
Polynomial Classification Algorithms for Markov Decision
Processes

Eugene A. Feinberg∗and Fenghsu Yang†

Abstract

The unichain classification problem detects
whether an MDP with finite states and actions is
unichain or not under all deterministic policies. This
problem has been proven to be NP-hard. This paper
provides polynomial algorithms for this problem while
there exists a state in an MDP, which is either recurrent
under all deterministic policies or absorbing under
some action.

1. INTRODUCTION

We consider discrete-time Markov Decision Pro-
cesses (MDPs) with finite state and action sets in this
paper. The probability structure of an MDP is defined
by a state space S = {1, . . . ,N}, finite sets of actions
A(i) for all i ∈ S, and transition probabilities p(j|i,a),
where i, j ∈ S and a ∈ A(i). A deterministic policy ϕ

is defined as a function from S to
⋃

i∈S A(i) which as-
signs an action ϕ(i) ∈ A(i) to each state i ∈ S. Each
deterministic policy defines a stochastic matrix P(φ) =
(p(j|i,ϕ(i))i, j=1,...,N . The stochastic matrix defined by a
deterministic policy is also known as a transition matrix
of a homogeneous Markov chain. A transition matrix
determines which states of the Markov chain are recur-
rent, transient, or equivalent.

A state i ∈ S is called transient (recurrent) if it is
transient (recurrent) under all deterministic policies. An
MDP is called multichain, if the transition matrix corre-
sponding to at least one deterministic policy ϕ contains
two or more recurrent classes. Otherwise, an MDP is
called unichain. Thus, under any deterministic policy,
the state space of a unichain MDP consists of a sin-
gle recurrent class plus a possible empty set of transient
∗Eugene A. Feinberg is with the Department of Applied Math and

Statistics, State University of New York at Stony Brook, NY 11794-
3600, USA Eugene.Feinberg@sunysb.edu

†Fenghsu Yang is with the Department of Applied Math and
Statistics, State University of New York at Stony Brook, Stony Brook,
NY 11794, USA fyang@ic.sunysb.edu

states.
The property of unichain is important for MDPs

with average reward criterion because stronger results
on the existence of optimal policies hold and better
algorithms are available for unichain MDPs than for
general MDPs; see [8] for detail. Unichain MDPs
have been treated separately from general MDPs since
Howard [6] introduced the policy iteration algorithms
for MDPs; see e.g. [4, 5, 8, 10]. In 2002, Kallen-
berg [7] studied irreducibility, communicating, weakly
communicating, and unichain classification problems
for MDPs. For the first three problems, Kallenberg [7]
constructed polynomial algorithms. However, for the
unichain classification problem, Kallenberg [7], [8, p.
41] posted a question whether a polynomial algorithm
exists. In 2007, Tsitsiklis [11] answered this question
by showing that the unichain classification problem is
NP-hard.

Even though the unichain classification problem is
NP-hard, many applications are modelled as unichain
MDPs. Moreover, many applications of MDPs contain
the states which are recurrent under all stationary poli-
cies. For instance, for a queueing or inventory control
problem, a recurrent state is typically either the state
when the buffer is empty or the state when the buffer is
full. In this paper we show that the problem of detect-
ing whether an MDP has a recurrent state is polynomial.
We also show that the unichain classification problem
for an MDP with a recurrent state is polynomial. In this
paper, we call a state i ∈ S stopping if p(i|i,a) = 1 for
some a∈ A(i). The problem of detecting stopping states
is polynomial and we also show that the unichain clas-
sification problem for an MDP with a stopping state is
polynomial. We provide the algorithms and complexi-
ties to the corresponding problems.

Kallenberg [7] solved Some of classification prob-
lems in terms of graphs G1 and G2 whose arcs respec-
tively represent that there are one-step transitions be-
tween two states for all actions and for some actions.
According to the definition in [7], these graphs have no
loops. We slightly modify the definition of graph G2 by

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThB02.6

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4485

adding loops (i, i) if and only if i ∈ S is a stopping state.
An MDP is called deterministic if p(j|i,a)∈ {0,1}

for all i, j ∈ S and for all a ∈ A(i). For deterministic
MDPs, the unichain classification problem is equivalent
to the question whether the corresponding graphs G2

have two node-disjoint cycles. This problem has been
proved to be polynomial by McCuaig [9] and there-
fore the unichain classification problem for determin-
istic MDPs is polynomial.

In Section 2, we show that the unichain classifica-
tion problem cannot be solved in terms of the graphs
G1 and G2. In Section 3, we introduce the definitions
of avoidable and reachable sets and provide the cor-
responding polynomial algorithms that finds the states
from which a given set is avoidable and reachable.
We also provide a polynomial algorithm that detects
whether a state is recurrent and solves the unichain clas-
sification problem for an MDP with a recurrent state
and a polynomial algorithm for detecting recurrent and
stopping states and for the unichain classification prob-
lem with either recurrent or stopping states. Section 4
deals with detecting transient states in polynomial time
and it discusses the implications of this capability for
alleviating the complexity of the unichain classification
problem.

2. Insufficiency of Graphs G1 and G2

Following Kallenberg [7], we define a directed
graph G1 to be a graph with the set of nodes S, no loops,
and arcs (i, j), i 6= j, if and only if min{p(j|i,a)|a ∈
A(i)} > 0. We also define a directed graph G2 to be a
graph with the set of nodes S such that: (i) an arc (i, j),
i 6= j, belongs to G2 if and only if max{p(j|i,a)|a ∈
A(i)}> 0, and (ii) a loop (i, i) belongs to G2 if and only
if p(i|i,a) = 1 for some a ∈ A(i). For a graph G, we
also denote by G its incident matrix, i.e., G(i, j) = 1 if
the arc (i, j) belongs to the graph and G(i, j) = 0 other-
wise. The reason why we allow loops in graphs G2 is
because, as the following example shows, in the modi-
fied form the loops help us detect stopping states, while
in the original form they do not.

Example 1 Let S = {1,2,3}, A(1) = {a,b}, A(2) =
A(3) = {a}, p(2|1,a) = p(3|1,b) = p(3|2,a) =
p(2|3,a) = 1. Observe that state 1 is not stopping. If
we add an action c to A(1) with p(1|1,c) = 1 then state
1 becomes stopping. The graph G1 does not change. If
we follow the definition in [7] that G2(i, i) is always 0,
the graph G2 does not change either. According to the
above definition, G2(1,1) becomes equal to 1 and this
detects that state 1 is stopping, if the action c is added.
�

The following example shows that a unichain MDP
and a multichain MDP have the same G1 and G2 graphs.

Example 2 Let S = {1,2,3,4} and A(i) = {a,b,c}, i =
1,2,3,4. The first MDP is deterministic. Each action
moves the process to a different state, and there are no
stopping states. For example, in state 1, the action a
moves the process to state 2, the action b moves the
process to state 3, and the action c moves the process to
state 4. This MDP is multichain. Indeed, if from state
1 (3) the process moves to state 2 (4) and from state 2
(4) the process moves to state 1 (3), then there are two
recurrent classes {1,2} and {3,4}.

The second MDP has the same state and action sets
as the first one. All three actions define different transi-
tion probability vectors. For each action, the probabil-
ity to stay in the same state is 0 and the probability to
move to each of two remaining three states is 0.5. So,
for state 1, we have p(2|1,a) = p(3|1,a) = p(2|1,b) =
p(4|1,b) = p(3|1,c) = p(4|1,c) = 0.5. This MDP is
unichain because the minimal possible number of states
in a recurrent class is 3 and under all policies there are
no absorbing states.

For the both graphs, we have that G1 = 0 and
G2(i, j) = 1 if and only if i 6= j. �

In the following example, we provide two MDPs
with identical corresponding graphs G1 and G2 such
that one of these MDPs has no recurrent states and an-
other one has a recurrent state. Therefore, the infor-
mation provided by graphs G1 and G2 is insufficient to
detect whether a state is recurrent.

Example 3 Consider two MDPs with S = {1,2,3,4}
and A(i) = {a,b,c}, i = 1,2,3, and A(4) = {a}. For
both MDPs p(1|4,a) = 1. In states 1,2, and 3 the first
MDP has the same transition probabilities as the first
MDP in Example 2 and the second MDP has the same
transition probabilities as the second MDP in Exam-
ple 2. Since transition probabilities are the same at
state 4, the corresponding graphs G1 and G2 coincide
for these MDPs.

The first MDP has no recurrent states. Indeed, if we
select actions in states 1,2, and 3 that move the process
to state 4 then states 2 and 3 are transient and {1,4} is a
recurrent class. If we select in states 1 and 2 the actions
that move the process to state 3 and in state 3 we select
the action that moves the process to state 2 then 1 and 4
are transient states and {2,3} is a recurrent class.

For the second MDP, state 1 is always recurrent.
Indeed, for any deterministic policy any recurrent class
contains at least three states. However, the process al-
ways moves from state 4 to state 1. Therefore, the set

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB02.6

4486

{2,3,4} cannot be a recurrent class for any determinis-
tic policy. �

In the following example, we provide two MDPs
with identical corresponding graphs G1 and G2 such
that one of these MDPs has no transient states and an-
other one has transient states. Therefore, the informa-
tion provided by graphs G1 and G2 is insufficient to de-
tect whether a state is transient.

Example 4 Consider two MDPs with S = {1,2,3,4}
and A(i) = {a,b,c}, i = 1,2, and A(3) = A(4) =
{a}. The first MDP is deterministic. From states
1 and 2 it is possible to move to any other state.
States 3 and 4 are absorbing. So, for the first
MDP p(2|1,a) = p(3|1,b) = p(4|1,c) = p(1|2,a) =
p(3|2,b) = p(4|2,c) = p(3|3,a) = p(4|4,a) = 1. Con-
sider a policy that always selects the action a. Then the
Markov chain has three recurrent classes: {1,2}, {3},
and {4}. So, this MDP has no transient state.

The second MDP has the same state and action sets
as the first one with p(2|1,a) = p(3|1,a) = p(2|1,b) =
p(4|1,b) = p(3|1,c) = p(4|1,c) = p(1|2,a) =
p(3|2,a) = p(1|2,b) = p(4|2,b) = p(3|2,c) =
p(4|2,c) = 0.5 and p(3|3,a) = p(4|4,a) = 1. This
MDP has two transient states 1 and 2. In the both
cases G1 = 0. In the both cases: (a) G2(i, j) = 1 when
i = 1,2 and j 6= i, (b) G2(3,3) = G2(4,4) = 1, and (c)
G2(i, j) = 0 for other i and j. �

3. Definitions and Results

In this section, we define the avoidable and reach-
able sets and provide the polynomial algorithms that
find the states from which a given set is avoidable and
reachable respectively. Then we use the concepts of
avoidable and reachable sets to detect whether a state is
recurrent and solves the unichain classification problem
for an MDP with a recurrent state. We will also show
our main result of the polynomial algorithm for detect-
ing recurrent and stopping states and for the unichain
classification problem with either recurrent or stopping
states.

3.1. Avoidable Set

Definition 1 Let i ∈ S and Y ⊂ S. The set Y is called
avoidable from i if there exists a deterministic policy ϕ

such that Pϕ

i (xt ∈ Y) = 0 for all t = 0,1,

A subset Z ⊆ S is called closed under a determinis-
tic policy ϕ if p(i| j,ϕ(j)) = 0 for any j ∈ Z and for any

i ∈ S\Z. It is clear that a set Y is avoidable from i if and
only if there exists Z ⊆ S \Y such that: (i) Z is closed
under some deterministic policy, and (ii) i ∈ Z.

For Y ⊆ S we let ZA(Y) be the set of i ∈ S from
which Y is avoidable. The following algorithm finds
the set ZA(Y) for Y ⊆ S. Its convergence is based on
the necessary and sufficient condition formulated in the
previous paragraph.

Algorithm 1 Finding ZA(Y) for a given Y ⊆ S.

1. Set Z := Y, Z̃ := Y .

2. Do while Z̃ 6= /0: for j ∈ S\Z set

A(j) := A(j)\{a ∈ A(j)|∑
l∈Z̃

p(l| j,a) > 0}, (1)

set Z̃ := { j ∈ S\Z : A(j) = /0}, and set Z := Z∪ Z̃;
end do.

3. Set ZA(Y) := S\Z. Stop.

The complexity of Algorithm 1 is O(A ·N). Indeed,
let Z̃t , t = 0,1, . . . ,m, be the set Z̃ at the t th iteration of
Step 2, where Z̃0 = Y, Z̃m = /0, and m ≤ N − |Y |+ 1,
where |E| denotes the number of elements in the finite
set E. Observe that Z̃t ∩ Z̃s = /0 for t 6= s and ∪m−1

t=0 Z̃t ⊆
S\Y. The complexity of computations in (1) at t th itera-
tion is O(A · |Z̃t |), t = 0, . . . ,m−1. This implies that the
complexity of Algorithm 1 is O(A ·N).

Note that there are some similarities between the
definition of an avoidable set above and the node
that should be avoided in the Optimal Node Visitation
(ONV) problem in stochastic graphs studied by Boun-
tourelis and Reveliotis [3]. In particular, Algorithm 1
uses the same node elimination procedure as the inde-
pendently formulated algorithm [3, Figure 3] for the re-
duction of the ONV problem.

3.2. Reachable Set

Definition 2 Let i ∈ S, Y ⊂ S, and i /∈ Y . The set Y
is called reachable from i if there exists a deterministic
policy ϕ such that Pϕ

i (xt ∈Y) > 0 for some t = 1,2,

Note that the definition of a reachable set is slightly
different than the standard definition of an accessible
set since the former requires i /∈ Y and only considers
t > 0. For Y ⊂ S, we denote by ZR(Y) the set of i ∈ S
from which Y is reachable. Finding ZR(Y) is equivalent
to finding all the states from S \Y from which there is
a path to Y in the graph G2. The following algorithm
finds the set ZR(Y) based on this concept.

Algorithm 2 Finding ZR(Y) for a given Y ⊆ S.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB02.6

4487

1. Construct the graph G2. If Y is a singleton, let Y =
{y}. If Y is not a singleton, reduce the set of nodes
S by replacing the set Y with a single node y ∈ Y .
Set S∗ := {y}∪ (S\Y).

2. For all i ∈ S\Y set

G2(i,y) :=

{
1 if G2(i, l) > 0 for some l ∈ Y ;
0 otherwise;

and reverse all the arcs in the reduced graph G2.

3. For the starting node y, apply the breadth-first
search algorithm [1, p.73-76]. ZR(Y) is the set of
nodes, except y, in the breadth-first search tree.

The complexity of constructing the graph G2 is
O(A ·N); see Kallenberg [7]. The complexities of Steps
2 is O(N2)≤ O(A ·N). The complexity of the breadth-
first search algorithm is O(N2) [1, p.73-76]. Thus, the
complexity of Algorithm 2 is O(A ·N).

3.3. Finding Recurrent States

In this section, we formulate a polynomial algo-
rithm that detects whether a particular state i is recur-
rent. Moreover, if the state is recurrent, the polynomial
algorithm also detects whether the MDP is unichain.
Example 3 indicates that finding a recurrent state in an
MDP cannot be done by using only matrices G1 and G2.

If Y contains only one state, Y = {i}, we shall
write ZA(i) and ZR(i) instead of ZA(Y) and ZR(Y)
respectively. We apply Algorithm 1 to Y = {i} and
find the set ZA(i). If ZA(i) = /0, it is obvious that i
is recurrent and the MDP is unichain. If ZA(i) 6= /0,
we apply Algorithm 2 to Y = ZA(i) and find the set
ZR(ZA(i)). If i ∈ ZR(ZA(i)) then ZA(i) is reachable
from i and i is avoidable from any j ∈ ZA(i). Therefore,
i is not recurrent and we do not know whether the
MDP is unichain or multichain. On the other hand, if
i /∈ ZR(ZA(i)), then, starting from i, the process will
never reach ZA(i) and will travel only through the states
from which i is not avoidable. In this case, we know i
is recurrent and the MDP is multichain because there
is a subset of ZA(i) which forms a recurrent class for
a Markov chain defined by some deterministic policy.
The following algorithm detects whether a state i is

recurrent. If the state is recurrent, the algorithm also
detects whether an MDP is unichain.

Algorithm 3 Detecting whether a state i is recur-
rent and, if i is recurrent, whether the MDP is unichain.

1. Apply Algorithm 1 to find ZA(i). If ZA(i) = /0 then
the state i is recurrent and the MDP is unichain,
and stop.

2. Apply Algorithm 2 to find ZR(ZA(i)). If i ∈
ZR(ZA(i)) then the state i is not recurrent. Else,
the state i is recurrent and the MDP is multichain.
Stop.

The complexity of Algorithm 3 is O(A ·N) because
Algorithms 1 and 2 have this complexity. We may have
to apply Algorithm 3 to each state in order to detect if
there exists a recurrent state in an MDP. This procedure
leads to construct the set of recurrent states and its com-
plexity is O(A ·N2). Repeating Algorithm 3 at most N
times until a recurrent state is found also leads to the
solution of the unichain classification problem for an
MDP with a recurrent state. The complexity of this al-
gorithm is O(A ·N2) too. In the following section we
provide an algorithm for solving a unichain classifica-
tion problem for an MDP with either a recurrent or stop-
ping state.

3.4. Polynomial Algorithm to Detect if an MDP
with either a Recurrent or Stopping State
is Unichain

If a state i is either recurrent or stopping then the
MDP is unichain if and only if under all deterministic
policies there is no recurrent class that does not con-
tain i. Let a state i be either stopping or recurrent.
If ZA(i) = /0 then the state i is unavoidable from all
other states. In this case, under any deterministic policy
any recurrent class contains i. Therefore, the MDP is
unichain. On the other hand, if ZA(i) 6= /0 then under
some deterministic policy the corresponding Markov
chain contains a recurrent class that does not contain
the state i. Obviously, the MDP is multichain.

If an MDP contains more than one stopping state,
it is multichain obviously. Even though there may be
two or more recurrent states in the MDP, we only need

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB02.6

4488

to apply Algorithm 1 to one recurrent or stopping state
in order to know whether the MDP is unichain. Thus,
we can formulate the following algorithm.

Algorithm 4 Polynomial Algorithm to Detect whether
an MDP has a stopping or recurrent state and, if it
does, whether an MDP is unichain.

1. For i = 1, . . . ,N and for a ∈ A(i) check the condi-
tion p(i, i) = 1 until two stopping states are found.

2. If two stopping states are found, the MDP is mul-
tichain and stop.

3. If one stopping state i is found then apply Algo-
rithm 1 with Y = {i} and

(a) if ZA(i) 6= /0, the MDP is multichain and stop;

(b) if ZA(i) = /0, the MDP is unichain and stop.

4. For i = 1, . . . ,N apply Algorithm 3 as long as a
recurrent state is not found. Stop after a recurrent
state is found and the MDP is classified.

5. Conclude that the MDP contains neither stopping
nor recurrent states and stop.

The complexity of Algorithm 4 is O(A ·N2) since
it requires running Algorithm 3 at most N times.

4. Finding Transient States and Remarks

Let T be the set of transient states. This set can be
found by apply Bather’s decomposition algorithm [2]
This algorithm is formalized in [7, Algorithm 7] and
its complexity is O(A ·N2) [7]. In terms of [7, Algo-
rithm 7], the set of transient states T is the union of the
sets T1, . . . ,Tm computed by that algorithm.

After the set of transient states T is found, we can
delete T from the state space S and reduce the action
sets A(j), j ∈ S\T , to

A(j) := A(j)\{a ∈ A(j) : ∑
i∈T

p(i| j,a) > 0}. (2)

Any deterministic policy ϕ in the original MDP de-
fines a deterministic policy in the reduced MDP as a
function on S\T . Since the states in T are always tran-
sient in the original MDP, the recurrent classes for these

two Markov chains coincide. Thus, it is easy to see that
the original MDP is unichain if and only if the reduced
MDP is unichain. Thus, if T 6= /0, by removing the set
T and reducing the actions, we can reduce the unichan
classification problem to a smaller problem.

An MDP is called communicating if for each two
states i, j ∈ S there exists a deterministic policy ϕ ,
which may depend on i and j, such that j accessible
from i in the Markov chain defined by ϕ . An MDP
is called weakly communicating if, after the set T is
deleted and the action sets in E := S \ T are reduced
following (2), the MDP with the state space E is com-
municating. If an MDP is not weakly communicating,
it is multichain. This follows from Bather’s [2] decom-
position.

Algorithm 4 in [7] detects whether an MDP is
weakly communicating and its complexity is O(A ·N2).
If an MDP is weakly communicating, it can be reduced
in polynomial O(A ·N2) time to a communicating MDP;
see (2). Thus, the unichain classification problem for a
weakly communicating MDP can be reduced in poly-
nomial (O(A ·N2)) time to an NP-hard unichain classi-
fication problem for a communicating MDP.

Algorithm 4 solves the unichain classification
problem for MDPs with recurrent and stopping states.
Algorithm 5 in Kallenberg [7] also solves the unichain
classification problem for some MDPs. Both algo-
rithms have complexity O(A · N2). [7, Algorithm 5]
finds strongly connected components (maximal con-
nected subsets) of the graph G1. Then it compresses
G1 by replacing each strongly connected component
in G1 with a single node. In the compressed graph,
there exists an arc (i∗, j∗) if in the strongly connected
component corresponding to i∗ there is a state i such
that ∑ j∈X p(j|i,a) > 0 for all a ∈ A(i), where X is
the strongly connected component compressed into j∗.
Then [7, Algorithm 5] conducts additional compres-
sions by merging nodes i∗ with the nodes j∗ if the arc
(i∗, j∗) exists and i∗ is with outgoing rank 1. These pro-
cedures are repeated recursively until the graph cannot
be compressed anymore. Let (G1)+ be the graph that
is eventually obtained and cannot be compressed and
k+ be the number of strongly connected components in
(G1)+. If k+ = 1 then the MDP is unichain, if k+ = 2
then the MDP is multiichain, and if k+ = 3 then the
MDP is either unichain or multichain; [7, Theorem 3.6].

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB02.6

4489

At the end of this section, we give two examples
to show that Algorithm 4 in this paper and [7, Algo-
rithm 5] solve different classes of problems. Of course,
these two classes overlap. Algorithm 4 always classi-
fies an MDP with a recurrent state. It is clear that, if
k+ = 1, [7, Algorithm 5] compresses the graph around
a recurrent state. Thus, if [7, Algorithm 5] detects that
the MDP is unichain, this MDP has a recurrent state.
Example 5 provides a unichain MDP with a recurrent
states and this MDP cannot be classified by [7, Algo-
rithm 5]. Example 6 shows that [7, Algorithm 5] can
classify some MDPs without recurrent states.

Example 5 Consider an MDP with the same state and
action sets as in the second MDP in Example 3. In states
1,2, and 3, the transition probabilities are the same as in
the second MDP in Example 3. In addition, p(1|4,a) =
p(2|4,a) = p(3|4,a) = 1

3 . In this MDP, states 1,2, and
3 are recurrent. For this MDP, G1(4, j) = 1, j = 1,2,3,
and G1(i, j) = 0 in all other cases. This graph cannot be
compressed and therefore k+ = 4. �

Example 6 Let S = {1,2,3,4}, A(1) = A(3) = {a},
and A(2) = A(4) = {a,b}. In addition, p(2|1,a) =
p(1|2,a) = p(4|3,a) = p(3|4,a) = 1 and p(1|2,b) =
p(3|2,b) = p(3|4,b) = p(1|4,b) = 1

2 . This MDP has no
recurrent states. The graph G1 has two strongly con-
nected components {1,2} and {3,4} and they contract
to a graph consisting of two isolated nodes. Thus k+ = 2
and [7, Algorithm 5] detects that this MDP is multi-
chain. �

5. ACKNOWLEDGMENTS

This research was partially supported by NSF grant
DMI-0600538. The authors thank Spyros Reveliotis
for valuable comments and sending their working pa-
per [3]. The first author thanks Noga Alon for providing
the reference to [9].

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network
Flows, Prentice Hall, New Jersey, 1993.

[2] J. Bather, Optimal decision procedures for finite Markov
chains. Part III. Advances in Applied Probability
5(1973), pp. 541–553.

[3] T. Bountourelis, S. Reveliotis, Optimal Node Visitation
in Stochastic Digraphs. Preprint. School of Industrial &
Systems Engineering. Georgia Institute of Technology,
2007.

[4] C. Derman, Finite State Markov Decision Processes,
Academic Press, New York, 1970.

[5] E.B. Dynkin, A.A. Yushkevich, Controlled Markov Pro-
cesses, Springer-Verlag, New York, 1979.

[6] R.A. Howard, Dynamic Programming and Markov Pro-
cesses, MIT Press, Cambridge, MA, 1960.

[7] L.C.M. Kallenberg, Classification problems in MDPs,
in: Z. How, J.A. Filar and A. Chen (Eds.), Markov Pro-
cesses and Controlled Markov Chains, Kluwer, Boston,
2002, pp. 151-165.

[8] L.C.M. Kallenberg, Finite state and action MDPs, in:
E.A. Feinberg and A. Shwartz (Eds.), Handbook of
Markov Decision Processes, Kluwer, Boston, 2002,
pp. 21–87.

[9] W. McCuaig, Intercyclic digraphs, in: N. Robertson and
P. Seymour (Eds.), Graph Structure Theory, Contempo-
rary Mathathematics, vol. 147, Amer. Math. Soc., Prov-
idence, RI, 1993, pp. 203–245.

[10] M.L. Puterman, Markov Decision Processes, Wiley,
New York, 1994.

[11] J.N. Tsitsiklis, NP-hardness of checking the unichain
condition in average cost MDPs. Oper. Res. Lett.
35(2007), pp. 319–323.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB02.6

4490

