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Abstract— A family of hybrid control algorithms is developed
that steer a nonholonomic autonomous vehicle to the source of a
scalar signal present in the environment. In an idealized setting,
we develop a general hybrid control scheme that globally
asymptotically stabilizes the vehicle position about the source.
Pursuing a practical implementation, a series of perturbations
to the family of controllers is introduced, resulting in a semi-
global practical stability of the vehicle position about the source.
An example of a recently developed conjugate direction-based
controller fitting into this family is developed and demonstrated
by simulation and experiment.

I. INTRODUCTION

We investigate the problem of localizing the source of

a scalar signal existing in the environment with an au-

tonomous vehicle. In this scenario, we assume that vehicle

position measurements may not be available. Instead, we

only assume that measurements of the signal at the current

vehicle position are available. To complicate the matter, these

measurements may be corrupted by noise and the signal

distribution may be slowly varying. Such disturbances are

common in a real-world scenario, where sensor noise can

corrupt measurements and environmental disturbances can

re-distribute the signal strength. Such a situation describes

important problems in science and defense, including chem-

ical plume tracing and land mine localization.

A broad spectrum of approaches have been applied to

this problem in the recent literature, ranging from gradient

descent with a single vehicle [5], to utilizing a sensor

network of several vehicles to achieve gradient descent [1] or

to conduct the simplex optimization algorithm [4]. In [7], the

method of extremum-seeking was applied to a nonholonomic

vehicle to achieve an average gradient descent by the vehicle.

In [3], a method was developed for a point-mass vehicle to

lead a group of vehicles to the source by means of nonlinear

programming methods. Finally, in [2], a PD-type control

law based on directional derivatives was used to steer a

nonholonomic vehicle to the source.

In this paper, we develop a family of robust hybrid control

algorithms that accomplish this task. The approach in this

paper is similar in character to that of [12], [13], where a

specific hybrid source-seeking controller was developed for
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a point-mass vehicle, and a nonholonomic vehicle, respec-

tively. The results in this paper extend previous work by

generalizing the hybrid source-seeking framework in [12],

[13] to include a wide class of controllers. Moreover, an

explicit treatment of noise is made in this paper by utilizing

results in robust stability theory for hybrid systems [9].

This paper is organized as follows. Section II states the

problem and introduces some convenient notation. Section III

provides the necessary hybrid system concepts for this paper.

Section IV introduces a family of hybrid controllers that

accomplish the source-seeking task given certain assump-

tions. In Section V, we introduce a series of perturbations

to the family of hybrid controllers in Section IV that lift the

assumptions to derive a semi-global practical stability result.

Finally, Section VI develops a conjugate-direction inspired

controller (based upon [12], [13]) that fits into the family

of hybrid controllers in Section IV and demonstrates the

controller by simulation and experiment.

II. PROBLEM STATEMENT AND VEHICLE MODEL

In this paper, we develop a family of hybrid controllers

that steer an autonomous vehicle to the source of a scalar

signal existing in the vehicle’s environment. We assume

that this signal is described by a continuously differentiable

function ϕ : R
2 → R. We assume that for every c ∈

ϕ(R2), the set L(c) =
{
y ∈ R

2 : ϕ(y) ≤ c
}

is bounded.

We assume that this function has a unique global minima,

x∗, and that ∇ϕ(x) = 0 if and only if x = x∗ (where

∇ϕ(x) = [ ∂ϕ
∂x1

∂ϕ
∂x2

]T ). The goal is to locate x∗ with an

autonomous vehicle and stabilize it about x∗.

We consider the following nonholonomic vehicle model,

ẋ = γ

[
cos(θ)
sin(θ)

]
θ̇ = ω, (1)

where x ∈ R
2 denotes the vehicle position, θ ∈ R denotes

the orientation of the vehicle, and γ and ω are control inputs

for forward velocity and angular velocity, respectively. When

constrained to have a fixed velocity and a minimum turning

radius, this unicycle model is sometimes referred to as a

Dubins vehicle [8] in the literature.

While the model (1) is very common, in this paper, we

use an equivalent model, where the vehicle orientation is

described by a vector in S
1 = {y ∈ R

2 : ‖y‖2 = 1}. Then,

the autonomous vehicle has a state (x, ϑ) ∈ R
2 × S

1 that

evolves according to

ẋ = γϑ ϑ̇ = ϑ ⊗ η(ω), (2)
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where, for two vectors y, z ∈ R
2,

z ⊗ y =

[
z1y1 − z2y2

z2y1 + z1y2

]
.

The function η : R → R
2 maps values according to

η(ω) 7→ [ 0 ω ]T . In this way, (2) has [ ϑ̇1 ϑ̇2 ]T =
ω[ −ϑ2 ϑ1 ]T . This representation of the unicycle model

makes for a convenient description by allowing the vehicle

orientation, ϑ, to remain in a compact set (with the expense

of describing it with two states). It is easy to see that S
1 is

an invariant set for ϑ by noting that 〈ϑ, ϑ⊗ η(ω)〉 = 0. The

control input ω simply acts to push ϑ around the unit circle.

We also note that the ⊗ operator can act as a vector

rotation in the following way. Letting α ∈ R, [ c s ]T =
[ cos(α) sin(α) ]T , and z ∈ R

2,
[
z1

z2

]
⊗

[
c

s

]
=

[
cz1 − sz2

sz1 + cz2

]
=

[
c −s

s c

] [
z1

z2

]
.

For a given function Γ : X → X , we denote Γn as the

composition of Γ n times, that is, Γn = Γ◦ · · · ◦Γ, n times.

For some set X , we denote cl X as the closure of X . Finally,

B ⊂ R
n denotes the closed unit ball.

III. HYBRID SYSTEMS PRELIMINARIES

A hybrid dynamical system is one in which both contin-

uous and discrete state evolution can occur. Working in the

framework of [9], we define the state of a hybrid system

as ζ ∈ R
n. The continuous evolution is governed by a

differential inclusion, ζ̇ ∈ F (ζ), and discrete state jumps

are governed analogously by a difference inclusion, ζ+ ∈
G(ζ). Letting ⇉ denote a set-valued mapping, we refer to

F : R
n

⇉ R
n as the flow map, and to G : R

n
⇉ R

n as the

jump map. Whether or not flows and/or jumps are allowed

during certain instances of the state evolution is dictated by

set inclusion conditions. We define the sets C,D ⊂ R
n, as

the flow set and jump set, respectively. The state is allowed to

flow continuously when ζ ∈ C and allowed to make discrete

jumps when ζ ∈ D. A hybrid system is defined by its data,

H = (F,G,C,D). We write such a hybrid system as

H
{

ζ̇ ∈ F (ζ) ζ ∈ C

ζ+ ∈ G(ζ) ζ ∈ D.

In this paper, we will assure that any proposed hybrid system

satisfies the Hybrid Basic Conditions [9, A0-A3], which are

a set of mild regularity conditions on the data of H. These

mild conditions allow the use of robust stability theory for

hybrid systems fitting this framework.

Following [9], we now define a solution to a hybrid

system. Denoting [0,∞) as R≥0 and {0, 1, 2, . . . } as Z≥0,

we define a hybrid time domain as follows. For some number

J ∈ Z≥0 and a sequence of times, 0 = t0 ≤ t1 ≤ · · · ≤ tJ ,

we call a subset D ⊂ R≥0 × Z≥0 a compact hybrid time

domain if D =
⋃J−1

j=0
([tj , tj+1], j). We say that D is a

hybrid time domain if for all (T, J) ∈ D, D ∩ ([0, T ] ×
{0, 1, 2, . . . , J}) is a compact hybrid time domain. Such a

definition allows the “last” interval to be of the form [tj , T ),
with T finite or T = ∞.

A solution to a hybrid system is given as a mapping ζ :
dom ζ → R

n, where dom ζ is a hybrid time domain. To be

a solution to H, a ζ must satisfy ζ(0, 0) ∈ C ∪ D, and

1) for all j ∈ Z≥0 and almost all t such that (t, j) ∈
dom ζ, ζ(t, j) ∈ C, ζ̇ ∈ F (ζ(t, j))

2) for all (t, j) ∈ dom ζ such that (t, j + 1) ∈ dom ζ,

ζ(t, j) ∈ D, ζ(t, j + 1) ∈ G(ζ(t, j)).

A solution is called complete if dom ζ is unbounded and

Zeno if ζ is complete, but the projection of dom ζ onto R≥0

is bounded. Letting SH(ζ0) denote the set of solutions to

H with ζ(0, 0) = ζ0, a solution is maximal if it is not

a truncation of some other solution ζ ′ ∈ SH(ζ0) to some

proper subset of dom ζ ′. We say that ζ is precompact if

cl ζ(dom ζ) ⊂ R
n is compact.

Now we introduce stability and attractivity concepts for

hybrid systems. A compact set A ⊂ R
n is stable if ∀ǫ > 0,

∃δ > 0 such that ∀ζ0 ∈ (A + δB) ∩ (C ∪ D), each solution

ζ ∈ SH(ζ0) satisfies |ζ(t, j)|A ≤ ǫ ∀(t, j) ∈ dom ζ. It

is locally attractive if ∃δ > 0 such that ∀ζ0 ∈ (A +
δB) ∩ (C ∪ D), every ζ ∈ SH(ζ0) is complete and satisfies

limt+j→∞ |ζ(t, j)|A = 0. The set of points from where

maximal solutions are complete and converge to A is called

the basin of attraction for A, denoted by BA. The set A is

called locally asymptotically stable if it is both stable and

attractive, and uniformly attractive if from each compact

M ⊂ BA and for every ǫ > 0, there exists T > 0 such

that ∀ζ0 ∈ M , t + j ≥ T =⇒ |ζ(t, j)|A ≤ ǫ. The

set A is globally asymptotically stable if A is stable and

attractive with BA = R
n. (Note that by definition, points in

R
n \ (C ∪ D) belong to the basin of attraction since there

are no solutions from those points.)

IV. A GENERAL HYBRID CONTROL ALGORITHM

In this section, we introduce a general hybrid control

scheme to accomplish the source localization task. In a

somewhat idealized setting, we, for now, assume that mea-

surements of 〈∇ϕ(x), γϑ〉 are available for control. We also

assume that the controller can force the vehicle orientation

to make discrete jumps according to ϑ+ = ϑ ⊗ r, where

(ϑ, r) ∈ S
1 × S

1 (note that this corresponds to a rotation, so

S
1 is still invariant for ϑ). These assumptions will be relaxed

in later sections. Similar to [16], we propose the following

hybrid controller,

γ = γ̄[
ż

ω

]
∈

[
fz(z)
fω(z)

]


 (x, ϑ, z) ∈ C

[
z+

r

]
∈

[
gz(z)
gr(z)

]}
(x, ϑ, z) ∈ D,

(3)

where 0 < |γ̄| ≤ γ∗,

C = {(x, ϑ, z) : 〈∇ϕ(x), γϑ〉 ≤ 0, ϑ ∈ S
1, z ∈ Υ}

D = {(x, ϑ, z) : 〈∇ϕ(x), γϑ〉 ≥ 0, ϑ ∈ S
1, z ∈ Υ},

(4)

and the set-valued mappings fz : Υ ⇉ R
κ, fω : Υ ⇉ R, gz :

Υ ⇉ Υ, gr : Υ ⇉ S
1, and Υ ⊂ R

κ satisfy the following:
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(A1) fz and fω are nonempty, locally bounded, outer

semicontinuous1 and convex valued on Υ. The set-

valued mappings gz and gr are nonempty and outer-

semicontinuous on Υ.

(A2) Υ is compact.

(A3) The maximal solutions to the continuous-time sys-

tem ż ∈ fz(z), z ∈ Υ and the maximal solutions

to the discrete-time system z+ ∈ gz(z), z ∈ Υ are

complete.

(A4) C0 = {(x, ϑ, z) : 〈∇ϕ(x), γϑ〉 = 0, ϑ ∈ S
1, z ∈

Υ}. The only complete solutions to

ẋ = γ̄ϑ

ϑ̇ ∈ ϑ ⊗ η(fω(z))

ż ∈ fz(z)





(x, ϑ, z) ∈ C0

x+ = x

ϑ+ ∈ ϑ ⊗ gr(z)

z+ ∈ gz(z)





(x, ϑ, z) ∈ D

(5)

begin from the set {(x, ϑ, z) : x = x∗}.

The data (fz, fω, gz, gr,Υ) defines a source-seeking con-

troller if it fits into (3) and (4). We say that a source-seeking

controller S = (fz, fω, gz, gr,Υ) has the continual search

property if it satisfies assumptions (A1)-(A4).

Applying (3) to (2) results in the closed-loop system

ẋ = γ̄ϑ

ϑ̇ ∈ ϑ ⊗ η(fω(z))

ż ∈ fz(z)





(x, ϑ, z) ∈ C

x+ = x

ϑ+ ∈ ϑ ⊗ gr(z)

z+ ∈ gz(z)





(x, ϑ, z) ∈ D.

(6)

Then, (6), on the state space R
2 × R

2 × R
κ, satisfies the

Hybrid Basic Conditions [9, A0-A3].

For convenience, we group the variables (x, ϑ, z) into a

single variable ξ and, letting n = 4 + κ, denote the right

hand sides of (6) as F : R
n

⇉ R
n and G : R

n
⇉ R

n and

define our closed loop as H = (F,G,C,D). Conveniently,

we define the set B = R
2 × S

1 ×Υ so that we can re-write

C = {ξ ∈ B : 〈∇ϕ(x), γϑ〉 ≤ 0} and D = {ξ ∈ B :
〈∇ϕ(x), γϑ〉 ≥ 0} in terms of B. We define the closed-loop

hybrid system H = (F,G,C,D).

Lemma 4.1: Suppose that a hybrid source-seeking con-

troller has the continual search property. Then, solutions to

(6) exist everywhere in C ∪ D and every maximal solution

is complete.

Theorem 4.2: Suppose that the proposed hybrid source-

seeking controller (3), (4) has the continual search property.

Then, the set A = {x∗}× S
1 ×Υ is globally asymptotically

stable for H.

1A set-valued mapping F : Rn
⇉ Rn is outer semicontinuous if for

all x ∈ Rn and all sequences {xi}
∞
i=1

, {yi}
∞
i=1

, such that yi ∈ F (xi),
xi → x, and yi → y as i → ∞, we have y ∈ F (x).

Proof: (Sketch) Using V (ξ) = ϕ(x) − ϕ(x∗) as a

Lyapunov-like function, it is easily seen that this function is

non-increasing along flows and jumps. This follows from the

structure of the flow set and the fact that x+ = x during every

jump. Since V has compact level sets, is positive definite on

C∪D with respect to A, and since A is compact, A is stable,

by [15, Theorem 7.6]). Attractivity is shown by computing

invariant sets where V is constant along solutions (this

involves using assumption A4) and invoking an invariance

principle for hybrid systems [15, Theorem 4.7].

V. PRACTICALITY THROUGH PERTURBATION

In this section, we remove the assumptions that

〈∇ϕ(x), γϑ〉 is available for measurement and that ϑ can be

updated during jumps. We shall address these issues through

a series of perturbations to the proposed hybrid controllers.

The first issue can be addressed by collecting several values

of ϕ along the vehicle’s trajectory and using this data to

estimate the directional derivative. To obviate the need for

updating the vehicle orientation at jumps, it is possible to

execute open-loop maneuvers.

The main result of this section is a semi-global practical

asymptotic stability theorem which asserts robustness to the

perturbations to the idealized algorithm.

A. Temporal Regularization

The first step in estimating 〈∇ϕ(x), γϑ〉 is to introduce

functionality into the controller which allows a minimum

amount of information to be collected about ϕ along the

current search direction. We implement this functionality

into the controller through a technique known as temporal

regularization, meant to eliminate Zeno solutions in hybrid

systems by enforcing a small amount of flow between

jumps. Temporal regularization has been discussed in the

recent literature, with emphasis on simulation [11], [10], and

perturbations to hybrid systems [9].

We define the temporal regularization parameter, δτ ∈
R≥0, and introduce a new timer state, τ ∈ R, into our

controller in the following way. Let the new state variable

be ξ̃ = (ξ, τ) ∈ R
n+1 and B̃ = B× [0,K] ⊂ R

n+1, the new

dynamics are given by

ξ̇ = F (ξ)

τ̇ = K − τ

}
(ξ, τ) ∈ C̃δτ

ξ+ ∈ G(ξ)

τ+ = 0

}
(ξ, τ) ∈ D̃δτ

,

(7)

where

C̃δτ
= {(ξ, τ) ∈ B̃ : ξ ∈ C or τ ∈ [0, δτ ]}

D̃δτ
= {(ξ, τ) ∈ B̃ : ξ ∈ D and τ ∈ [δτ ,K]}

(8)

and K > δτ . We denote this system by

Hδτ

{
˙̃
ξ = F̃ (ξ̃) ξ̃ ∈ C̃δτ

ξ̃+ ∈ G̃(ξ̃) ξ̃ ∈ D̃δτ
,

(9)

with F̃ (ξ̃) =
[
F (ξ)T K − τ

]T
and G̃(ξ̃) =

[
G(ξ)T 0

]T
.
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This change in dynamics can be seen as requiring flow as

long as the timer, τ , has not reached its limit, δτ . Surely, this

eliminates any possible Zeno behavior brought on by shorter

flow times as the vehicle approaches x∗. Moreover, as in [9],

we note that as δτ → 0, the ξ solutions of (7) approach the

ξ solutions of (6) in a graphical sense and with δτ = 0, the ξ

solutions of (7) are exactly the same as those of (6). In this

direction, we denote a “nominal” (i.e. δτ = 0) system with

temporal regularization, by H̃ = (F̃ , G̃, C̃, D̃), where C̃ and

D̃ are defined by evaluating C̃δτ
and D̃δτ

with δτ = 0. In

preparation for the following section, we make the following

observation, which follows from the arguments presented in

[9, Example 6.8].

Corollary 5.1: Under the assumptions in Theorem 4.2, the

set Ã = A× [0,K] is globally asymptotically stable for the

system H̃.

B. Directional Derivative Estimation

In this section, we model the estimation error of

〈∇ϕ(x), γϑ〉 with perturbations to the sets C and D. Due

to length constraints, we do not attempt to elaborate on

the details of estimating 〈∇ϕ(x), γϑ〉. Instead, we note that

temporal regularization and sample-and-hold can be used to

collect and store information about ϕ for estimation of the

derivative along the vehicle trajectory.

We assume that the algorithm is equipped with a corrupted

measurement. We model the measurement by perturbing the

flow and jump sets, C and D, to capture the many trajectories

that can result from such error-ridden measurements. Letting

δ̂ = (δ1, δ2) ∈ R
2
>0, we define

Ĉδ̂ = {ξ ∈ B : ∃x̂ ∈ x + δ1B, s.t. 〈∇ϕ(x̂), γϑ〉 ≤ δ2}
D̂δ̂ = {ξ ∈ B : ∃x̂ ∈ x + δ1B, s.t. 〈∇ϕ(x̂), γϑ〉 ≥ −δ2}.

Defining δ = (δτ , δ̂) and adding temporal regularization

to the perturbed system as before in (7) and (8), we have

Hδ

{
˙̃
ξ ∈ F̃ (ξ̃) ξ̃ ∈ Cδ

ξ̃+ ∈ G̃(ξ̃) ξ̃ ∈ Dδ,
(10)

where

Cδ = {(ξ, τ) ∈ B̃ : ξ ∈ Ĉδ̂ or τ ∈ [0, δτ ]}
Dδ = {(ξ, τ) ∈ B̃ : ξ ∈ D̂δ̂ and τ ∈ [δτ ,K]}.

(11)

C. Perturbation and Practical Stability

Analyzing the errors introduced to our idealized algorithm

(6) by derivative approximation and temporal regularization

requires invoking the existing robustness theory for hybrid

systems in [9]. In this section, we will define a family of

perturbed hybrid systems and assert a semi-global practical

stability property of the perturbed system.

We define a sequence {δi}∞i=1 = {(δi
τ , δi

1, δ
i
2)}, with

δ̄i = max{δi
τ , δi

1, δ
i
2}, such that for all i ∈ Z>0, δ̄i+1 < δ̄i

and δ̄i → 0 as i → ∞. We then define a sequence of

perturbed hybrid systems by Hδi
= (F̃ , G̃, Cδi

,Dδi
). Due to

space constraints, we omit the proof of the following lemma;

however, we note that it follows from basic set convergence

arguments in [14, Exercise 4.3].

Lemma 5.2: The sequences of sets {Cδi
}∞i=1 and

{Dδi
}∞i=1 converge and their limits are given by C̃ and D̃,

respectively.

The following corollary relates Hδ to Hδτ
. Defining H0

as the system Hδ with δ = 0, we see that H0 is identical to

H̃. The following corollary follows from Corollary 5.1.

Corollary 5.3: For the system H0, the set Ã = A× [0,K]
is globally asymptotically stable.

Our main result of this section is stated next. We say that

a continuous function β : R≥0 × R≥0 → R≥0 belongs to

class-KL if, for each fixed t, β(s, t) is zero at zero and

strictly increasing with respect to s, and for each fixed s,

β(s, t) is non-increasing with respect to t and converges to

zero as t → ∞. Following [9, Theorem 6.6], we can restate

Corollary 5.3 with a KL function.

Theorem 5.4: For the system Hδ, with δ = 0, there exists

β ∈ KL such that all solutions ξ̃ satisfy

|ξ̃(t, j)|A ≤ β(|ξ̃(0, 0)|A, t + j) ∀(t, j) ∈ dom ξ̃. (12)

Moreover, using [9, Theorem 6.6], the following result holds.

Theorem 5.5: (Semi-global practical stability) For the

system Hδ, with δ = 0, there exists β ∈ KL such that

(12) holds and for every compact set M ⊂ B eA and each

ǫ > 0, there exists δ∗ > 0 such that for each δ with

δ̄ ∈ (0, δ∗], the solutions ξ̃δ of Hδ starting from M satisfy,

for all (t, j) ∈ dom ξ̃δ ,

|ξ̃δ(t, j)|A ≤ β(|ξ̃δ(0, 0)|A, t + j) + ǫ. (13)

D. Open-loop Turning Maneuvers

In this section, we remove the assumption that ϑ can be

updated during controller jumps by ϑ+ = ϑ ⊗ gr(z). Since

measurements of (x, ϑ) may not be available for control, we

integrate a family of open-loop maneuvers into our controller.

Given r ∈ S
1, the family of open-loop control laws, Θ :

R≥0 × R → R × R must satisfy the following.

(A5) ∀r ∈ S
1, ∃Tm(r) ≥ 0 such that the system,

ẋ = γϑ ϑ̇ = ϑ ⊗ η(ω)

τ̇m = 1
[
γ ω

]
= Θ(τm, r),

(14)

with
[
x(0) ϑ(0) τm(0)

]T
=

[
x0 ϑ0 0

]T
, (15)

satisfies x(Tm(r)) = x0 and ϑ(Tm(r)) = ϑ ⊗ r

(and τm = Tm(r)). Moreover, we assume that

supr∈S1 Tm(r) ≤ KT and |γ| ≤ γ∗.

Lemma 5.6: Suppose that Θ satisfies (A5). Then, for every

r ∈ S
1, the x-component of the solution to (14) satisfies

‖x(t) − x(0)‖ ≤ |γ|KT for all t ∈ [0, Tm(r)].

Proof: ‖x(t) − x(0)‖ =
∥∥∥
∫ t

0
γϑdt

∥∥∥ ≤ γ∗KT .

We integrate this functionality into the controller in the

following way. We first introduce two additional states: a

logic state m ∈ {0, 1} and a timer for the open-loop control
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law τm ∈ [0,KT ]. Let the new state be ξΘ = (ξ̃, τm,m) ∈
R

n+3. Letting BΘ = B̃× [0,KT ]×{0, 1}, we write the new

perturbed closed-loop as

ẋ = γϑ

ϑ̇ = ϑ ⊗ η(ω)

ż ∈ fz(z) toggle(m)

τ̇ = (K − τ) toggle(m)

τ̇m = m

ṁ = 0

[
γ

ω

]
∈





[
γ̄ fω(z)

]T

m = 0

Θ(τm, gr(z)) m = 1





ξΘ ∈ Cδ
Θ

x+ = x

ϑ+ = ϑ

z+ ∈
{

z m = 0

gz(z) m = 1

τ+ = 0

τ+
m = 0

m+ = toggle(m)





ξΘ ∈ Dδ
Θ.

(16)

Here, we have toggle(s) = 1 − s and

Cδ
Θ = {(ξ̃, τm,m) ∈ BΘ : ξ̃ ∈ Cδ and m = 0 or

τm ∈ [0, Tm(gr(z))] and m = 1}
(17)

Dδ
Θ = {(ξ̃, τm,m) ∈ BΘ : ξ̃ ∈ Dδ and m = 0 or

τm = Tm(gr(z)) and m = 1}.
(18)

For compactness, we write (16) as Hδ
Θ =(

FΘ, GΘ, Cδ
Θ,Dδ

Θ

)
. where FΘ and GΘ are defined as

above in (16). Additionally, we define a nominal system

with open-loop turns as HΘ = (FΘ, GΘ, CΘ,DΘ) where

CΘ = {(ξ̃, τm,m) ∈ BΘ : ξ̃ ∈ C̃ and m = 0 or

τm ∈ [0, Tm(gr(z))] and m = 1}
(19)

DΘ = {(ξ̃, τm,m) ∈ BΘ : ξ̃ ∈ D̃ and m = 0 or

τm = Tm(gr(z)) and m = 1}.
(20)

The following corollary asserts a stability property for the

perturbed closed-loop system Hδ
Θ. This result follows exam-

ining the structure of Cδ
Θ and Lemma 5.2. Dδ

Θ

Corollary 5.7: The sequences of sets {Cδi

Θ
}∞i=1 and

{Dδi

Θ
}∞i=1 converge and their limits are given by CΘ and

DΘ, respectively.

We now make a convergence and stability claim for the

nominal system, HΘ. The proof is omitted due to space

constraints, but we note that it requires comparing solutions

of HΘ to those of (9) for proving uniform attractivity,

then invoking [6, Theorem 1] to prove the existence of an

asymptotically stable set.

Theorem 5.8: For HΘ, for every σ > 0, the set

A′
Θ = x∗+(γ∗KT +σ)B×S

1×Υ×[0,K]×[0,KT ]×{0, 1}

is uniformly attractive from any compact set M ⊂ CΘ∪DΘ.

Moreover, there exists a globally asymptotically stable set

AΘ ⊂ A′
Θ.

Theorem 5.9: For the system HΘ, there exists β ∈ KL
such that all solutions ξΘ satisfy

|ξΘ(t, j)|A ≤ β(|ξΘ(0, 0)|A, t + j) ∀(t, j) ∈ dom ξΘ.

Then, for every compact set M ⊂ BAΘ
and every ǫ > 0,

there exists δ∗ > 0 such that for each δ with δ̄ ∈ (0, δ∗], the

solutions ξΘ of Hδ
Θ starting from M satisfy, for all (t, j) ∈

dom ξΘ,

|ξΘ(t, j)|A ≤ β(|ξΘ(0, 0)|A, t + j) + ǫ.

VI. SOURCE LOCALIZATION WITH A CONJUGATE

DIRECTION ALGORITHM

We give an algorithm that fits into the framework pre-

sented in this paper and satisfies the continual search prop-

erty. This algorithm is based upon the Recursive Smith-

Powell algorithm reported in [12], [13], which utilizes the

efficiency of conjugate directions in the search for x∗. We

implement the algorithm as follows.

The state z consists of several elements, z :=
(λ1, λ2, v, p, k), where λ1, λ2 ∈ hB, v ∈ S

1, p ∈ {−1, 1},

k ∈ {0, 1, 2}. The value h is a large positive constant. The

purpose of these variables is similar to that in [12]: the

states λ1 and λ2 store the vectors traveled by the vehicle,

v stores the current search direction, p is a logic variable

which coordinates the line minimization, and k stores the

current algorithm mode.

Then, the state z evolves in

Υ = (hB)2 × S
1 × {−1, 1} × {0, 1, 2}. (21)

To completely define the controller, we must define fz , fω ,

gz , and gr. During flows, the vehicle is driven in a straight

line, which corresponds to setting fω(z) := 0. While driving

the vehicle in a straight line, an open-loop integration of the

vehicle’s movement is stored in λ1, while keeping the other

states constant. To ensure that λ1, λ2 remain in Υ, we design

the flow map to stop this integration when λ1 approaches the

boundary of Υ. Letting 0 < ǫh ≪ h, we define

Υ
in

ǫ = ((h − ǫh)B)
2 × S

1 × {−1, 1} × {0, 1, 2}
Υ

out

ǫ = cl (hB \ (h − ǫh)B)
2 × S

1 × {−1, 1} × {0, 1, 2}.
(22)

Then, we define fz as,

ż =




λ̇1

λ̇2

v̇

ṗ

k̇




= fz(z) :=





[
γ̄v

0

]
z ∈ Υ

in

ǫ

con

{[
γ̄v

0

]
, 0

}
z ∈ Υ

in

ǫ ∩ Υ
out

ǫ

0 z ∈ Υ
out

ǫ ,
(23)

where con denotes taking the closed, convex hull.

During jumps, the controller uses the stored information to

generate new search directions. Letting dmin be some small
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number (perhaps, with temporal regularization, dmin = γ̄δτ +
ǫ), we define the following sets,

D1 = {z ∈ Υ : p = 1 and ‖λ1‖ ≤ dmin} (24)

D2 = {z ∈ Υ : p = 1 and ‖λ1‖ ≥ dmin or p = −1} (25)

(note that D1 ∪ D2 = Υ). We also define

g1(z) =
[
λ1 λ2 Rπv −p k

]T
(26)

g2(z) =
[
0 λ1 V (z) 1 (k + 1)mod 3

]T
(27)

where the Rα operator denotes a vector rotation by α radians

(so that for some v ∈ S
1, Rπv = −v),

V (z) ∈





Rπ/2v k = 0

R−π/2v k = 1

Φ(λ1, λ2, v) k = 2

(28)

Φ(λ1, λ2, v) ∈





λ1+λ2

‖λ1+λ2‖
‖λ1 + λ2‖ >

√
2dmin{

λ1+λ2

‖λ1+λ2‖
,Π(v)

}
‖λ1 + λ2‖ =

√
2dmin

Π(v) ‖λ1 + λ2‖ <
√

2dmin

(29)

and Π(v) : S
1 → S

1 is such that ∀u0 ∈ S
1, the set {u ∈ S

1 :
u = Πm(u0), m ∈ Z>0} is dense in S

1. One could design

Π to rotate the vector by a rational angle (in radians). The

mod operator denotes the modulus operation. In (27) , the

mod operation simply increments k when k ∈ {0, 1} and

sets k back to zero when k = 2.

We then define gz as the composite function,

gz(z) :=





g1(z) z ∈ D1 \ D2

{g1(z), g2(z)} z ∈ D1 ∩ D2

g2(z) z ∈ D2 \ D1

(30)

Finally, we define the function gr, which calculates the

rotation needed for the next vehicle orientation. Letting gv
z

denote the v component of gz , we define the next search

direction, vn = gv
z(z). The function gr will calculate the

value of r = [ r1 r2 ]T which satisfies

vn = v ⊗ r[
vn
1

vn
2

]
=

[
v1

v2

]
⊗

[
r1

r2

]
=

[
v1r1 − v2r2

v2r1 + v1r2

]

⇒ gr(z) :=

[
r1

r2

]
=

[
v1 v2

−v2 v1

] [
vn
1

vn
2

] (31)

With the algorithm fully specified, we now state that this

algorithm satisfies assumptions (A1)–(A4). Due to space

constraints, the proof is omitted; however, it is easy to

see that this is the case, since gz(z) generates linearly

independent search directions.

Theorem 6.1: The hybrid source-seeking controller,

(fz, fω, gz, gr,Υ) has the continual search property.

Figure 1 shows a comparison between a simulation of the

proposed algorithm and experimental results from the setup

described in [13]. Open-loop control laws used in Figure 1

are those that generate the optimal Dubins paths [8].
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Fig. 1. A comparison between simulation and experiment of the proposed
source-seeking algorithm.
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