k−1. (13)

The matrices Φk and Kk are time-varying and can be

determined to minimize the P k|k−1, resulting in a minimal

upper bound to the error variance on the state estimation

predictor.

III. ROBUST PREDICTOR DESIGN

In this section, a solution to the robust prediction problem

over a finite-horizon [0, N ] will be given using the Riccati

equation approach. Theorem 1 presents the robust predictor

with one more scaling parameter than usually found in

literature. The proposed predictor is also a generalization for

correlated noise systems.

Theorem 1: A robust predictor with guaranteed cost for

the error variance on the state estimation of the model subject

to the uncertainties (8)-(9) and to conditions (10)-(7) is given

by the recursive in Table I.

We start the proof considering the system (8)-(9) and

the struture of the predictor in (12). Then, we define an

augmented state as

x̃k :=

[
xk

x̂k|k−1

]
. (14)

As a result, the augmented system with the state x̃k is

given by

x̃k+1 =
(
Ãk + H̃kFkG̃x,k

)
x̃k

+
(
B̃k + H̃kFkGw,k

)
wk

+
(
D̃k + H̃kFkGv,k

)
vk, (15)

where

Ãk :=

[
Ak 0

KkCk Φk − KkCk

]
,

B̃k :=

[
Bw,k

KkDw,k

]
, D̃k :=

[
Bv,k

KkDv,k

]
,

H̃k :=

[
H1,k

KkH2,k

]
, G̃x,k :=

[
Gx,k 0

]
. (16)
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TABLE I

ENHANCED ROBUST PREDICTOR ALGORITHM.

Step 0 (Initial conditions):

x̂0|−1 = x0,

P 0|−1 = X0.

Step 1: Obtain scalar parameters that satisfy

α−1

k
I − Gx,kP k|k−1GT

x,k
> 0,

β−1

k
I − Gw,kWkGT

w,k
> 0,

γ−1

k
I − Gv,kVkGT

v,k
> 0.

Step 2: Calculate the corrections due to the presence of uncertainties

P c,k|k−1 := Pk|k−1 + P k|k−1GT
x,k

×

(
α−1

k
I − Gx,kP k|k−1GT

x,k

)−1
Gx,kP k|k−1,

Ac,k := Ak + (Ak − KkCk) P k|k−1GT
x,k

×

(
α−1

k
I − Gx,kPk|k−1GT

x,k

)−1
Gx,k,

Vc,k := Vk + VkGT
v,k

(
γ−1

k
I − Gv,kVkGT

v,k

)−1
Gv,kVk ,

Wc,k := Wk + WkGT
w,k

(
β−1

k
I − Gw,kWkGT

w,k

)−1
Gw,kWk,

∆1,k :=
(
α−1

k
+ β−1

k
+ γ−1

k

)
H1,kHT

2,k
,

∆2,k :=
(
α−1

k
+ β−1

k
+ γ−1

k

)
H2,kHT

2,k
,

∆3,k :=
(
α−1

k
+ β−1

k
+ γ−1

k

)
H1,kHT

1,k
.

Step 3: Define augmented matrices

Bk :=
[

Bw,k Bv,k

]
,

Dk :=
[

Dw,k Dv,k

]
,

Uc,k :=

[
Wc,k 0

0 Vc,k

]
.

Step 4: Calculate the parameters of the predictor

Φk = Ac,k,

Kk =
(
AkP c,k|k−1CT

k
+ BkUc,kDT

k
+ ∆1,k

)

×

(
CkP c,k|k−1CT

k
+ DkUc,kDT

k
+ ∆2,k

)−1
.

Step 5: Update
{

x̂k+1|k, P k+1|k

}
as

x̂k+1|k = Φkx̂k|k−1 + Kk

(
yk − Ck x̂k|k−1

)
,

P k+1|k = AkP c,k|k−1AT
k

+ BkUc,kBT
k

+ ∆3,k

−

(
AkP c,k|k−1CT

k
+ ∆1,k

)

×

(
CkP c,k|k−1CT

k
+ DkUc,kDT

k
+ ∆2,k

)−1

×

(
AkP c,k|k−1CT

k
+ ∆1,k

)T
.

Consider P̃k|k−1 := E
{
(x̃k − E {x̃k}) (x̃k − E {x̃k})

T
}

and that x̃k, wk and vk are independent zero mean vectors,

such as

E









x̃k

wk

vk







x̃k

wk

vk




T




=




P̃k|k−1 0 0
0 Wk 0
0 0 Vk


 . (17)

The next lemma give us an upper bound for the covariance

matrix of the augmented system (15) and the necessary

conditions to its existence.

Lemma 1: An upper limit for the covariance matrix of the

augmented system (15) is given by

P0|−1 =

[
X0 0
0 0

]
, (18)

Pk+1|k = ÃkPk|k−1Ã
T
k + B̃kWkB̃T

k + D̃kVkD̃T
k

+ ÃkPk|k−1G̃
T
x,k

(
α−1

k I − G̃x,kPk|k−1G̃
T
x,k

)−1

× G̃x,kPk|k−1Ã
T
k + B̃kWkGT

w,k

×
(
β−1

k I − Gw,kWkGT
w,k

)−1
Gw,kWkB̃T

k

+ D̃kVkGT
v,k

(
γ−1

k I − Gv,kVkGT
v,k

)−1
Gv,kVkD̃k

+
(
α−1

k + β−1
k + γ−1

k

)
H̃kH̃T

k , (19)

where α−1
k , β−1

k and γ−1
k satisfy

α−1
k I − G̃x,kPk|k−1G̃

T
x,k > 0, (20)

β−1
k I − Gw,kWkGT

w,k > 0, (21)

γ−1
k I − Gv,kVkGT

v,k > 0. (22)

Proof: Given the initial condition (6) and the definition

of P̃k|k−1, it is straightforward that

P̃0|−1 =

[
X0 0
0 0

]
, (23)

P̃k+1|k =
(
Ãk + H̃kFkG̃x,k

)
P̃k|k−1

(
Ãk + H̃kFkG̃x,k

)T

+
(
B̃k + H̃kFkGw,k

)
Wk

(
B̃k + H̃kFkGw,k

)T

+
(
D̃k + H̃kFkGv,k

)
Vk

(
D̃k + H̃kFkGv,k

)T

. (24)

Consider the following result defined in Lemma 2 of [18].

Given matrices A, H , G and F with compatible dimen-

sions and that exists F satisfying FT F ≤ I . In addition,

consider P a symmetric positive-definite matrix and ǫ > 0 a

positive scalar. If ǫ−1I − GPGT > 0, then

(A + HFG)P (A + HFG)T ≤ APAT

+ APGT
(
ǫ−1I − GPGT

)−1
GPAT + ǫ−1HHT .

Choose scaling parameters α−1
k , β−1

k and γ−1
k satisfying

(20)-(22). Therefore, we have that

P̃k+1|k ≤ ÃkP̃k,|k−1Ã
T
k + ÃkP̃k|k−1G̃

T
x,k

×
(
α−1

k I − G̃x,kP̃k|k−1G̃
T
x,k

)−1

G̃x,kP̃k|k−1Ã
T
k

+ α−1
k H̃kH̃T

k + B̃kWkB̃T
k + B̃kWkGT

w,k

×
(
β−1

k I − Gw,kWkGT
w,k

)−1
Gw,kWkB̃T

k

+ β−1
k H̃kH̃T

k + D̃kVkD̃T
k + D̃kVkGT

v,k

×
(
γ−1

k I − Gv,kVkGT
v,k

)−1
Gv,kVkD̃k

+ γ−1
k H̃kH̃T

k . (25)

If there is a sequence
{
Pk+1|k

}
given by (19) with initial

conditions (18), where α−1
k , β−1

k and γ−1
k satisfying (20)-

(22), then Pk+1|k is an upper bound of P̃k+1|k, such that
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P̃k+1|k ≤ Pk+1|k for all instants k. The result of the lemma

follows applying the Lemma 3.2 of [16]:

For 0 ≤ k ≤ N , suppose X = XT > 0, and sk (X) =
sT

k (X) ∈ ℜn×n, hk (X) = hT
k (X) ∈ ℜn×n. If there

exists Y = Y T > X such that sk (Y ) ≥ sk (X) and

hk (Y ) ≥ hk (X), then the solutions Mk and Nk to the

following difference equations

Mk+1 = sk (Mk) , Nk+1 = hk (Nk) , M0 = N0 > 0

satisfy Mk ≤ Nk.

Consider Wc,k and Vc,k as the corrected variance matrices

for the uncertain system (8)-(9). Replacing the augmented

matrices (16) into (19), the upper bound in (19) can be

partitioned as

Pk+1|k =

[
P11,k+1|k P12,k+1|k

PT
12,k+1|k P22,k+1|k

]
, (26)

where

P11,k+1|k = Ak

(
P11,k|k−1 + P11,k|k−1MkP11,k|k−1

)
AT

k

+ Bw,kWc,kBT
w,k + Bv,kVc,kBT

v,k + ∆3,k, (27)

P12,k+1|k = AkP11,k|k−1C
T
k KT

k

+ AkP11,k,k−1MkP11,k|k−1C
T
k KT

k

+
(
Bw,kWc,kDT

w,k + Bv,kVc,kDT
v,k + ∆1,k

)
KT

k

+ AkM1,k (Φk − KkCk)
T

, (28)

P22,k+1|k = KkCkP k|k−1C
T
k KT

k + ΦkP22,k|k−1Φ
T
k

+ KkCk

(
P12,k|k−1 − P22,k|k−1

)
ΦT

k

+ Φk

(
PT

12,k|k−1 − P22,k|k−1

)
CT

k KT
k

+ ΛkMkΛT
k + KkDw,kWc,kDT

w,kKT
k

+ KkDv,kVc,kDT
v,kKT

k

+
(
α−1

k + β−1
k + γ−1

k

)
KkH2,kHT

2,kKT
k , (29)

with

P k|k−1 := P11,k|k−1 − P12,k|k−1 − PT
12,k|k−1

+ P22,k|k−1,

M1,k := P12,k|k−1 + P11,k|k−1MkP12,k|k−1,

Mk := GT
x,k

(
α−1

k I − Gx,kP11,k|k−1G
T
x,k

)−1
Gx,k,

Λk := ΦkPT
12,k|k−1 + KkCk

(
P11,k|k−1 − PT

12,k|k−1

)
.

Given Pk|k−1 ≥ P̃k|k−1 ≥ 0, ∀k, if we define P k|k−1 as

P k|k−1 :=
[
I −I

]
Pk|k−1

[
I −I

]T
, (30)

thus we have that P k|k−1 is an upper bound of the error

variance on the state estimation.

Using the definitions (26) and (30), the matrix P k+1|k can

be written as

P 0|−1 = X0, (31)

P k+1|k =
(
RkP22,k|k−1 − TkP12,k|k−1

)
RT

k

− ΘkT T
k + ΘkMkΘT

k

+ (Bw,k − KkDw,k)Wc,k (Bw,k − KkDw,k)
T

+ (Bv,k − KkDv,k) Vc,k (Bv,k − KkDv,k)T

+
(
α−1

k + β−1
k + γ−1

k

)

× (H1,k − KkH2,k) (H1,k − KkH2,k)
T

, (32)

where

Θk := RkPT
12,k|k−1 − TkP11,k|k−1, (33)

Rk := Φk − KkCk, (34)

Tk := Ak − KkCk. (35)

We note that (32) is valid for any Φk and Kk. Calculating

the first and second order partial derivatives of (32) with

respect to Φk and Kk and making

∂

∂Φk

P k+1|k = 0, (36)

∂

∂Kk

P k+1|k = 0, (37)

then we find the expressions Φk = Φ∗
k and Kk = K∗

k

that minimize the upper bound error variance on the state

estimation, P k+1|k, as

Φ∗
k = Ak + (Ak − KkCk) (Zk − I) (38)

and

K∗
k =

(
(AkΓk − Φ∗

kΘk)CT
k + Ψ1,k

)

×
(
Ck

(
P k|k−1 + Ξk

)
CT

k + Ψ2,k

)−1
, (39)

where

Zk := M1,kM−1
2,k , (40)

M2,k := P22,k|k−1 + PT
12,k|k−1MkP12,k|k−1, (41)

Ψ1,k := Bw,kWc,kDT
w,k + Bv,kVc,kDT

v,k + ∆1,k, (42)

Ψ2,k := Dw,kWc,kDT
w,k + Dv,kVc,kDT

v,k + ∆2,k, (43)

Γk := P11,k|k−1 + P11,k|k−1MkP11,k|k−1 − M1,k,(44)

Θk := PT
12,k|k−1

(
I + P11,k|k−1

)
− M2,k, (45)

Ξk :=
(
P11,k|k−1 − PT

12,k|k−1

)
Mk

×
(
P11,k|k−1 − P12,k|k−1

)
. (46)

Replacing (38) and (39) in (28), (29) and PT
12,k+1|k, and

after some algebra, it is straightforward that

P12,k+1|k = PT
12,k+1|k = P22,k+1|k

=
(
AkSkCT

k + Ψ1,k

) (
CkSkCT

k + Ψ2,k

)−1

×
(
AkSkCT

k + Ψ1,k

)T
+ AkM1,kM−1

2,kMT
1,kAT

k , (47)

where

Sk := P11,k|k−1 + P11,k|k−1MkP11,k|k−1 − M1,kM−1
2,kMT

1,k.
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Since P12,k+1|k = PT
12,k+1|k = P22,k+1|k , for any sym-

metric Pk|k−1, if we start with a matrix Pn|n−1 satisfying

P12,n|n−1 = PT
12,n|n−1 = P22,n|n−1 for some n ≥ 0, then

we can conclude that P12,k+1|k = PT
12,k+1|k = P22,k+1|k is

valid for any k ≥ n. At this point, we can conclude that αx,k

shall now satisfy

α−1
x,kI − Gx,kP k|k−1G

T
x,k > 0. (48)

Using P12,k+1|k = PT
12,k+1|k = P22,k+1|k and (48), we

can simplify the expressions for Φ∗
k, K∗

k and P k+1|k. Using

this simplification, we can define Ac,k given in Table I:

Ac,k := Φ∗
k. The simplified expression for the predictor gain

is given by

K∗
k =

(
AkP c,k|k−1C

T
k + Ψ1,k

) (
CkP c,k|k−1C

T
k + Ψ2,k

)−1

.

The matrix P c,k|k−1 can be interpreted as a correction of

the variance matrix due to the presence of uncertainties in

the model. The expression for the Riccati equation is

P k+1|k = (Ak − K∗
kCk)P c,k|k−1 (Ak − K∗

kCk)
T

+ (Bw,k − K∗
kDw,k)Wc,k (Bw,k − K∗

kDw,k)
T

+ (Bv,k − K∗
kDv,k) Vc,k (Bv,k − K∗

kDv,k)
T

+
(
α−1

k + β−1
k + γ−1

k

)

× (H1,k − K∗
kH2,k) (H1,k − K∗

kH2,k)
T

. (49)

Replacing K∗
k into (49) we obtain the Riccati equation

given in Table I.

Remark 1: The expression (27) gives the covariance ma-

trix recursion of the state vector.

Remark 2: Considering the model (8)-(9) without uncer-

tainties, the parameters of the predictor and the Riccati

equation present at Table I are the same as those presented

in [21].

IV. NUMERICAL EXAMPLES

In this section, we provide two numerical examples. In the

first simulation, the system presents correlated noises in the

dymanic and output equation. The simulation compares the

results using the enhanced predictor and the usual Kalman

predictor for systems with correlated noise described in

[21]. The other simulation compares the performance of

the enhanced design with another robust predictor proposed

recently in [17] using a system with uncorrelated noises.

A. Correlated Noise Simulation

Consider the following model with correlated noise and

subject to uncertainties in every matrices

xk+1 =

[
0.01δ1,k −0.5 + 0.003δ2,k

1 + δ3,k 1 + 0.3δ4,k

]
xk

+

[
−6 − 0.02δ5,k

1 − 2δ6,k

]
wk

+

[
−2 − 0.01δ7,k −1 − 0.03δ9,k

1 − 1δ8,k −0.1 − 3δ10,k

]
vk, (50)

yk =
[
−100 − 0.1δ11,k 10 − 0.03δ12,k

]

+ (1 + 0.2δ13,k)wk

+
[
0.5 + 0.1δ14,k 0.2 + 0.3δ15,k

]
vk, (51)

where δn,k varies randomly at each step and |δn,k| < 1, for

n = 1, ..., 15. We also use Wk = 1 and Vk = I with initial

conditions x0 = 0 and X0 = I . Moreover,

H1,k =

[
0.1
10

]
, H2,k = −1, Gx,k =

[
0.1 0.03

]
,

Gw,k = 2, Gv,k =
[
−0.1 −0.3

]
. (52)

The parameters α−1
k , β−1

k and γ−1
k are calculated as

α−1
k = σmax

{
Gx,kP k|k−1G

T
x,k

}
+ ǫx, (53)

β−1
k = σmax

{
Gw,kWkGT

w,k

}
+ ǫw, (54)

γ−1
k = σmax

{
Gv,kVkGT

v,k

}
+ ǫv, (55)

where σmax {•} indicates the maximum singular value of a

matrix. Numerical simulations show that, in general, smaller

values of ǫx, ǫw and ǫv result in lower upper bounds. How-

ever, too small values can lead to ill conditioned inverses. In

this example, we have chosen ǫx = ǫw = ǫv = 0.1. Also, the

upper bounds are sensitive to the values of the uncertainty

model matrices H and G. If we consider all parameters

constant but use cH1,k and 1
c
Gx,k (or likewise, 1

c
H2,k,

cGw,k and cGv,k), then in general, lower bounds are obtained

with smaller values of the adjustment constant c. The state

estimation errors, over N = 500 finite horizon experiments,

of the proposed predictor and the classic predictor using the

nominal model are shown at Table II.

TABLE II

APPROXIMATED ACTUAL ERROR VARIANCES.

Predictors State 1 State 2

Enhanced Predictor 19.13dB 22.68dB
Kalman 19.56dB 24.21dB

The actual error variances were approximated using the

ensemble-average, used in [6] and [22]. The ensemble-

average is defined as

var {ei,k} ≈
1

N

N∑

j=1

(e
(j)
i,k)2, (56)

where e
(j)
i,k is the i-th component of the estimation error

vector e
(j)
k at the experiment j defined as

e
(j)
k = x

(j)
k − x̂

(j)
k|k−1. (57)

The performance of the proposed predictor in this paper

is better than the usual Kalman predictor in the presence of

modeling errors. The actual estimation error variances for

the states of the proposed predictor are always below their

upper bounds, i.e., 21.60dB and 27.20dB, respectively.

B. Uncorrelated Noise Simulation

The next simulation compares the performance of the

enhanced predictor with another robust predictor recently

proposed in [17]. Since the predictor in [17] is used for

uncorrelated systems and is restricted to dim {wk} =
dim {vk}, we consider the following uncertain model

xk+1 =

[
0 −0.5
1 1 + 0.3δ1,k

]
+

[
−6

1 + 0.01δ2,k

]
wk, (58)

yk =
[
−1 1 + 1.5δ3,k

]
xk + 100δ4,kvk, (59)
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Fig. 1. Actual error variances for uncorrelated noise simulation.

where δn,k varies randomly at each step and |δn,k| < 1, for

n = 1, ..., 4. We also use Wk = 0.01 and Vk = 1 with initial

conditions x0 = 0 and X0 = I . The matrices associated to

the uncertainties are given by

H1,k =

[
0
10

]
, H2,k = 50, Gx,k =

[
0 0.03

]
,

Gw,k = 0.001, Gv,k = 2. (60)

Fig. 1 presents the actual error variances for the two states

using the proposed predictor and the predictor developed in

[17]. Fig. 1 also shows that the actual error variance of the

enhanced predictor is lower for both states. The enhanced

predictor provided a less conservative design, mainly due to

the presence of an additional scalar parameter in the predictor

design. Tables III and IV summarize these results.

TABLE III

PREDICTORS PERFOMANCE FOR STATE 1.

Predictors Actual Error Variance Upper Bound

Enhanced Predictor 17.02dB 23.40dB
Predictors in [17] 22.76dB 30.57dB

TABLE IV

PREDICTORS PERFOMANCE FOR STATE 2.

Predictors Actual Error Variance Upper Bound

Enhanced Predictor 18.56dB 27.95dB
Predictor in [17] 24.04dB 34.01dB

V. CONCLUSIONS

This paper has developed a robust Kalman predictor for

finite horizon state-space estimation with correlated noises

and subject to norm-bounded and time-varying uncertain-

ties in every system matrices. The paper provides an en-

hancement over a recent guaranteed cost predictor by using

an additional scaling parameter. The proposed predictor is

suited for systems with unknown correlated dynamical and

measurement noises, which is a very common situation in

practice. Numerical simulations confirm the performance

enhancement.
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