
Locally Optimal Decomposition for Autonomous Obstacle Avoidance

with the Tunnel-MILP Algorithm

Michael P. Vitus

Stanford University

Stanford, California, 94305

Steven L. Waslander

University of Waterloo

Waterloo, ON, Canada, N2L 3G1

Claire J. Tomlin

University of California

Berkeley, California, 94720

Abstract— The Tunnel-MILP algorithm is a three stage path
planning method for 2-D environments that relies on the iden-
tification of a sequence of convex polygons to form an obstacle
free tunnel through which to plan a dynamically feasible path.
This work investigates two aspects of the algorithm. First, a
greedy cut method is proposed for improved decomposition
of the environment, resulting in fewer regions than existing
algorithms. Second, the effect of the decomposition on the
resulting solution is investigated, and conditions are presented
to demonstrate that the resulting tunnel cannot be improved to
yield a better solution. This ensures that the tunnel provided
does not adversely affect the resulting dynamically feasible
trajectory, and guarantees local optimality of the solution.

I. INTRODUCTION

With the increasing demand for autonomous vehicles,

there is a pressing need for fast algorithms to plan trajec-

tories through complex environments. Several examples of

projects that require this technology are: search and rescue,

reconnaissance, surveillance, and disaster response. These

projects have motivated the Stanford Testbed of Autonomous

Rotorcraft for Multi-Agent Control (STARMAC), a system

used to test novel algorithms for multi-vehicle coordination

and autonomous operation [1].

Obstacle avoidance is an essential technology for au-

tonomous operation and one proposed solution to this prob-

lem applies mixed integer linear programming (MILP) ([2],

[3]). It is well known that MILP is NP-hard in the number

of binary variables required in the problem formulation [4],

and so computational requirements grow exponentially as

the number of binary variables needed to model the prob-

lem increases. Randomized methods, such as probabilistic

roadmaps [5], have also been proposed to solve the obstacle

avoidance problem, particularly for instances with a very

large number of constraints. However, the resulting paths are

generally not optimized in distance or time, and can result

in winding paths if the vehicle dynamics are incorporated.

To address these limitations, the Tunnel-MILP algorithm

has been proposed. The algorithm constrains the MILP

formulation by restricting the area in which the vehicle is

allowed to travel, which significantly reduces the number

of binary variables needed [6]. Using this restriction, a

significant performance increase is realized over the standard

MILP formulation. However, only a locally optimal solution

can be guaranteed with the Tunnel-MILP algorithm.

Michael P. Vitus is a PhD. Candidate, Aeronautics and Astronautics.
email: vitus@stanford.edu

Steven L. Waslander is an Assistant Professor in the Department of
Mechanical and Mechatronics Engineering at the University of Waterloo.
email: stevenw@uwaterloo.ca

Claire J. Tomlin is a Professor in Electrical Engineering and Computer
Sciences. email: ⁀tomlin@eecs.berkeley.edu

The Tunnel-MILP algorithm is composed of the following

three steps. First, a desirable preliminary path is planned

through the environment ignoring the vehicle’s dynamics.

This pre-path can be computed by various methods; for

example, a visibility graph approach [7], or gradient descent

on a fast-marching potential [8]. Second, an obstacle free

tunnel is formed around the pre-path as a sequence of

convex polygons through which the vehicle must travel. Two

examples of methods that obtain this convex decomposition

are: trapezoidal decomposition [9] or constrained Delaunay

triangulation [10]. Care must be taken in forming the de-

composition as to not impose unnecessary restrictions on

the final solution. Finally, a dynamically feasible trajectory is

generated using a MILP formulation that restricts the vehicle

to stay within the pre-defined tunnel.

This work presents two main contributions. First, a novel

decomposition method is proposed that on average results in

fewer polygons than trapezoidal decomposition or Delaunay

triangulation. The proposed method is a greedy cut algorithm

composed of three main steps: the decomposition is first

restricted to the region surrounding the pre-path, cuts are then

selected which guarantee division of the region into convex

polygons, and the resulting polygons are then combined

to form a tunnel around the pre-path. Second, conditions

are presented under which the result of the Tunnel-MILP

solution is shown to be locally optimal. Since the decompo-

sition is formed prior to performing the optimization, there is

potential for the resulting tunnel to affect the overall solution.

The analysis is thus vital to ensure that the generated tunnel

poses no unnecessary restrictions on the final solution, there-

fore guaranteeing a locally optimal solution for the chosen

route through the obstacles.

The paper proceeds as follows. Section II presents the

standard obstacle avoidance problem formulation. Then, each

of the three stages of the Tunnel-MILP algorithm are de-

scribed in detail in Section III. The greedy cut algorithm, a

novel decomposition method, is presented in Section IV. In

Section V, optimality conditions for the Tunnel-MILP solu-

tion are provided, and the paper concludes with directions

of future work.

II. PROBLEM FORMULATION

A. Environment

Consider a vehicle navigating through an environment

bounded by a convex polygon, E ⊆ R
2. An edge e ⊂ R

2 is

defined as a line segment with two end points, e1, e2 ∈ R
2,

that are not coincident. The boundary of an edge is δe =
{e1, e2} and its interior is int(e) = e \ δe. Let NE be the

number of edges of the environment polygon, FE ∈ R
NE×2

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA17.1

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 540

be the outward pointing unit normals to each edge, and

GE ∈ R
NE

be the offset in the direction of the unit normals.

Then the environment E = {x ∈ R
2|FEx−GE ≤ 0} ⊆ R

2

is defined by the intersection of halfspace constraints.

Similarly, obstacles can be defined that are entirely con-

tained inside the environment, and must contain an interior

point. Let NO be the number of obstacles, and for each

obstacle Oi ∈ O, let NO
i be the number of edges. Each

obstacle can then be defined analogously to the environment

with components FO
i ∈ R

NO
i ×2 and GO

i ∈ R
NO

i .

Finally, a planning space, P , for the vehicle can be defined

as a polygon with holes. A polygon with holes is a connected,

compact set in the plane whose boundary consists of an

exterior polygonal contour and of finitely many interior

polygonal contours, which are pairwise disjoint, noninclusive

and nondegenerate. The planning space is then defined by a

polygon with holes formed by removing the obstacles from

the environment, P = E \

{

⋃

i=1...NO

Oi

}

. Let δP define the

boundary of the set P . Note that the restriction to convex

polygons for the environment and obstacles is included to

ease the notation, although it is not necessary for the Tunnel-

MILP algorithm or for the results of this work.

B. Vehicle Dynamics

The vehicle dynamics considered are motivated by the

STARMAC platform [1], which can be approximated by

standard linear point mass dynamics with a fixed discrete

timestep of δt,
[

x(t + 1)
v(t + 1)

]

= A

[

x(t)
v(t)

]

+ Bu(t) (1)

where x(t) ∈ R
2 is the position, v(t) ∈ R

2 is the velocity,

u(t) ∈ R
2 is the acceleration control. The position of the

vehicle is constrained to lie in the planning space at each

timestep, t ∈ {1, . . . , T}, where T is the maximum number

of timesteps allowed for the vehicle to reach the goal. The

velocity and acceleration control inputs are also bounded.

These constraints are summarized as,

x(t) ∈ P , ∀ t ∈ {1, . . . , T}
v ≤ vi(t) ≤ v̄ , i ∈ {1, 2}, ∀ t ∈ {1, . . . , T}
u ≤ ui(t) ≤ ū , i ∈ {1, 2}, ∀ t ∈ {1, . . . , T}.

(2)

C. General Problem

The general obstacle avoidance problem involves gener-

ating a trajectory for a vehicle operating under specified

dynamics through a known obstacle-filled environment. The

vehicle is assumed to start at some initial position and

velocity and to have a known final goal, be it a final position

or a final position and velocity, at unknown final time tf .

The objective function, which trades off minimum time and

minimum control input, is as follows,

J(tf , u) = γtf + (1 − γ)||u||1 (3)

where J : Z × R
2T → R, and γ ∈ [0, 1]. The general

formulation of the path planning problem is,

General Program

minimize J(tf , u)
subject to (1), (2)

(P2.1)

III. TUNNEL-MILP ALGORITHM

In order to remain outside convex obstacles, standard

MILP formulations require the use of one binary variable

per obstacle edge at every timestep. The main motivation

behind the Tunnel-MILP algorithm is to reduce the number

of binary variables needed by changing the constraints to

require the state to remain inside an unobstructed set of

convex polygons. Since the restriction of remaining inside

a single convex polygon can be defined by a conjunction

of linear constraints, the only binary variable needed is to

indicate whether or not the vehicle is in the region. This

formulation, therefore, requires only one binary variable

per region for each timestep, resulting in reduced compu-

tational complexity compared with standard formulations.

The Tunnel-MILP algorithm is composed of three steps as

presented in Algorithm 1.

Algorithm 1 Tunnel-MILP Algorithm

1: Determine a pre-path through the environment ignoring

the dynamics of the vehicle;

2: Decompose the environment into convex polygons

around the pre-path;

3: Solve the dynamically feasible, optimal control problem

through the sequence of convex polygons.

The first step of the Tunnel-MILP algorithm is to plan a

pre-path through the planning space ignoring the vehicle’s

dynamics. There are various algorithms that can plan a not

necessarily dynamically feasible path through the environ-

ment such as visibility graphs [7] and fast marching [8]. In

both cases, the computation time is negligible compared with

the final step of the Tunnel-MILP algorithm.

The second step is to decompose the environment into

convex polygons and determine the sequence of polygons

that entirely contains the pre-path, denoted as the tunnel τ =
{R1, . . . , Rτ}. The regions Ri , i ∈ {1, . . . , NR} denote the

ordered sequence of polygons that comprise the tunnel, and

each pair of consecutive regions must share a nondegenerate

edge, int(Ri ∩ Ri+1) 6= ∅. Let FR
i and GR

i define the edge

constraints for each polygon, analogously to the region and

environment constraints. There are various algorithms which

accomplish this decomposition, two of which are trapezoidal

decomposition and constrained Delaunay triangulation. An

example of each of these decomposition methods is shown

in Figure 1. Trapezoidal decomposition only uses cuts in

one direction, typically vertical, to partition the environment,

which usually leads to tall and narrow polygons to be

included in the tunnel. Delaunay triangulation divides the

environment into triangles, which are then greedily combined

into convex polygons to form the tunnel. Section IV presents

an alternative to these tunnel generation approaches that

consistently returns a smaller number of polygons.

The final step is to solve the MILP optimization problem.

The problem is formulated such that the vehicle is required

to stay inside one region of the tunnel at each timestep, t,
as follows,

∨

i∈{1,...,NR}

(FR
i x(t) − GR

i ≤ 0) , ∀t ∈ {1, . . . , T} (4)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.1

541

1 2

3 1

2
3

4
5

6

(a) (b)

Fig. 1. An example of the tunnels generated from constrained Delaunay and
trapezoidal decomposition. The obstacles (dark red), the pre-path (dashed),
the sequence of polygons that form the tunnel (numbered) are visible. (a)
Constrained Delaunay decomposition. (b) Trapezoidal decomposition.

0 5 10
0

2

4

6

8

10

Standard MILP

Tunnel MILP

0 5 10
0

2

4

6

8

10

6

Standard MILP

Tunnel MILP

(a) (b)

Fig. 2. Comparison between the path generated by the Tunnel-MILP
algorithm and the globally optimal solution. The obstacles (dark red), tunnel
regions are visible, along with the globally optimal trajectory (red x) and
the Tunnel-MILP trajectory (blue-dotted).

Each OR-constraint is incorporated into the MILP formu-

lation by introducing a binary variable [6]. Finally, to form

the overall Tunnel-MILP optimization problem, Eqn. 4 needs

to be added to the constraints of the general optimization

problem P2.1.

Figure 2 compares the optimal path and the path generated

by the Tunnel-MILP algorithm for three and five obstacle

cases. In these examples, trapezoidal decomposition is used

to form the tunnel. In Figure 2(a), the Tunnel-MILP’s so-

lution differs from the globally optimal solution because of

the restriction imposed by the tunnel around the pre-path.

In simulation results with various numbers of obstacles1, the

Tunnel-MILP algorithm often identified the globally optimal

solution, and in the cases where it differed, it only increased

the optimal time and input cost by an average of 3.3% and

3.8%, respectively. Computational cost savings of 59% were

observed over a standard MILP formulation which yields the

globally optimal solution upon completion.

IV. TUNNEL GENERATION

The task of generating a tunnel through which to plan a

dynamically feasible path can be seen as a decomposition of

a polygon with holes into nonoverlapping, convex polygons

in a way that results in the minimum number of regions

along the pre-path. Similar problems have been posed in the

field of computational geometry, and are often referred to

as Optimal Convex Decomposition (OCD) problems [11].

Unfortunately, the decomposition of a general nonconvex

polygon with non-rectilinear polygonal holes has been shown

to be NP-hard [12]. Therefore, a greedy cut algorithm is

1All results were obtained from 100 random instances for each 3-6, 8, 9,
and 20 obstacles.

developed which seeks to minimize the number of regions

required to enclose the pre-path.

The following definitions are needed. A vertex µ ∈ R
2

is defined by at least two edges which share a common end

point. A nonconvex vertex is defined as one for which two of

its edges form an interior angle greater that π without being

bisected by another edge. A cut c is defined as a directed

edge with start and end vertices, µ
c

and µ̄c, that emanates

from an existing vertex, µ
c
, and ends at the first vertex, edge

or preceding cut it encounters. If the end point of a cut is not

coincident with an existing vertex, a new vertex is defined

and the edge or cut that contains it is divided in two.

The pre-path defined by the first step of the Tunnel-MILP

algorithm is defined as an ordered sequence of directed

edges, ρ = {e1, . . . , eNp
}, where Np is the number of edges,

and the end point of the edge ei must be coincident with the

start point of the edge ei+1. Let dmax =
∑

j=1...Np

||e2
j − e1

j ||2

be the length of the pre-path. Then dρ(x) : R
2 → [0, dmax]

is defined as, dρ(x) =
∑

j=1...i−1

||e2
j − e1

j ||2 + ||x − e1
i ||2 for

x ∈ ei. Since dρ is a bijection, its inverse exists.

Definition 1: The tunnel τ encloses the pre-path ρ if

∀x1, x2 ∈ ρ given that x1 ∈ Ri, x2 ∈ Rj , where Ri, Rj ⊂
τ , and dρ(x2) > dρ(x1) such that d−1

ρ (0) ∈ R1 and j ≥ i.
With this definition, it is possible for Ri = Rj for j 6= i.

Previous work has shown that to decompose a polygon

with holes into convex regions, it is sufficient to apply a

single cut emanating from each nonconvex vertex in such a

way that each of the two resulting interior angles is less than

π [13]. The set of all cuts that eliminate a nonconvex vertex

is denoted the cone of bisection and is depicted in Figure 3.

It should be noted that each cut can eliminate at most two

nonconvex vertices at a time.

A. Greedy Cut Algorithm

The greedy cut algorithm can now be defined in three main

steps. First, the region of interest is restricted to contain only

the area surrounding the pre-path. This step is optional, and

is only used to reduce the problem complexity. Next, the

set of nonconvex vertices is identified and cuts are selected

to eliminate them while avoiding those that intersect the

pre-path. Finally, once a sufficient number of cuts has been

applied, the polygons that contain the pre-path are combined

to form the tunnel in the MILP problem formulation.
1) Restriction: Once a pre-path is identified, a large

portion of the planning space can often be eliminated. Having

chosen a specific route through the planning space, much of

the space that lies a significant distance from the pre-path

is no longer relevant. This step of the algorithm generates a

nonconvex polygon that encloses all area within a distance

l ∈ R+ of the pre-path that is also inside the planning domain

and outside of any obstacles. The results of this step of the

algorithm are visible in Figure 3. The resulting nonconvex

polygon, which may contain holes, is denoted the feasible

region RF .
2) Cut Selection: Two types of cuts are considered. A

cut that eliminates two nonconvex vertices simultaneously is

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.1

542

Fig. 3. The feasible region (white) for a specific example with four
obstacles (dark red) and a pre-path (dashed blue). A matching cut (dash-
dotted line), two extreme cuts (light solid green) and the cone of bisection
(light green) are also displayed.

referred to as a matching cut, and can exist if and only if

the edge connecting both vertices lies within the cone of

bisection for each vertex. The aim of this set of cuts is

to reduce the total number of cuts applied to the feasible

domain, and thereby reducing the total number of convex

polygons. The second type of cut considered is denoted

an extreme cut, and is defined as either boundary of the

cone of bisection. With this set of cuts, it is possible to

continue adding cuts until no nonconvex vertices remain, and

thereby complete the decomposition of the feasible region

into convex polygons.

In determining which cuts to select for each non-convex

vertex, Lemma 1 provides useful insight. Let Bǫ
x denote the

ball of radius ǫ about a point x.

Definition 2 (Edge Crossing): Let e be an edge for

which Aex = be,∀x ∈ e and let p be a path. Then, y ∈
int(e) is an edge crossing point of p if ∀ ǫ > 0 ,∃ y′, y′′ ∈
Bǫ

y ∩ p such that Aey
′ − be < 0 and Aey

′′ − be > 0.

Lemma 1: Given a convex decomposition of the feasible

region, RF , the number of convex regions that contain the

pre-path is bounded below by the number of edges that

contain an edge crossing point of the pre-path ρ plus one.

Proof: Let τ be the tunnel that contains the pre-path

ρ, and let y ∈ ρ be an edge crossing point on the edge e.

Since y is an interior point of e ⊂ RF , there exists an ǫ such

that Bǫ
y ⊂ RF . By the definition of an edge crossing point,

∃ y′, y′′ ∈ Bǫ
y∩ρ such that Aey

′−be < 0, and Aey
′′−be > 0.

Both y′ and y′′ are in RF , and therefore a region Ri exists

for which y′ ∈ Ri. By compactness of the region Ri, the

edge must be on the boundary of Ri, that is e ⊂ δRi. But

y′′ /∈ Ri because Aey
′′ − be > 0. This implies y′′ ∈ Rj , and

the region Rj must be included in the tunnel enclosing ρ.

Since the starting point of ρ must lie in a convex region of

RF and each subsequent edge crossing along the path must

add a region to τ , the number of regions needed to enclose

the path ρ is bounded below by the number of edge crossings

plus one.

As demonstrated by Lemma 1, each cut that contains

an edge crossing of the pre-path adds an additional region

to the tunnel containing it. Therefore, avoiding cuts that

intersect the pre-path ensures the greedy algorithm does not

unnecessarily increase the total number of polygons in the

tunnel, thereby increasing the size of the MILP formulation.

Although this Lemma does not cover all cases of cuts that

intersect the path, the remaining cases are omitted for brevity.

The cuts are applied in the following greedy manner. The

set of nonconvex vertices are ordered based on distance to

the pre-path, breaking ties in order from start to finish along

the pre-path. All matching cuts are identified at each vertex,

and any that do not intersect the pre-path are applied. A

random selection is made if more than one matching cut is

found. A cut c is applied by including it in the set of edges

that defines the feasible region, RF , so that it too may stop

the propagation of subsequent cuts. If a matching cut does

intersect the pre-path, then the extreme cuts for both vertices

are tested to see if one can be found for each vertex that

does not intersect the pre-path. If not, the matching cut is

applied. Once the matching cuts have been applied, extreme

cuts are applied at each remaining nonconvex vertex in the

same vertex order, selecting cuts that do not cross the pre-

path whenever available.
3) Polygon Identification: Finally, the sequence of convex

polygons that completely contains the pre-path are identified.

This is achieved by identifying all convex polygons in the

decomposition, and searching along the pre-path to identify

all polygons through which the pre-path passes.

B. Results Comparison

(a) (b) (c)

Fig. 4. The sequence of tunnels generated by (a) trapezoidal, (b)
constrained Delaunay and (c) greedy-cut decomposition. In total, 10 regions
are created by trapezoidal decomposition, 6 are created by constrained
Delaunay decomposition, and 4 are created by the greedy-cut method.

A comparison of the greedy cut algorithm with two alter-

native methods of tunnel generation is presented in Figure 4.

For the four obstacle example chosen, it is clear that the

greedy cut algorithm significantly reduces the number of

polygons that comprise the tunnel, from 10 for trapezoidal

decomposition and 6 for constrained Delaunay triangulation

to 4. It is interesting to note that many of the cuts generated

by the other two methods do not fall in the cone of bisection

for the corresponding nonconvex vertex, resulting in a larger

number of cuts needed to ensure convexity of the polygonal

decomposition. Table I presents the average number of poly-

gons required to enclose the pre-path for 50 test cases with

four and eight obstacles, using the greedy cut, constrained

Delaunay and trapezoidal decompositions. The greedy cut

algorithm demonstrates a 31% and 58% improvement over

constrained Delaunay and trapezoidal methods for four ob-

stacle environments. For eight obstacle environments, the

improvements were 20% and 62%, respectively. In each case,

the number of binary decision variables in the final stage of

the Tunnel-MILP algorithm were reduced proportionately.

V. OPTIMALITY OF TUNNEL-MILP SOLUTION

The Tunnel-MILP algorithm can at best only provide a

locally optimal solution, which is dependent on the arbitrary

constraints imposed by the decomposition of the space

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.1

543

TABLE I

AVERAGE NUMBER OF TUNNEL REGIONS FOR THE GREEDY CUT,

CONSTRAINED DELAUNAY AND TRAPEZOIDAL DECOMPOSITIONS.

4 Obstacles 8 Obstacles

Greedy Cut 4.4 6.0
Delaunay 6.3 7.5

Trapezoidal 10.5 15.9

1

2
3

1

2
3

Fixed Edge

Shared Edge

Free Edge

Fixed Edge

Shared Edge

Free Edge

(a) (b)

Fig. 5. a) Different decomposition for the same environment which leads
to two different locally optimal paths. b) Classification of three different
edge types.

around the pre-path. Figure 5(a) shows an example of two

different decompositions, composed of the polygons (1, 3) or

(1, 2, 3), which yield two different solutions. Therefore, it is

important to understand the impact of the tunnel constraints

on the optimality of the solution.

In the following section, conditions are provided that

ensure the local optimality of the solution for any decomposi-

tion around the pre-path. In other words, the solution cannot

be improved by changing the arbitrary constraints imposed

by the decomposition. First, the underlying subproblem

for the Tunnel-MILP optimization is defined, and convex

sensitivity analysis is presented. Next a formal definition of

the three different edge constraints (fixed, shared and free),

shown in Figure 5(b), are defined. Then, it will be shown that

only the active, free edge constraints can decrease the value

of the objective function. Therefore, if there are no active,

free edge constraints, then the trajectory cannot be improved

by modifying the tunnel.

A. Sub-Problem

If all of the decision variables are assumed to be known,

i.e. which region the vehicle will be in at each time step

and the optimal final time, then the problem simplifies to a

convex optimization problem. It will also be assumed that

the subproblem is feasible since the decision variables are

known. Let F̃R
t and G̃R

t be the region constraints for the

polygon that the vehicle is in at timestep t. Under these

assumptions, the Tunnel-MILP Program simplifies to

Convex Subproblem

minimize ||u||1
subject to (1), (2)

F̃R
t x(t) − G̃R

t ≤ 0 ∀t ∈ {1, . . . , tf}

(P5.1)

The edges of a region within the polygonal tunnel shall be

denoted eij , and the region that the vehicle is in at timestep

t is denoted Rt.

B. Sensitivity Analysis

Sensitivity analysis is useful for determining which con-

straints, if perturbed, will impact the value of the objective

function. In order to use sensitivity analysis, strong duality

needs to be shown for the convex subproblem (P5.1). Since

the subproblem is feasible and can be transformed into a

linear program, it can be shown by using the weaker form

of Slater’s condition that strong duality holds [14].

To apply sensitivity analysis, the polygon inequality con-

straints will be perturbed, F̃R
t x(t)− G̃R

t ≤ wt, and the opti-

mal value of the perturbed objective function is represented

by J̃∗(w). Assuming the dual optimum is feasible and λ∗ is

optimal for the dual of the unperturbed problem, then for all

w there exists a bound on the perturbed objective function:

J̃∗(w) ≥ J̃∗(0) −
T

∑

t=0

λ∗T
t wt (5)

By definition, an inequality constraint is considered active

if it holds with equality and inactive otherwise. Note that

Lagrange multipliers are non-negative and are equal to zero

for inactive constraints.

C. Constraint Classification

The perturbations, wt, are of the edges of the tunnel

regions. There are three different types of edges: fixed, shared

and free. An example of each type of edge is shown in

Figure 5(b). All edges of the polygons that compose the

tunnel can be classified as one of the three edge types.

Definition 3 (Fixed Edge): The edge, eij , is a fixed edge

of a tunnel polygon if it coincides with an obstacle edge or

a boundary edge for its entire length. That is, eij ∈ δP .

Definition 4 (Shared Edge): The edge, eij , is a shared

edge of a tunnel polygon if it coincides with another tunnel

polygon edge for its entire length. That is for the edge, ∃k ∈
{1, . . . , NR}, m ∈ {1, . . . , NR

k } where k 6= i such that:

eij = ekm.

Definition 5 (Free Edge): The edge, eij , is a free edge

of a tunnel polygon if it does not coincide with an obstacle

or boundary edge and is not a subset of any other region.

That is, eij 6∈ (δP
⋃

k 6=i, k∈{1,...,NR} δRk).

D. Local Optimality of Tunnel Solution

The following four lemmas will determine which con-

straints can decrease the value of the objective function.

Lemma 2: An inactive edge, etj , cannot be perturbed

in a direction that will decrease the value of the objective

function, J̃∗(w) ≥ J̃∗(0).
Proof: Assume without loss of generality that all other

edges are not perturbed. By definition, an inactive edge’s

Lagrange multiplier is zero, λ∗
tj = 0. From Equation (5),

J̃∗(w) ≥ J̃∗(0)−λ∗
tjwtj ≥ J̃∗(0). Therefore, a perturbation

of an inactive region constraint may increase the value of

the objective function, but never decrease it.

Definition 6 (Feasible Perturbation): Let C be the com-

plement of the planning space defined by C = R
2 \P , R be

a polygon defined by R = {x ∈ R
2|FR

i x−GR
i ≤ 0} and R̃

be the corresponding polygon after the perturbation, wi, is

applied be defined by R̃ = {x ∈ R
2|FR

i x − GR
i ≤ wi}. A

feasible perturbation, wi, is one for which, R̃ ∩ C = ∅.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.1

544

Lemma 3: For every active, fixed edge, etj , no feasible

perturbation, wtj , exists that decreases the value of the

objective function, J̃∗(w) ≥ J̃∗(0).
Proof: Assume without loss of generality that only the

active, fixed edge, etj is perturbed. From Equation (5), a

bound on the optimal value of the objective function for

this perturbation is: J̃∗(w) ≥ J̃∗(0) − λ∗
tjwtj . The outward

pointing normal of the edge, F̃R
tj , points into the restricted

area, C. Therefore, the only feasible perturbation for the edge

is wtj < 0. Since λ∗
tj ≥ 0, it follows that, J̃∗(w) ≥ J̃∗(0).

Therefore, a feasible perturbation of a fixed edge will never

decrease the value of the objective function.

Lemma 4: Adding a shared edge, eij , to the tunnel does

not impact the value of the objective function.

Proof: Let the feasible region for the location of the

vehicle be defined as, R̄ =
⋃

i=1...NR Ri. Consider the

Tunnel-MILP optimization problem, in which the vehicle is

restricted to be in the tunnel R̄, ∀ t ∈ {1, . . . , T}. Let x∗(t)
be the optimal position of the vehicle at time t, and let the

optimal value of the objective function be J∗.

Now consider a modification of the problem in which

at timestep t1 the vehicle is restricted to be on a shared

edge, eij . Assume that x∗(t1) ∈ eij . Since the feasible

region has been restricted in the modified problem, J∗ ≤ Ĵ∗

where Ĵ∗ is the optimal value of the objective function for

the modified problem. However, x∗ is still feasible in the

modified problem, consequently: J∗ = Ĵ∗. Therefore, adding

shared edges to the tunnel, R̄, does not affect the value of

the objective function even if they are active.

Lemma 5: An active, free edge, etj , can be perturbed

in a direction that may decrease the value of the objective

function, J̃∗(w) ≥ J̃∗(0) − ∆ where ∆ ≥ 0.

Proof: Assume without loss of generality that only the

active, free edge, etj is perturbed. The feasible perturbations

for the edge are: wtj > 0 and wtj < 0. From Equation (5),

a bound on the optimal value of the objective function for

this perturbation is: J̃∗(w) ≥ J̃∗(0) − λ∗
tjwtj . For wtj > 0

and since λ∗
tj ≥ 0 by definition, λ∗

tjwtj ≥ 0. Therefore,

there exists a perturbation of an active, free edge that may

decrease the value of the objective function.

An intuitive explanation of the result from Lemma 5 is that

a perturbation of wtj > 0 increases the size of the polygon

region, which provides more space for the vehicle to find a

better path to the goal.

Theorem 1: If there are no active free edge constraints,

then there are no perturbations that exist such that J̃∗(w) <
J̃∗(0). Hence, the locally optimal solution for any decompo-

sition around the pre-path has been achieved.

Proof: From Lemmas 2, 3, 4 and 5, it was shown that

only the set of active, free edges can affect the solution.

Therefore, if there are no active, free edge constraints, then

the solution cannot be improved to reduce the value of the

objective function, that is, J̃∗(w) ≥ J̃∗(0).
Corollary 1: If the globally optimal path is through the

polygon decomposition around the pre-path, then the solu-

tion obtained from the Tunnel-MILP algorithm will be the

globally optimal solution.

Using the optimality conditions derived, an algorithm can

be devised which is guaranteed to produce the locally optimal

solution for all decompositions around the pre-path for any

initial decomposition.

VI. CONCLUSIONS

The Tunnel-MILP algorithm, which approximates the ob-

stacle avoidance problem, is dependent on the decomposition

of the space around the pre-path. A suboptimal decomposi-

tion method was proposed, and optimality conditions were

developed to show that only the active, free edge constraints

can decrease the value of the objective function.

An area of interest for future work is to determine

a maximum bound on the minimum number of convex

polygons needed to decompose the space around the pre-

path, which can be used to formulate the maximum number

of binary variables needed. Finally, for applications such

as those envisaged for the STARMAC testbed, extension

to three dimensions is vital, and will require alternative

methodologies for pre-path generation algorithm as well as

for the convex decomposition of the planning space.

ACKNOWLEDGEMENTS

Special thanks to Kaushik Roy for numerous discussions.

REFERENCES

[1] G. Hoffmann, H. Huang, S. Waslander, and C. J. Tomlin, “Quadrotor
helicopter flight dynamics and control: Theory and experiment,” in
Proceedings of the AIAA Conference on Guidance, Navigation and

Control, (Hilton Head, South Carolina), August 2007.
[2] A. Richards, Y. Kuwata, and J. How, “Experimental demonstrations

of real-time MILP control,” in Proceeding of the AIAA Guidance,

Navigation, and Control Conference, August 2003.
[3] M. G. Earl and R. D’Andrea, “Iterative MILP methods for vehicle-

control problems,” Robotics, IEEE Transactions on, vol. 21, no. 6,
pp. 1158–1167, 2005.

[4] M. R. Garey and D. S. Johnson, Computers And Intractability: A

guide to the Theory of NP-Completeness. New York, NY, USA: W.
H. Freeman and Co., 1979.

[5] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic Roadmaps for Path Planning in High-Dimensional Con-
figuration Spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, 1996.

[6] M. P. Vitus, V. Pradeep, G. Hoffmann, S. L. Waslander, and C. J. Tom-
lin, “Tunnel-MILP: Path planning with sequential convex polytopes,”
in In the Proceedings of the AIAA Guidance, Navigation, and Control

Conference, (Honolulu, Hawaii, USA), 2008.
[7] T. Asand, T. Asano, L. Guibas, J. Hershberger, and H. Imai, “Visibility

of disjoint polygons,” Algorithmica, vol. 1, pp. 49–63, 1986.
[8] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit

Surfaces. New York, NY, USA: Springer-Verlag, 2002.
[9] B. Chazelle, Advances in Robotics, Vol.1: Algorithmic and Geometric

Aspects of Robotics, ch. Approximation and Decomposition of Shapes,
pp. 145–185. Lawrence Erlbaum Associates, 1987.

[10] L. P. Chew, “Constrained delaunay triangulations,” in Proceedings of

the Third Annual Symposium on Computational geometry, (New York,
NY, USA), pp. 215–222, ACM, 1987.

[11] B. Chazelle and D. P. Dobkin, “Optimal convex decompositions,” in
Computatinoal Geometry (G. Toussaint, ed.), pp. 63–133, Amsterdam:
North-Holland, 1985.

[12] A. Lingas, “The power of non-rectilinear holes,” Proceedings of the

9th Colloquium on Automata, Languages and Programming, vol. 140,
pp. 369–383, 1982.

[13] H. Martini and V. Soltan, “Minimum convex partition of polygonal
domains by guillotine cuts,” Discrete and Computational Geometry,
vol. 19, no. 2, pp. 291–305, 1998.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
England: Cambridge University Press, 2004.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.1

545

