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Abstract— We study stochastic dynamic games with a large
number of players, where players are coupled via their cost
functions. A standard solution concept for stochastic games
is Markov perfect equilibrium (MPE). In MPE, each player’s
strategy is a function of its own state as well as the state of the
other players. This makes MPE computationally prohibitive as
the number of players becomes large. An approximate solution
concept called oblivious equilibrium (OE) was introduced in [1],
where each player’s decision depends only on its own state
and the “long-run average” state of other players. This makes
OE computationally more tractable than MPE. It was shown
in [1] that, under a set of assumptions, as the number of
players become large, OE closely approximates MPE. In this
paper we relax those assumptions and generalize that result to
cases where the cost functions are unbounded. Furthermore,
we show that under these relaxed set of assumptions, the OE
approximation result can be applied to large population linear
quadratic Gaussian (LQG) games [2].

I. INTRODUCTION

In this paper, we study stochastic games with a large

number of players. Such games are used to model complex

dynamical systems such as wireless networks [3], [4], in-

dustry dynamics with many firms [5], etc. In such games,

the players typically have competing objectives. A common

equilibrium notion for such games is Markov perfect equi-

librium. In MPE, each player minimizes its individual cost

by choosing a strategy that is a function of the current state

of all the players.

MPE suffers from at least two drawbacks. First, as an

equilibrium concept, it is implausible in settings where many

agents interact with each other; MPE requires the agents to

be aware of the state evolution of all other agents. Second,

MPE can be computationally intractable. MPE is typically

obtained numerically using dynamic programming (DP) al-

gorithms [7]. Thus, as the number of players increases, the

cost of computing the strategy and maintaining the state

of all the players becomes prohibitively large [8]. Several

techniques have been proposed in the literature to deal with

the complexity of large scale systems [9], [10], [15].

Recently, a scheme for approximating MPE for such large

scale games was proposed in [1], via a solution concept

called oblivious equilibrium. In oblivious equilibrium, a

player optimizes given only the long-run average statistics of

other players, rather than the entire instantaneous vector of its
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competitors’ state. OE resolves both of the difficulties raised

above: in OE, a player is reacting to far simpler aggregate

statistics of the behavior of other players. Further, OE

computation is significantly simpler than MPE computation,

since each player only needs to solve a one-dimensional

dynamic program.

Under what conditions will OE approximate MPE? When

there are a large number of players in a game, an individual

player can optimize based on the average behavior of it com-

petitors provided (a) the actual behavior of the competitors

is close to the average behavior, and (b) any deviation from

the average behavior has “small” impact on the cost of the

individual player. It is intuitive to believe that as the number

of players in a game becomes large, the actual behavior

would approach its mean by a law of large numbers effect.

To measure the impact of any deviation from the average

behavior, the authors in [1] defined a “light-tail” condition.

Informally, this condition implies that the effect of a small

perturbation in the instantaneous state of the competitors has

a small effect on the cost of a player. It is reasonable to

expect that under such a condition, if players make decisions

based only on the long-run average, they should achieve

near-optimal performance. Indeed, it is established in [1] that

under a reasonable set of technical conditions (including the

“light-tail” condition), OE is a good approximation to MPE

for industry dynamic models with many firms; formally, this

is called the asymptotic Markov equilibrium (AME) property.

As presented in [1], the main approximation result is

tailored to the class of firm competition models presented

there. In [6], using the methods of [1], the authors isolated

a set of parsimonious assumptions for a general class of

stochastic games, under which OE is a good approximation

to MPE. They also study the case of non-uniform players

with heterogeneous cost functions.

However, the results in [1], [6] are based on the as-

sumption that the cost functions are uniformly bounded

over states and actions. This is a restrictive assumption;

for example, typical cost functions used in decentralized

control are unbounded—e.g., quadratic cost. In this paper, we

remove this boundedness assumption on the cost functions;

this change necessitates an alternate approach to establish

that OE is a good approximation to MPE. We show a general

result under this assumption, then apply our result to a class

of games including games with quadratic cost and linear

dynamics. The latter result is a generalization of a similar

result derived by [2].

The rest of the paper is organized as follows. In section II,

we outline our model of stochastic game, describe our
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notation and define the oblivious equilibrium. In section III,

we introduce the asymptotic Markov equilibrium (AME)

property, formally define the light-tail condition and intro-

duce our assumptions on the cost function. Section IV details

the proof of the main theorem. In section V, we show that

linear-quadratic games can be reduced to a special case of

our model. Section VI concludes the paper.

II. MODEL, DEFINITIONS AND NOTATION

We consider an m-player stochastic game evolving over

discrete time periods with an infinite horizon. The discrete

time periods are indexed by non-negative integers t ∈ N.

The state of a player i at time t is denoted by xi,t ∈ X ,

where X is a discrete subset of R. We assume that the

state evolution of a player i depends only on its own current

state and the action it takes. This can be represented by a

conditional probability mass function (pmf)

xi,t+1 ∼ h (x | xi,t, ai,t) , (1)

where ai,t is the action taken by the player i at time t. We

denote the set of actions available to a player by A; we

assume this is a discrete subset of Euclidean space R.

The single period cost to a player i is given as

c (xi,t, ai,t,x−i,t). Here x−i,t is the state of all players

except player i at time t. Note that the cost to player i
does not depend on the actions taken by other players.

Furthermore, we assume that the cost function is independent

of the identity of other players. That is, it only depends

on the current state xi,t of player i, the total number m

of players at any time, and the fraction f
(m)
−i,t(y), which is

the fraction of players excluding player i, that have their

state as y. In other words, we can write the cost function as

c
(

xi,t, ai,t, f
(m)
−i,t,m

)

, where f
(m)
−i,t can be expressed as

f
(m)
−i,t(y) ,

1

m − 1

∑

j 6=i

1{xj,t=y}. (2)

From equation (1) and the definition of the cost function,

we note that the players are coupled via their cost functions

only.

Each player i chooses an action ai,t = µ
(m)
i (xi,t, f

(m)
−i,t)

to minimize its expected present value. Note that the policy

µ
(m)
i depends on the total number of players m because of

the underlying dependence of the cost function on m. Let

µ
(m) be the vector of policies of all players, and µ

(m)
−i be

the vector of policies of all players except player i. We define

V (x, f,m|µ
(m)
i ,µ

(m)
−i ) to be the expected net present value

for player i with current state x, if the current aggregate state

of players other than i is f , given that i follows the policy

µ
(m)
i and the policy vector of players other than i is given

by µ
(m)
−i . In particular, we have

V (x, f,m | µ
(m)
i ,µ

(m)
−i ) ,

E

[
∞∑

t=0

βtc(xi,t, ai,t, f
(m)
−i,t,m)

∣
∣
∣
∣
∣

xi,0 = x, f
(m)
−i,0 = f ;µ

(m)
i ,µ

(m)
−i

]

, (3)

where 0 < β < 1 is the discount factor. Note that the random

variables (xi,t, f
(m)
i,t ) depend on the policy vector µ

(m) and

the state evolution function h.

We focus on symmetric Markov perfect equilibrium, where

all players use the same policy µ(m). We thus drop the

subscript i in the policy of a player i. Let M be the set

of all policies available to a player. Note that this set also

depends on the total number of players m.

Definition 1 (Markov Perfect Equilibrium): The vector of

policies µ
(m) is a Markov perfect equilibrium if for all i, x,

and f we have

inf
µ′∈M

V
(

x, f,m | µ′,µ
(m)
−i

)

= V
(

x, f,m | µ(m),µ
(m)
−i

)

.

As the number of players becomes large, the MPE be-

comes computationally intractable. This is because the set

of all policies grows exponentially in the number of players.

However, if the coupling between the players is weak, it

is possible that the players can choose their optimal action

based solely on their own state and the average state of

the other players. We expect that as the number of players

becomes large, the changes in the players’ states average

out such that the state vector f
(m)
−i,t is well approximated by

its long run average. Thus, each player can find its optimal

policy based solely on its own state and the long-run average

aggregate state of the other players.

We therefore restrict attention to policies that are only a

function of the player’s own state, and an underlying constant

aggregate distribution of the competitors. Such strategies are

referred to as oblivious strategies since they do not take into

account the complete state of the competitors at any time.

Let us denote µ̃(m) as an oblivious policy of a player i; we

let M̃ denote the set of all oblivious policies available to

a player. This set also depends on the number of players

m. Note that if all players use oblivious strategies, their

states evolve as independent Markov chains. We make the

following assumption regarding the Markov chain of each

player playing an oblivious policy.

Assumption 1: The Markov chain associated with the state

evolution of each player i playing an oblivious policy µ̃(m) is

positive recurrent, and reaches a stationary distribution q(m).

The stationary distribution depends on the number of

players m because the oblivious policy depends on m. Let

µ̃
(m)be the vector of oblivious policies for all players, µ̃

(m)
i

be the oblivious policy for a player i, and µ̃
(m)
−i be the vector

of oblivious policies of all player except the player i. For

simplification of analysis, we assume that the initial state

of a player i is sampled from the stationary distribution

q(m) of its state Markov chain; without this assumption,
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the OE approximation holds only after sufficient mixing of

the individual players’ state evolution Markov chains. Given

µ̃
(m)
−i , for a particular player i, the long-run average aggregate

state of its competitors is denoted by f̃
(m)
−i , and is defined as

f̃
(m)
−i (y) , E

(

f
(m)
−i,t(y)

)

= q(m)(y) (4)

Note that, f̃
(m)
−i is completely determined by the state evo-

lution function h and the oblivious policy µ̃
(m)
−i .

As with the case of symmetric MPE defined above, we

assume that players use the same oblivious policy denoted

by µ̃(m). We thus drop the subscript i in the oblivious

policy of a player i. We define the oblivious value function

Ṽ (x,m|µ̃(m), µ̃
(m)
−i ) to be the expected net present value

for a player i with current state x, if player i follows the

oblivious policy µ̃(m), and players other than i follow the

oblivious policy vector µ̃
(m)
−i . Specifically, we have

Ṽ (x,m | µ̃(m), µ̃
(m)
−i ) ,

E

[
∞∑

t=0

βtc
(

xi,t, ai,t, f̃
(m)
−i ,m

)
∣
∣
∣
∣
∣

xi,0 = x; µ̃(m), µ̃
(m)
−i

]

.

(5)

Note that the expectation does not depend explicitly on the

policies used by players other than i; this dependence only

enters through the long-run average aggregate state f̃
(m)
−i .

In particular, the state evolution is only due to the policy

of player i. Using the oblivious value function, we define

oblivious equilibrium as follows.

Definition 2 (Oblivious Equilibrium): The vector of poli-

cies µ̃ represents an oblivious equilibrium if for all i, we

have

inf
µ′∈M̃

Ṽ
(

x,m | µ′, µ̃
(m)
−i

)

= Ṽ
(

x,m | µ̃(m), µ̃
(m)
−i

)

, ∀x.

In this paper, we do not show the existence of Markov

perfect equilibrium or of oblivious equilibrium. We assume

that both the equilibrium points exist for the stochastic game

under consideration [14].

Assumption 2: Markov perfect equilibrium and oblivious

equilibrium exist for the stochastic game under consideration.

III. ASYMPTOTIC MARKOV EQUILIBRIUM AND

THE LIGHT TAIL

As mentioned before, we would like to approximate MPE

using OE. To formalize the notion under which OE approx-

imates MPE, we define the asymptotic Markov equilibrium

(AME) property. Intuitively, this property says that an obliv-

ious policy is approximately optimal even when compared

against Markov policies. Formally, the AME ensures that

as number of players in the game becomes large, the ap-

proximation error between the expected net present value

obtained by deviating from the oblivious policy µ̃(m) and

instead following the optimal (non-oblivious) policy goes to

zero for each state x of the player.

Definition 3 (Asymptotic Markov Equilibrium): We say

that a sequence of oblivious policies µ̃
(m)
−i possesses the

asymptotic Markov equilibrium (AME) property if for all x
and i, we have

lim
m→∞

E

[

V
(

x, f,m | µ̃(m), µ̃
(m)
−i

)

−

inf
µ′∈M

V
(

x, f,m | µ′, µ̃
(m)
−i

)
]

= 0.

Notice that the expectation here is over f , which denotes

the aggregate state of all players other than i. MPE requires

the error to be zero for all (x, f), rather than in expectation;

of course, in general, it will not be possible to find a single

oblivious policy that satisfies the AME property for any f .

In particular, in OE, actions taken by a player will perform

poorly if the other players’ state is far from the long-run

average aggregate state. Thus, AME implies that the OE

policy performs nearly as well as the non-oblivious best

policy for those aggregate states of other players that occur

with high probability.

In order to establish the AME property, we make some as-

sumptions on the cost functions. For notational convenience,

we drop the subscripts i, t whenever it does not lead to any

ambiguity. Note that in oblivious equilibrium, we replace the

actual distribution of the opponents’ state f
(m)
−i,t by its mean

distribution f̃
(m)
−i . In order to measure the distance between

the actual distribution of the state and its mean, we define a

notion of norm on a distribution.

Definition 4 (1-g Norm): Given a function g : X →
[0,∞), we define the 1 − g norm of the distribution f as

‖f‖1−g =
∑

y

|f(y)|g(y) (6)

The 1 − g norm is a weighted norm where g is the weight

function. Note that this function depends on the actual form

of the cost function. For a given function g, the distance

between the actual distribution f
(m)
−i,t and its mean f̃

(m)
−i is

given by
∥
∥
∥f

(m)
−i,t − f̃

(m)
−i

∥
∥
∥

1−g
=
∑

y

∣
∣
∣f

(m)
−i,t(y) − f̃

(m)
−i (y)

∣
∣
∣ g(y).

We now formally define the light tail condition.

Assumption 3 (Light Tail): Given any ǫ > 0, there exists

a state value z > 0, such that

E

[

g(Ũ (m))1|Ũ(m)|>z | Ũ (m) ∼ f̃
(m)
−i

]

≤ ǫ, ∀m, (7)

E

[

g2(Ũ (m))1|Ũ(m)|>z | Ũ (m) ∼ f̃
(m)
−i

]

≤ ǫ, ∀m. (8)

Here Ũ (m) is a random variable distributed according to

f̃
(m)
−i . As mentioned before, g(y) is a weight function for

the state y. Thus, the light tail assumption requires that the

weighted tail probability of the competitors goes to zero

uniformly over m. Also, note that only the second condi-

tion needs to be checked; a straightforward application of

Jensen’s inequality then shows the first condition must hold.

However, we retain both inequalities for clarity. Furthermore,

if supy g(y) < ∞, then the light tail condition is just an

assumption on the tail of the mean distribution f̃
(m)
−i .

In order that the AME property holds, we would like that

the cost functions are close to each other when the actual
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distribution f
(m)
−i,t is close to its mean distribution f̃

(m)
−i . For

this to hold, we impose a uniformity condition on the growth

of the cost function. Specifically, we make the following

assumption on the cost function.

Assumption 4: There exists a constant C such that, for all

x, a, f1, f2 and m, we have

|c (x, a, f1,m) − c (x, a, f2,m)|

≤ C |c (x, a, f1,m)| ‖f1 − f2‖1−g + H
(

‖f1 − f2‖
2
1−g

)

Note that here H(‖f‖2
1−g) denotes a function that is linear

in moments of ‖f‖ up to the second moment; i.e., H(‖f‖2)
cannot include any terms that depend on moments higher

than ‖f‖2
1−g . Note that the function g in Definition 4 must be

chosen such that the assumptions 3 and 4 are simultaneously

satisfied. As we will show in section V, the linear quadratic

Gaussian (LQG) tracking problem discussed in [2] is a

special case where the difference in the cost functions can be

expressed in the form given above. Furthermore,we will show

that for the LQG problem, the function g(y) is a polynomial

in the state y.

The next assumption is on the set of policies M. We will

restrict attention to sequences (µ(m), µ̃
(m)
−i ) that satisfy the

following assumption.

Assumption 5: Given a sequence (µ(m), µ̃
(m)
−i ), we as-

sume that:

sup
m

E

[ ∞∑

t=0

βtc2
(

xi,t, ai,t, f̃
(m)
−i ,m

)

|

xi,0 = x, f
(m)
−i,0 = f ;µ(m), µ̃

(m)
−i

]

< ∞

In contrast to earlier work on oblivious equilibrium [1] [6],

our assumptions are significantly different. Specifically, we

do not assume that the cost functions are uniformly bounded

in state x, distribution f , or actions a as was done in the

previous work. This lack of uniform bound on the cost

function necessitates a significantly different proof technique.

However, some of the ideas in the proofs are borrowed

from [6].

IV. ASYMPTOTIC RESULTS FOR OBLIVIOUS

EQUILIBRIUM

In this section, we prove the AME property using a series

of technical lemmas. Assumptions 1-5 are kept throughout

the remainder of this section. The first lemma shows that

under the 1 − g norm, the variance of the distribution f
(m)
−i,t

goes to zero as the number of players become large.

Lemma 1: Under the light-tail assumption and if all the

players use oblivious policy µ̃
(m)
−i , we have

E

[∥
∥
∥f

(m)
−i,t − f̃

(m)
−i

∥
∥
∥

2

1−g

]

→ 0 as m → ∞

Proof: We can write
∥
∥
∥f

(m)
−i,t(y) − f̃

(m)
−i (y)

∥
∥
∥

1−g
=
∑

y

g(y)
∣
∣
∣f

(m)
−i,t(y) − f̃

(m)
−i (y)

∣
∣
∣ .

Now, let a small ǫ > 0 be given and let z be such that the

light tail condition in equation (7) and (8) is satisfied for the

given ǫ. Then,

∥
∥
∥f

(m)
−i,t − f̃

(m)
−i

∥
∥
∥

2

1,g
≤
[

z max
|y|≤z

g(y)
∣
∣
∣f

(m)
−i,t − f̃

(m)
−i (y)

∣
∣
∣

+
∑

|y|>z

g(y)f
(m)
−i,t(y) +

∑

|y|>z

g(y)f̃
(m)
−i (y)

]2

.

Using the identity (a + b + c)
2
≤ 4a2 + 4b2 + 4c2, we get

that

E

∥
∥
∥f

(m)
−i,t − f̃

(m)
−i

∥
∥
∥

2

1,g
≤ 4z2

E

[

max
|y|≤z

g2(y)
∣
∣
∣f

(m)
−i,t − f̃

(m)
−i (y)

∣
∣
∣

2
]

︸ ︷︷ ︸

≡ A
(m)
z

+ 4E




∑

|y|>z

g(y)f
(m)
−i,t(y)





2

︸ ︷︷ ︸

≡ B
(m)
z

+4E




∑

|y|>z

g(y)f̃
(m)
−i (y)





2

︸ ︷︷ ︸

≡ C
(m)
z

.

(9)

Note that term in parenthesis in C
(m)
z is independent of t and

hence a constant. By the light tail assumption, for sufficiently

small ǫ > 0 and sufficiently large z, we have C
(m)
z ≤ 4ǫ2 <

4ǫ for all m. Let us now consider the term A
(m)
z . We have

E

(

f
(m)
−i,t(y) − f̃

(m)
−i

)2

=
1

(m − 1)2
E




∑

j 6=i

1{xj,t=y} − E




∑

j 6=i

1{xj,t=y}









2

,

=
1

(m − 1)2

∑

j 6=i

Var
(
1{xj,t=y}

)
,

≤
1

4(m − 1)
→ 0 as m → ∞.

The random variable 1{xj,t=y} is a Bernoulli random vari-

able with E
[
1{xj,t=y}

]
= q(m)(y) and Var

(
1{xj,t=y}

)
=

qm(y)(1 − qm(y)) ≤ 1
4 . Thus, for each |y| ≤ z, there exists

an my such that for m ≥ my we have

E

[∣
∣
∣f

(m)
−i,t(y) − f̃

(m)
−i (y)

∣
∣
∣

2
]

≤
ǫ

4z2g2(y)

Define ma = max|y|≤z{my}. Then, for m > ma we have

A
(m)
z < ǫ.

Let us now consider the term B
(m)
z . Using the definition

of f
(m)
−i,t we have

B(m)
z =

4

(m − 1)2
E




∑

|y|>z

∑

j 6=i

g(y)1{xj,t=y}





2

=
4

(m − 1)2
E




∑

j 6=i

∑

|y|>z

g(y)1{xj,t=y}





2

where the interchange of summation is justified since for

any given m, the summations are finite. Let us denote

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC14.1

5534



∑

|y|>z g(y)1{xj,t=y} = W
(m)
j,t . We can thus write B

(m)
z as

B(m)
z =

4

(m − 1)2
E




∑

j 6=i

W
(m)
j,t





2

=
4

(m − 1)2

[

Var
(∑

j 6=i

W
(m)
j,t

)

+
(∑

j 6=i

EW
(m)
j,t

)2
]

(10)

From equation (4), we know that E
[
1{xj,t=y}

]
= f̃

(m)
−i .

From the light tail condition, for chosen z, we have

E

(

W
(m)
j,t

)

< ǫ for all m. Thus,

∑

j 6=i

E

(

W
(m)
j,t

)

< (m − 1)ǫ (11)

Let us now consider the first term in equation (10). We have

Var
(∑

j 6=i

W
(m)
j,t

)

=
∑

j 6=i

Var
(

W
(m)
j,t

)

= (m − 1)Var
(

W
(m)
j,t

)

= (m − 1)

[

E

(

W
(m)
j,t

)2

−
(

E

(

W
(m)
j,t

))2
]

< (m − 1)E
(

W
(m)
j,t

)2

+ (m − 1)ǫ2

(12)

where the first equality follows from the fact that f
(m)
−i,t is an

(m − 1) fold convolution of f̃
(m)
−i , since all the opponents

are using oblivious policy µ̃ and hence are evolving indepen-

dently. The last inequality is because of the chosen value of

z, which gives E

(

W
(m)
j,t

)

< ǫ for all m. Note that W
(m)
j,t as

defined is a random variable that takes the value g(y) with

probability f̃
(m)
−i (y). Thus,

E

(

W
(m)
j,t

)2

=
∑

|y|>z

g2(y)f̃
(m)
−i (y) < ǫ

where the last inequality follows from the light tail condition.

Substituting the above equation in equation (12), we get that

Var
(∑

j 6=i

W
(m)
j,t

)

< (m − 1)ǫ + (m − 1)ǫ2 < 2(m − 1)ǫ

(13)

Substituting equations (11) and (13) in equation (10), we get

that for some m > mb we have

B(m)
z <

4

(m − 1)2
[
2(m − 1)ǫ + (m − 1)2ǫ2

]

<
8

(m − 1)
ǫ + 4ǫ2 ≤ 12ǫ

From bounds on A
(m)
z and C

(m)
z and the above equation, we

get that for sufficiently large z and for m > max{ma,mb}
and we have

E

∥
∥
∥f

(m)
−i,t − f̃

(m)
−i

∥
∥
∥

2

1,g
≤ 17ǫ.

Since ǫ is arbitrary, this proves the lemma.

Lemma 2: For all x and (µ(m), µ̃
(m)
−i ) satisfying assump-

tions 1-5, we have

lim
m→∞

E

[
∞∑

t=0

βt
∣
∣
∣c
(

xi,t, ai,t, f
(m)
−i,t,m

)

−

c
(

xi,t, ai,t, f̃
(m)
−i ,m

) ∣
∣
∣ | xi,0 = x;µ(m), µ̃

(m)
−i

]

= 0.

Proof: Let us define

∆m
i,t ,

∣
∣
∣c
(

xi,t, ai,t, f
(m)
−i,t,m

)

−c
(

xi,t, ai,t, f̃
(m)
−i ,m

) ∣
∣
∣.

Also denote cm,t =
∣
∣
∣c
(

xi,t, ai,t, f̃
(m)
−i ,m

)∣
∣
∣ and Fm,t =

∥
∥
∥f

(m)
−i,t − f̃

(m)
−i

∥
∥
∥

1−g
. Using assumption 4 on the cost function

we have

E

[ ∞∑

t=0

βt∆m
i,t | µ(m), µ̃

(m)
−i

]

≤ CE

[
∞∑

t=0

βtcm,tFm,t | µ(m), µ̃
(m)
−i

]

+ E

[
∞∑

t=0

βtH
(
F 2

m,t

)

]

= C
∞∑

t=0

βt
E

[

cm,tFm,t | µ(m), µ̃
(m)
−i

]

+
∞∑

t=0

βtH
(
E
[
F 2

m,t

])

where the last equality follows from monotone convergence

theorem. Let us denote the first term of the above equation

as T1 and the second term as T2. Using Cauchy-Schwarz

inequality we get that

T1 ≤ C

∞∑

t=0

(
βt

E
[
c2
m,t

])1/2 (
βt

E
[
F 2

m,t

])1/2

≤ C

(
∞∑

t=0

βt
E
[
c2
m,t

]

)1/2( ∞∑

t=0

βt
E
[
F 2

m,t

]

)1/2

where the last inequality is due to Hölder’s inequality. Note

that we have dropped the policy vector in the conditioning

field for notational compactness. By assumption 5, the first

term in above equation is bounded. Also, note that E
[
F 2

m,t

]

is independent of t and hence

∞∑

t=0

βt
E
[
F 2

m,t

]
=

E
[
F 2

m,t

]

1 − β

Substituting the above equation in second term of T1 and

also in T2 and using lemma 1 we get the desired result.

Theorem 3 (Main Theorem): Consider a sequence of

oblivious equilibrium policies µ
(m) that satisfies assump-

tion 5 with µ(m) equal to either the oblivious or non-

oblivious best response to µ̃
(m)
−i . Then the AME property

holds. That is, for all i, x, we have

lim
m→∞

E

[

V
(

x, f,m | µ̃(m), µ̃
(m)
−i

)

−

inf
µ′∈M

V
(

x, f,m | µ′, µ̃
(m)
−i

) ]

= 0.

Proof: The proof of the theorem is similar to one given

in [1] and is omitted due to space constraints.
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V. LINEAR QUADRATIC SYSTEM

In this section, we consider linear quadratic (LQ) games

with many players [2]. We show that these games are a

special case of the model considered in the previous section.

We keep assumptions 1, 2 and 5 throughout the remainder

of this section. Our objective in this section is to prove

that assumptions 3 and 4 hold for the LQ model, and thus

the AME property holds for the LQ model. Compared to

[2], we consider a discrete time version of the LQ games.

Furthermore, for simplicity we assume that all players have

the same form of cost function, i.e., they are uniform. This

assumption can be relaxed, as we discuss in section VI. The

state evolution of a player 1 ≤ i ≤ m is given as

xi,t+1 = Axi,t + Bai,t + wi,t, (14)

where xi,t ∈ Z and ai,t ∈ Z. Here A,B > 0. The noise

process wi,t is assumed to be independent across time as

well as players. We also assume that the noise process has

zero mean and all its moments are finite.

We assume that the single period cost function for a player

i is separable in its action. That is

c
(

xi,t, ai,t, f
(m)
−i,t

)

= c1

(

xi,t, f
(m)
−i,t

)

+ c2 (ai,t)

where we assume that c2(ai,t) is a quadratic function of ai,t.

Note that the cost function does not depend upon the number

of players playing the game. Here f
(m)
−i,t is the distribution of

m players over the state space. Let us define the kth moment

of f
(m)
−i,t as

γk =
∑

y

f
(m)
−i,t(y)yk.

We assume that c1 is a jointly strictly convex, quadratic

function of x and γk, k = 1, . . . ,K. Also, for given x and

f
(m)
−i,t, we have

inf
x,f

c1 (x, f) = ǫ0 > 0.

This model is a generalization of the LQG games considered

in [2], where the cost function depends only on the first

moment γ1 of the distribution f
(m)
−i,t. Furthermore, that result

was derived for a specific form of cost function.

Each player choses an action ai,t = µ(m)
(

xi,t, f
(m)
−i,t

)

to

minimize its total expected cost. The expected net present

cost for a player i is given as

V
(

x, f | µ(m),µ−i

)

=

E

[
∞∑

t=0

βtc
(

xi,t, ai,t, f
(m)
−i,t

)

|xi,0 = x, f
(m)
−i,0 = f ;µ(m),µ−i

]

We assume that each player chooses its policy µ(m) to make

its expected net present value V
(
x, f | µ(m),µ−i

)
finite.

In oblivious equilibrium, each player’s policy is only a

function of its current state and average aggregate distri-

bution of its competitors. The next lemma shows that for

the LQ model described above, the oblivious equilibrium is

independent of the number of players m.

Lemma 4: Under assumption 2, for the LQ model de-

scribed above, there exists an oblivious equilibrium that is

independent of the number of players m playing the game.

Proof: Let (µ̂, f̂) be an oblivious equilibrium for the

LQ model with m1 players playing the game. This means

that µ̂ is an optimal policy under the cost function c(x, a, f̂)
and that f̂ is the stationary distribution obtained from the

dynamic equation xi,t+1 = Axi,t + Bµ̂(xi,t, f̂) + wi,t. Now

let us assume that the number of players changes to m2.

Consider a player i and assume that every one of its m2 − 1
opponent uses the policy µ̂. Then f̃−i = f̂ , and since the cost

function does not depend upon the total number of players,

the optimal policy for player i is µ̂. Since the dynamics

are independent of the number of players, the stationary

distribution for player i is f̂ . Thus, (µ̂, f̂) is an oblivious

equilibrium for the game with m2 players.

To prove that there is no optimality loss if a player

uses oblivious equilibrium policy, we first define the weight

function g for the LQ model.

Definition 5 (LQ 1-g norm): For the LQ model described

above, let g(y) = |y|K . With this weight function, we define

‖f‖1−g =
∑

y

f(y)|y|K

The following lemma verifies the light-tail condition for the

LQ model.

Lemma 5: For the LQ model, the light tail condition holds

for the weight function g(y) = |y|K .

Proof: Note that f̃−i = q(y) where q(y) is the station-

ary probability of the Markov chain to be in state y and is

independent of the number of players m. For linear systems

with quadratic cost, we know that the optimal policy is a

linear function of the state [11]. That is, µ̃ = −Lx+l0, where

L > 0 and l0 are constants that may depend on f̃ . The closed

loop system thus evolves as xt+1 = (A−BL)xt +Bl0 +wt.

From assumption 1, we know that the closed loop system is

stable; thus we have (A − BL) < 1.

We use the Foster-Lyapunov stability criterion [12] to

establish the light tail condition. Using the Lyapunov func-

tion V (x) = x and the fact that the noise process has

finite mean, we can show that Eq(x) is finite. We then use

induction to show that the stationary distribution has finite

2K moments. Specifically, assume that Eq(x
j) is finite for

j = 1, . . . , p, where p < 2K. Then, using the Lyapunov

function V (x) = xp+1 and the fact that the noise process

has finite moments, we can show that Eq(x
p+1) is finite.

Thus, the stationary distribution has its first 2K moments

finite [13]. So for any given ǫ, there exists a state z, such

that
∑

|y|>z

|y|2Kq(y) < ǫ.

Hence the lemma is proved.

The next lemma relates the absolute difference in the cost

function to the 1 − g norm difference between the actual

distribution f
(m)
−i,t and its average f̃−i.

Lemma 6: For the LQ model described above, there exist
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constants M1,M2 and M3 such that

∣
∣
∣c
(

xi,t, ai,t, f
(m)
−i,t

)

− c
(

xi,t, ai,t, f̃−i

)∣
∣
∣ ≤

M1c
(

xi,t, ai,t, f̃−i

)∥
∥
∥f

(m)
−i,t − f̃−i

∥
∥
∥

1−g
+

M2

∥
∥
∥f

(m)
−i,t − f̃−i

∥
∥
∥

1−g
+ M3

∥
∥
∥f

(m)
−i,t − f̃−i

∥
∥
∥

2

1−g

Proof: For simplicity of notation, we drop the sub-

scripts i, t. Also denote Γ(f) = [γ1(f), . . . , γK(f)], where

γi(f) is the ith moment of the distribution f . Then, we have

∆c =
∣
∣
∣c (x, a,Γ(f)) − c

(

x, a,Γ(f̃)
)∣
∣
∣

=
∣
∣
∣c1 (x,Γ(f)) − c1

(

x,Γ(f̃)
)∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫ 1

α=0

∂c1

(

x,Γ(f̃ + α(f − f̃))
)

∂α
dα

∣
∣
∣
∣
∣
∣

≤

∫ 1

α=0

∑

y

∣
∣
∣f̃(y) − f(y)

∣
∣
∣

∣
∣
∣
∣
∣
∣

∂c1

(

x,Γ(f̃ + α(f − f̃))
)

df(y)

∣
∣
∣
∣
∣
∣

dα (15)

where we have used the fundamental theorem of calculus.

Consider the second term in the above equation. We have

∣
∣
∣
∣
∣
∣

∂c1

(

x,Γ(f̃ + α(f − f̃))
)

df(y)

∣
∣
∣
∣
∣
∣

≤
K∑

j=1

∣
∣
∣
∣

∂c1

∂γj

∂γj

∂f(y)

∣
∣
∣
∣

=

K∑

j=1

∣
∣
∣
∣

∂c1

∂γj

∣
∣
∣
∣
|y|j

≤ K1|y|
K

K∑

j=1

∣
∣
∣
∣

∂c1

∂γj

∣
∣
∣
∣

where the last inequality holds for some K1 since y ∈ Z.

Substituting the above equation in equation (15), we get

∆c ≤ K1

∥
∥
∥f̃ − f

∥
∥
∥

1−g

K∑

j=1

∫ 1

α=0

∣
∣
∣
∣
∣

∂c1

(

x,Γ(f̃ + α(f − f̃))
)

∂γj

∣
∣
∣
∣
∣
dα (16)

where we use the fact that

∥
∥
∥f̃ − f

∥
∥
∥

1−g
is independent of α

and we also changed the order of integral and the summation.

Define a vector z = [γ1, γ2, . . . γK , x, 1] and note that c1

is a strictly convex quadratic function of z. Thus, we can

write c1 (x, γ1, . . . , γK) = zT Qz for some positive definite

symmetric matrix Q. Note that Γ(f̃ + α(f − f̃))j = γ̃j +
α(γj − γ̃j). Since c1 is a quadratic function of γj , the partial

derivative of c1 with respect to γj is a linear function of γj

and consequently a linear function of α. Thus, we have

∣
∣
∣
∣
∣

∂c1

(

x,Γ(f̃ + α(f − f̃))
)

∂γj

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

K∑

s=1

Qsjzs +
K∑

s=1

Qjszs + QK+1,jx + 2Qj,K+2

∣
∣
∣
∣
∣

≤ |QK+1,jx| +

K∑

s=1

(|Qsj | + |Qjs|) |zs| + 2 |Qj,K+2|

≤ |QK+1,jx| +

K∑

s=1

(|Qsj | + |Qjs|) (|γ̃s| + α |γs − γ̃s|)

+ 2 |Qj,K+2| (17)

where we have used the fact that zs = γ̃s + α(γs − γ̃s) for

s = 1, . . . ,K. Now,

|γs − γ̃s| =

∣
∣
∣
∣
∣

∑

y

f(y)ys −
∑

y

f̃(y)ys

∣
∣
∣
∣
∣

≤
∑

y

∣
∣
∣f(y) − f̃(y)

∣
∣
∣ |y|s

≤
∑

y

∣
∣
∣f(y) − f̃(y)

∣
∣
∣ |y|K

=
∥
∥
∥f − f̃

∥
∥
∥

1−g

Substituting above equation in equation (17), and integrating

with respect to α we get that

∫ 1

α=0

∣
∣
∣
∣
∣

∂c1

(

x,Γ(f̃ + α(f − f̃))
)

∂γj

∣
∣
∣
∣
∣
dα

≤ DT
j |z̃| + K2

∥
∥
∥f − f̃

∥
∥
∥

1−g
,

for some K2. Here we used the notation |z̃| =
[|γ̃1| , . . . |γ̃K | , |x|, 1] and Dj is a vector of length K+2 with

coefficients from equation (17). Substituting above equation

in equation (16), we get

∆c ≤ K1

∥
∥
∥f̃ − f

∥
∥
∥

1−g





K∑

j=1

DT
j |z̃| + K2K

∥
∥
∥f − f̃

∥
∥
∥

1−g





= K1

∥
∥
∥f̃ − f

∥
∥
∥

1−g
DT |z̃| + K1K2K

∥
∥
∥f − f̃

∥
∥
∥

2

1−g
(18)

Now consider DT |z̃|. We show that there exists a constant

δ > 0 such that δDT |z̃| ≤ |z̃|T Q|z̃| + ǫ0. Define w =
(δ/2)(Q)−1/2D. Then, we have

|z̃|T (Q)|z̃| + ǫ0 − δDT |z̃|

= |z̃|T (Q)|z̃| − 2wT (Q)1/2|z̃| + ǫ0 + wT w − wT w

=
(

(Q)1/2|z̃| − w
)T (

(Q)1/2|z̃| − w
)

+ ǫ0 − wT w

=
(

|z̃| − (Q)−1/2w
)T

Q
(

|z̃| − (Q)−1/2w
)

+ ǫ0 − wT w

≥ ǫ0 − wT w
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where the last inequality follows since the first term is a

quadratic form. So we need to ensure that ǫ0 − wT w ≥ 0,

which implies that

δ2

4
DT (Q)−1D ≤ ǫ0 =⇒ δ ≤

√

4ǫ0
DT (Q)−1D

If we choose K3 > 1/δ, then we have DT |z̃| ≤
K3|z̃|

T Q|z̃| + K3ǫ0.

Next we show that there exists a K4 such that |z̃|T Q|z̃| ≤
K4z̃Qz̃, where z̃ = [γ̃1, . . . γ̃K , x, 1]. Note that |z̃|T |z̃| =
z̃T z̃. We have

|z̃|T Q|z̃| ≤ λQ
max|z̃|

T |z̃|

= λQ
maxz̃

T z̃

≤ K4λ
Q
minz̃

T z̃

where the last inequality is true for a suitable choice of K4.

Note that Q is positive definite matrix so λQ
min > 0. Since

K4λ
Q
minz̃

T z̃ ≤ K4z̃
T Qz̃, we have that |z̃|T Q|z̃| ≤ K4z̃Qz̃

for some value of K4. Now,

DT |z̃| ≤ K3|z̃|
T Q|z̃| + K3ǫ0

≤ K3K4z̃Qz̃ + K3ǫ0

= K3K4c1 (x, γ̃1, . . . γ̃K) + K3ǫ0 (19)

Substituting the above equation in equation (18), we prove

the lemma.

We restrict attention to sequences (µ(m), µ̃
(m)
−i ) that satisfy

assumption 5. We conjecture that this assumption would be

satisfied for the LQ model if the noise process has finite

fourth moment. Under this assumption, the AME property

holds for linear systems with quadratic costs.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we studied stochastic dynamic games with

many players, where the players are coupled via their cost

functions. Similar to [1], we showed that for a certain class

of stochastic games, we can approximate MPE by a compu-

tationally simpler concept called OE. Previous work done in

this area [1], [6] (where the AME property was established

for profit maximization) assumed a uniform bound on the

cost function. In this paper, we extended the notion of OE

to a class of games where the cost function is unbounded.

The lack of a uniform bound necessitated a new proof

technique. We showed that games with linear dynamics and

quadratic costs are a special case of the model considered.

This generalizes a similar result derived in [2].

In the development throughout the paper, we have assumed

that all players are uniform, i.e., they have same form of cost

function c. The results of this paper can be easily extended

to the case where the players are non-uniform and their cost

functions are drawn from a finite set of types. The reader

is referred to [6], where a similar development was done

albeit for a different set of assumptions. However, the same

technique can be used here to extend our model; the details

of which are omitted due to space constraints.

As mentioned before, the concept of oblivious equilibrium

was first introduced in [1], where it was used to establish

AME property for industry dynamic models. Common single

period profit functions used in those models are bounded

over states. A typical example is a profit function arising

from price competition among firms that face a logit demand

system generated by consumers with bounded income. For

such functions, the AME property can be established using a

slightly different approach. Specifically, assumptions 4 and 5

can be replaced by a uniform bound on the cost function

as well as assuming that the cost functions are Gateaux

differentiable with respect to f (m)(y). For such models, it is

possible to show that

|log c(x, a, f1,m) − log c(x, a, f2,m)| ≤ ‖f1 − f2‖1−g

where

g(y) = sup
x,a,f(m),m

∣
∣
∣
∣
∣

∂ log c
(
x, a, f (m),m

)

∂f (m)(y)

∣
∣
∣
∣
∣

The statement of lemma 2 then follows by a similar argument

as given in lemma 4 of [6]. As a part of our future work, we

hope to develop a model that unifies these two approaches.
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