
Decentralized Robust Servomechanism Problem for Large Flexible

Space Structures under Sensor and Actuator Failures

Samuel T. C. Huang, Edward J. Davison, Raymond H. S. Kwong

Abstract— The decentralized robust servomechanism prob-
lem (DRSP) for large flexible space structures (LFSS) under
sensor and actuator failures is considered. Failure conditions
are modelled by failure matrices. This permits a unified
treatment of sensor and actuator failures. For colocated LFSS,
stabilization, tracking of constant set points, and regulating
constant disturbances can be simultaneously handled using a
decentralized tuning PID output-feedback controller. Necessary
and sufficient conditions for solvability of the DRSP for colo-
cated LFSS under sensor and actuator failures are derived.
Two detailed examples demonstrate the effectiveness of the
controller.

I. INTRODUCTION

Many systems deployed in space contain large flexible

structures. Typical examples include communication satel-

lites and solar panels. This has generated considerable inter-

est in the control of large flexible space structures (LFSS)

[1]. Since it is extremely costly, if not impossible to carry out

repairs in space, control systems which can tolerate sensor

and actuator failures are highly desirable. Previous work

in fault-tolerant control design for LFSS includes [2], [3],

[4], [5]. In [2], a controller design procedure is proposed to

maintain stability of the closed loop system in the presence

of actuator failure. In [3]–[6], the controller parameters of the

LFSS are “tuned,” based on precalculated scenarios to handle

anticipated component failures. The fault-tolerant control

designs in these works do not consider reference tracking

or disturbance rejection.

In this paper, the decentralized robust servomechanism

problem (DRSP) [7] for a colocated LFSS under sensor

and actuator failures is studied. The control objective is

to design a decentralized controller to stabilize the closed

loop system, and to track constant set points independent

of any unknown constant disturbances. Furthermore, in the

case of sensor or/and actuator failures, closed loop stability

should be maintained, and reference tracking and disturbance

rejection properties continue to hold in the “non-failed”

part of the LFSS. This constitutes stronger fault tolerance

requirements than those considered previously. It is shown

that the existence condition for a solution to the problem can

be expressed solely in terms of the rigid body model of the
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LFSS, and the obtained controller that solves the problem is a

decentralized tuning PID controller. The existence conditions

provide insight on how structural interconnections of the

LFSS can have significant impact on the design of fault

tolerant controllers.

This paper is organized as follows: Section II introduces

the LFSS model, states the DRSP and develops our fault

model. Section III states the main results. Section IV presents

numerical examples. Section V concludes this paper.

II. PRELIMINARIES

A. Colocated LFSS System Model

A colocated LFSS that is controlled by ν ≥ 2 control
agents {Si}i∈I with I := {1, 2, . . . , ν} is modelled as:

ẋ =

[
0 In

−Ω2 −D

]

︸ ︷︷ ︸

A

x +
ν∑

i=1

[
0
Li

]

︸︷︷ ︸

Bi

ui +

[
0
E

]

︸︷︷︸

E

ω,

yi =
[
LTi 0

]

︸ ︷︷ ︸

Ci

x, i ∈ I,

ei = yi − yrefi , i ∈ I,

(1)

where x ∈ R
2n is the system state; {ui ∈ R

mi}i∈I are the

control inputs to the system; {yi ∈ R
mi}i∈I are the outputs

of the system; {yrefi ∈ R
mi}i∈I are constant set points; and

ω ∈ R
q is a constant disturbance. The matrices Ω2, D ∈

R
n×n and {Li ∈ R

n×mi}i∈I take the following forms:

Ω2 =

[
0 0
0 Ω̄2

]

, D =

[
0 0
0 D̄

]

, Li =

[

L̂i

L̄i

]

, i ∈ I.

Ω2 has n̂ := n − rank(Ω2) 0-eigenvalues, which are the
rigid body modes of the system. Ω̄2, D̄ ∈ R

(n−n̂)×(n−n̂) are

diagonal matrices with strictly positive diagonal elements. Ω̄2

contains the elastic modes of the LFSS, and D̄ contains the

matching damping factors. For i ∈ I, L̂i ∈ R
n̂×mi are rows

in Li that match the rigid body modes of the system. Let

m = m1 + m2 + . . . + mν .

We will use superscripts to denote scalar components of

a vector. For example, we write yi =
[
y1

i y2
i . . . ymi

i

]T

and ui =
[
u1

i u2
i . . . umi

i

]T
for i ∈ I.

The LFSS model can be generalized to include a Fiω term

in yi. This will require only minor changes to the results, so

the term has been omitted for simplicity.

B. Rigid Body Model of LFSS

In the LFSS mode, the state is actually x =
[

dT ḋT
]T
∈

R
2n, where d ∈ R

n is the displacement vector. {d ∈ R
n |

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA13.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 410



−Ω2d = 0} is the dimension-n̂ subspace of displacement
vectors in which no elastic deformations occur. The dynamics

in this subspace form the rigid body model of the LFSS

(here x̂ ∈ R
2n̂, and L̂i ∈ R

n̂×mi for i ∈ I):

˙̂x =

[
0 In̂

0 0

]

x̂ +

ν∑

i=1

[
0

L̂i

]

ui,

yi =
[

L̂Ti 0
]
x̂, i ∈ I,

(2)

C. Decentralized Robust Servomechanism Problem for LFSS

Given a LFSS (1), the decentralized robust servomech-

anism problem for the LFSS (DRSP) is stated as follows:

Find a decentralized controller so that:

A1) Every eigenvalue of the resultant closed loop system

is contained in the open left half plane.

A2) Asymptotic tracking occurs, i.e., limt→∞ ei(t) = 0,
i ∈ I for all constant disturbances ω, all constant set

points yrefi , and all initial conditions of the system.

A3) Property A2 holds for all perturbations of the LFSS

which do not cause the resultant controlled system to

become unstable.

Details on the robustness condition A3 is found in [7].

D. Existence Conditions

Necessary and sufficient conditions for the DRSP to have

a solution are given in [1], as follows:

Theorem 1: [1] Given a LFSS (1), the following are

equivalent:

• There exists a solution to the DRSP.

• The LFSS has no decentralized fixed modes [1] at 0.

• The rigid body model (2) of the LFSS has no decen-

tralized fixed modes at 0.

• The rigid body model of the LFSS is controllable.

• rank(L̂) = n̂, where L̂ ∈ R
n̂×m is defined as:

L̂ :=
[

L̂1 L̂2 . . . L̂ν

]
. (3)

The following result characterizes a controller which

solves the DRSP:

Theorem 2: [1] Assume that the DRSP for a LFSS has a

solution. Consider a decentralized controller in which each

control agent Si, i ∈ I applies a tuning PID controller:

ui = −KP
i yi −KD

i ẏi − ǫKI
i ηi,

η̇i = 0ηi + (yi − yrefi ),
(4)

where arbitrary KP
i , KD

i , KI
i > 0 are in R

mi×mi . Then this

controller has the property that there exists ǫ⋆ > 0 such that
for all ǫ ∈ (0, ǫ⋆], properties A1 to A3 hold.

E. The Closed Loop System

Let Si, i ∈ I be the only active control agent. It applies

input ui from (4) to the LFSS (1), yielding:

ẋ = Ax−Bi(K
P
i yi + KD

i ẏi + ǫKI
i ηi) + Eω

= Ax−Bi[K
P
i Cix + KD

i CiAx + ǫKI
i ηi] + Eω.

For ẏi = Ciẋ we used CiBj = 0 for all j ∈ I, and CiE = 0.
Including η̇i from (4), we can write

1

[
ẋ

η̇i

]

=

[
Ãi −ǫBiK

I
i

Ci 0

][
x

ηi

]

+

[
E
0

]

ω −

[
0
I

]

yrefi ,

yi = Cix, where

Ãi := A−Bi(K
P
i Ci + KD

i CiA)

=

[
0 In

−Ω2 − LiK
P
i LTi −D − LiK

D
i LTi

]

.

Now consider the combined effects of controllers {Si}i∈I.

Define matrices KP ∈ R
m×m and L ∈ R

n×m as:

KP := block diag(KP
1 , KP

2 , . . . , KP
ν ) > 0,

L :=
[
L1 L2 . . . Lν

]
.

(5)

KD and KI are defined in a similar fashion as KP . Using

a similar derivation as before, we obtain
[
ẋ

η̇

]

= Aclo

[
x

η

]

+

[
E
0

]

ω −

[
0
I

]

yref,

y =
[

LT 0 0
]
[
x

η

]

, where

(6)

Aclo :=





0 In 0
−Ω2 − LKP LT −D − LKDLT −ǫLKI

LT 0 0



 .

This is the LFSS closed loop system (CLS), with output

y :=
[
yT1 yT2 . . . yTν

]T
(yref and η are similarly defined).

F. The LFSS Model Under Failure Conditions

It is now assumed that sensor failure or/and actuator

failure may occur in (1). Failures are modelled as follows:

1) Sensor Failure: One or more outputs read by a control

agent Si, i ∈ I may fail. We assume that failed outputs are

unreliable, and should be ignored. From the perspective of

S
i, failed output signals are assigned a value of 0.
Sensor failures in S

i are described by an output sensor

failure matrix Fy
i ∈ R

mi×mi , which is a diagonal matrix

consisting of either 0 or 1’s. For j ∈ {1, . . . , mi}, the j-th

diagonal element in Fy
i is 0 if y

j
i corresponds to a failed

output; and 1 otherwise. For example, Fy
1 = diag(0, 1, 1, 0)

means the outputs y1
1 and y4

1 both fail. We can then substitute

yi ← Fy
i yi (i.e. replace each yi with F

y
i yi) wherever

applicable.

2) Actuator Failure: Similarly, one or more actuators

in S
i, i ∈ I may fail. We assume that S

i disables failed

actuators without affecting other actuators. This is modelled

by assigning 0 to failed actuator signals.
Actuator failures in S

i are described by an actuator input

failure matrix Fu
i ∈ R

mi×mi , which is a diagonal matrix

consisting of either 0 or 1’s (defined similarly to Fy
i ). We

can then substitute ui ← F
u
i ui wherever applicable.

For the overall system, Fy ∈ R
m×m is defined as:

Fy := block diag(Fy
1 ,Fy

2 , . . . ,Fy
ν ). (7)

1Physical interpretation of Ãi: LiK
P

i
LT

i
≥ 0 (resp. LiK

D

i
LT

i
≥ 0)

effectively augments the stiffness (resp. damping) of the closed loop system.
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Fu is similarly defined. We assume sensor and actuator

failures have been diagnosed, so Fy and Fu are known.

G. Colocated LFSS System Model under Output Sensor and

Control Actuator Failures

The substitutions yi ← F
y
i yi and ui ← F

u
i ui transform

the nominal LFSS (1) into the colocated LFSS system

model under sensor and actuator failures (LFSS\F):

ẋ =

[
0 In

−Ω2 −D

]

x +

ν∑

i=1

[
0

LiF
u
i

]

ui +

[
0
E

]

ω,

yi =
[
Fy

i LTi 0
]
x, i ∈ I.

(8)

We now present the decentralized robust servomecha-

nism problem for the LFSS\F (DRSP\F), which is the

main problem we wish to solve:

H. The Main Problem: DRSP for the LFSS under Failure

Given a LFSS\F specified by (1) and failure matrices (F y ,

Fu), find a decentralized controller so that:

B1) Every eigenvalue of the resultant minimal order closed

loop system is contained in the open left half plane.

B2) Asymptotic tracking occurs for outputs that cor-

respond to no sensor or actuator failures, i.e.

limt→∞ F
y
i F

u
i ei(t) = 0, i ∈ I for all constant dis-

turbances ω, all constant set points yrefi , and all initial

conditions of the system.

B3) Property B2 holds for all perturbations of the LFSS

which do not cause the resultant controlled system to

become unstable.

I. Controller Adjustments to Failures

We wish to apply the tuning PID controller (4) to the

DRSP\F, but controller adjustments are necessary. When
failure in y

j
i or u

j
i for i ∈ I, j ∈ {1, 2, . . . , mi} is detected,

the control agent Si performs the following adjustments:

C1) If a sensor failure is detected on y
j
i , then the actuator

signal u
j
i is deactivated (i.e. u

j
i is set to 0).

C2) If an actuator failure is detected on u
j
i , then the sensor

signal y
j
i is ignored (i.e. y

j
i is set to 0).

C3) The tracking set point (yrefi )j is set to 0.
C4) The tracking error integral signal η

j
i is set to 0.

For an unified treatment, we define:

Fi := Fy
i F

u
i , i ∈ I,

F := FyFu = block diag(F1,F2, . . . ,Fν).
(9)

Thus adjustments C1 to C4 are represented by substituting

ui ← Fiui, yi ← Fiyi, y
ref

i ← Fiy
ref

i , ηi ← Fiηi.

If y
j
i = 0 due to sensor failure or adjustment C2, then

adjustment C3 imposes η̇
j
i = y

j
i − (yrefi )j = 0, and holds the

tracking error integral η
j
i constant. Adjustment C4 resets η

j
i ,

and prevents it from injecting a constant disturbance into the

system.

[2] only considers actuator failures, and an entire control

agent Si, i ∈ I is deactivated for any actuator failure in S
i.

These mean Fy
i = I and Fu

i ∈ {0, I} for all i ∈ I. Therefore

our fault model is more general than the model in [2].

Remark: Suppose a failure occurs in u
j
i , and not y

j
i .

Adjustment C2 sets y
j
i to 0, and we will use yi = FiCix to

develop the closed loop system. However, the actual signal

y
j
i is available via yobsi = Fy

i Cix, and may be used for

evaluating stability (but not for tracking, since B2 explicitly

ignores such a (yobsi )j ).

J. Reduced Order LFSS Closed Loop System with Failure

Adjustments C1 to C4 change the controller (4) into:

ui = −Fi(K
P
i Fiyi + KD

i Fiẏi + ǫKI
i Fiηi),

η̇i = 0ηi + (Fiyi −Fiy
ref

i ).
(10)

Combining these with the LFSS\F (8) results in the follow-
ing substitutions: L ← LF , LT ← FLT, KP ← FKPF ,
KD ← FKDF , KI ← FKIF and yref ← Fyref. Using

these and FF = F to generalize the CLS (6) results in the
LFSS closed loop system under failures (CLS\F):

[
ẋ

η̇

]

= Aclo

[
x

η

]

+

[
E
0

]

ω −

[
0
F

]

yref,

y =
[
FLT 0 0

]
[
x

η

]

, where

(11)

Aclo :=





0 In 0
−Keff −Deff −ǫLFKIF

FLT 0 0



 ,

Keff := Ω2 + LFKPFLT,

Deff := D + LFKDFLT.

(12)

Incorporating F introduces new 0-eigenvalues into Aclo,

but these 0-eigenvalues do not affect system stability, because
they correspond to η

j
i that are held at 0 by adjustment C4. We

wish to remove these “benign” 0-eigenvalues, and simplify
the CLS\F into a reduced system.
Let us remove 0-columns in F ∈ R

m×m to form R ∈
R

m×m′

for m′ ≤ m, and let L⋆ := LR ∈ R
n×m′

. Now

assume F =

[
Im′ 0
0 0

]

, which means R =

[
Im′

0

]

and

F =

[
RT

0

]

=
[
R 0

]
,

LF = L
[
R 0

]
=

[
L⋆ 0

]
,

FLT =

[
L⋆T

0

]

.

Noting that LF = LFF , we obtain:

−ǫLFKIF = −ǫ
[
L⋆ 0

]
[
RT

0

]

KI
[
R 0

]

=
[
−ǫL⋆(RTKIR) 0

]
.

Applying all these to Aclo in (12) results in

Aclo =







0 In 0 0
−Keff −Deff −ǫL⋆(RTKIR) 0

L⋆T 0 0 0
0 0 0 0







.
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Next, we simplify Keff , Deff and the term with yref in (11):

LFKPFLT =
[
L⋆ 0

]
[
RT

0

]

KP
[
R 0

]
[
L⋆T

0

]

= L⋆(RTKPR)L⋆T,

LFKDFLT = L⋆(RTKDR)L⋆T,

[
0
F

]

yref =





0

RT

0



 yref =





0

I

0



RTyref.

Finally, note that the bottom block-row of Aclo and Fyref,

and the rightmost block-column of Aclo are 0. We remove
these to form the reduced order LFSS closed loop system

with failure (Red(CLS\F)):
[

ẋ

η̇⋆

]

= Aclo⋆
[

x

η⋆

]

+

[
E
0

]

ω −

[
0
I

]

yref⋆,

y⋆ =
[

L⋆T 0 0
]
[

x

η⋆

]

, where

(13)

Aclo⋆ :=





0 In 0
−Keff⋆ −Deff⋆ −ǫL⋆(RTKIR)

L⋆T 0 0



 ,

L⋆ := LR,

Keff⋆ := Ω2 + L⋆(RTKPR)L⋆T,

Deff⋆ := D + L⋆(RTKDR)L⋆T,

yref⋆ := RTyref.

The same result is obtained from a general F 6=

[
Im′ 0
0 0

]

.

The zero rows and columns in Aclo and Fyref are scattered,

but these are ultimately removed.

K. Reduced Order Colocated LFSS Model

Given a LFSS model (1) and fault matrices {Fi}i∈I, let

us remove zeros-columns in Fi to form Ri ∈ R
mi×m′

i , with

m′
i ≤ mi for each i ∈ I. Also, let L⋆

i := LiRi. The reduced

order colocated LFSS model (RedLFSS) is defined as:

ẋ =

[
0 In

−Ω2 −D

]

x +

ν∑

i=1

[
0
L⋆

i

]

u⋆
i +

[
0
E

]

ω,

y⋆
i =

[
L⋆

i
T 0

]
x, i ∈ I,

e⋆
i = y⋆

i − yref⋆i , i ∈ I,

(14)

with u⋆
i ∈ R

m′

i , y⋆
i ∈ R

m′

i and yref⋆i := RTi yrefi ∈ R
m′

i . Note

that m′
i = 0 is possible, but this degenerate case poses no

problem. The RedLFSS does not alter Ω2 and D, so it has

n̂ rigid body modes like the original LFSS.

We now apply a tuning PID controller that has the same

form as (4), with KP⋆
i , KD⋆

i , KI⋆
i > 0, i ∈ I as gains:

u⋆
i = −KP⋆

i y⋆
i −KD⋆

i ẏ⋆
i − ǫKI⋆

i η⋆
i ,

η̇⋆
i = 0η⋆

i + (y⋆
i − yref⋆i ).

(15)

The resultant closed loop system is denoted RedCLS. It has

the same form as the CLS (6), and is omitted here.

We now relate B1 to B3 to the RedLFSS and RedCLS:

Lemma 1: Given the LFSS (1) and failure matrices Fy

and Fu (resulting in F and R), consider the following:

D1) There exist KP , KD, KI > 0 and ǫ > 0 such that the
resulting PID controller (10) (which applies C1 to C4)

satisfies conditions B1 to B3 for the LFSS\F.
D2) There exist KP⋆, KD⋆, KI⋆ > 0 and ǫ > 0 such that

the resulting PID controller (15) satisfies conditions A1

to A3 for the RedLFSS.

The lemma states that D1 holds if and only if D2 holds.

Proof: D1 defines the Red(CLS\F) (13); D2 defines the
RedCLS, which is obtained by applying (6) to (14). By direct

comparison, Red(CLS\F) and RedCLS are identical for a
common ǫ, assuming that RTKPR = KP⋆, RTKDR =
KD⋆ and RTKIR = KI⋆. With these, B1 holds iff A1

holds. WOLOG, for i ∈ I let m′
i > 0, Fi =

[
Im′

i
0

0 0

]

and

Ri =

[
Im′

i

0

]

. Then Fiei = 0 holds iff e⋆
i = 0, since Fi(yi−

yrefi ) =

[

L⋆
i
T 0

0 0

]

x−

[
I

0

]

RTi yrefi . Therefore B2 and B3 hold

iff A2 and A3 hold. Now we need to justify our assumptions.

For sufficiency, assume D1 holds for KP , KD, KI > 0.
Choosing KP⋆ := RTKPR trivially satisfies KP⋆ > 0.
For necessity, assume D2 holds for KP⋆, KD⋆, KI⋆ > 0.

WOLOG, for i ∈ I, choosing KP
i :=

[
KP⋆

i 0
0 Imi−m′

i

]

satisfies KP
i > 0 and RTi KP

i Ri = KP⋆
i . The above

arguments hold for KD and KI , etc. �

III. RESULTS

A. Existence of Solution

Let the LFSS (1) and failure matrices (Fy,Fu) be given.

Our main result for solving the DRSP\F is presented below.

Theorem 3: (Main result)

E1) The DRSP\F can be solved using the decentralized
controller (4) if and only if the rigid body model of

the LFSS\F, defined by

˙̂x =

[
0 In̂

0 0

]

x̂ +

ν∑

i=1

[
0

L̂iFi

]

ui,

yi =
[

FiL̂
T

i 0
]
x̂, i ∈ I,

(16)

has no decentralized fixed modes at 0.

E2) Assume that condition E1 holds; then there exists ǫ⋆ >

0 so that for all ǫ ∈ (0, ǫ⋆], the DRSP\F is solved using
the controller (4).

Proof: For E1, stating that the DRSP\F can be solved
with (4) is equivalent to statement D1, which is equivalent to

statement D2 (Lemma 1). E1 follows from applying Theorem

1 to D2 (which has the structure of a regular LFSS). E2

is obtained by applying Lemma 1 to Theorem 2, provided

that ǫ > 0 is common, using the same (KP , KD, KI) to
(KP⋆, KD⋆, KI⋆) mapping as in the proof of Lemma 1. �
Analogues to the equivalent conditions in Theorem 1 can

be readily obtained. One of these conditions is very succinct,

and deserves special attention:
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Corollary 1: The DRSP\F can be solved if and only if

rank(L̂F) = n̂, (17)

where L̂ is defined in (3), F is defined in (9), and n̂ is the

number of rigid body modes in (1).

The rank test in Corollary 1 reveals much insight on

the structure of a LFSS, and helps us identify control

redundancies that enable tolerance to sensor and actuator

failures. This test can also find application in the design and

evaluation of a LFSS.

B. Remarks Regarding Choice of ǫ

In the tuning PID controller (4) proposed to be used,

Theorems 2 and 3 give conditions for the existence of ǫ⋆,

so that for all ǫ ∈ (0, ǫ⋆], the controller solves the DRSP or
DRSP\F. For methods to find the optimal ǫ, see [8], [10] and
[11]. The numerical examples studied in this paper include

the maximum value of ǫ⋆ which can be used in a given

problem before instability occurs.

IV. EXAMPLES

This section provides examples to illustrate and interpret

our results.

A. 1D System

Our first example is a system of 3 masses connected by
springs and dampers, as shown in Fig. 1, operating in 1-

dimension (horizontal). For i ∈ {1, 2, 3}, the control agent Si

observes the displacement ξi of mass Mi, and applies force

along ξi. Let [M1, M2, M3] = [1, 10, 1]; [K12, K23] = [1, 1];

y3

M1

M2

M3

S
1

S
2

S
3

ξ1ξ2

ξ3

K12

K23

D12

D23

u1

y1

u2

y2

u3

Fig. 1. 1D example with 3 control agents.

[D12, D23] = [0.1, 0.1]. The model is given by:

M̂ ξ̈ + D̂ξ̇ + K̂ξ = L0u,

y = LT0ξ,

where

M̂ =





1 0 0
0 10 0
0 0 1



 , K̂ =





1 −1 0
−1 2 −1
0 −1 1



 ,

L0 = I3, D̂ =





0.1 −0.1 0
−0.1 0.2 −0.1

0 −0.1 0.1



 .

TABLE I

CLOSED LOOP EIGENVALUES FOR THE 1D SYSTEM EXAMPLE

Nominal S1 fails

−8.8612 −8.8612
−8.8612 −1.2129
−1.2203 −0.4437 ± j0.9583
−1.2057 −0.1106 ± j0.9772

−0.5085 ± j0.9586 −0.0204
−0.0204 −0.0169
−0.0185 0
−0.0156

The colocated LFSS model with unknown disturbance ω ∈
R

3 can be written in the form of (1):

ẋ =











0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 0 −0.1 0
0 0 −1.2 0 0 −0.12











x +











0 0 0
0 0 0
0 0 0

0.2887 0.2887 0.2887
−0.7071 0.0000 0.7071
−0.6455 0.1291 −0.6455











u +











0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1











ω,

y =





0.2887 −0.7071 −0.6455 0 0 0
0.2887 0.0000 0.1291 0 0 0
0.2887 0.7071 −0.6455 0 0 0



 x.

Note that we choose E = I3. The rigid body model (2) is:

˙̂x =

[
0 1
0 0

]

x̂ +

[
0

L̂

]

u,

y =
[

L̂T 0
]
x̂, where

L̂ =
[
0.2887 0.2887 0.2887

]
. (18)

Clearly n̂ = 1 and rank(L̂) = 1. By Theorems 1 and
2, the DRSP is solved with a tuning PID controller (4).

Choosing KP = KD = 10I3, KI = I3, ǫ = 0.2 results
in asymptotically stable CLS eigenvalues, as shown in Table

I. So A1 is satisfied.

To evaluate tracking and disturbance rejection, we express

the steady-state output as a linear function of yref and ω:

lim
t→∞

y(t) = Srefyref + Sωω. (19)

For the nominal system, A2 implies Sref
nom = I and Sω

nom =
0. This is verified in our simulations.
Now consider failures. By Corollary 1, the DRSP\F is
solved if rank(L̂F) = n̂ = 1. In this example, this means
F 6= 0, i.e. whenever any S

i has working sensor and

actuator. We verify this by assuming an actuator failure in u1:

F = Fu = diag(0, 1, 1). B1 holds, since Table I shows that
the eigenvalues of the CLS\F (using the same gains) are all
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TABLE II

VARIOUS FAILURE SCENARIOS FOR THE 1D SYSTEM.

Failed controller Maximum ǫ⋆ rank(L̂F)
Nominal 11.9865 1

{S1}; {S3} 8.654 1

{S2} 111.100 1

{S1, S2}; {S2, S3} 111.203 1

{S1,S3} 6.873 1

{S1, S2, S3} (no solution) 0

asymptotically stable, except for a benign 0-eigenvalue that
corresponds to η1,

The steady-state output (19) for the u1-failure case be-

comes Sref
1 yref + Sω

1 ω, where (⋆ are non-zero values)

Sref
1 =





0 1 0
0 1 0
0 0 1



 , Sω
1 =





⋆ ⋆ ⋆

0 0 0
0 0 0



 .

The u1-failure step responses for y
ref =

[
0 1 0

]T
(ω = 0)

and for ω =
[
0 1 0

]T
(yref = 0) are shown in Fig. 2 (a)

and Fig. 2 (b). Note that y1 is available for evaluation.
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(a) Tracking resp. on yref
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= 1 (b) Disturbance resp. on ω2 = 1

Fig. 2. S
1-Failure responses of 1D benchmark.

Thus we have tracking and disturbance rejection for y2

and y3, and not y1; this agrees with B2. In fact, y1 tracks

yref2 , and this has a physical explanation: Actuator failure

u1 = 0 means M1 is uncontrolled; M1 becomes “limp”

and is “towed” by M2 through a spring-damper connection,

so y2(t) → y1(t) → yref1 as t → ∞. Finally, note that
disturbance ω affects y1.

Table II summarizes stability results of CLS\F for every
failure scenario.2 Maximum ǫ⋆ (from E2) is found numeri-

cally. Corollary 1 is verified, since our controller can stabilize

the LFSS\F (ǫ⋆ > 0) whenever rank(L̂F) = 1. With the
given gains, ǫ is chosen to be less than every maximum ǫ⋆

from Table II, then the CLS\F would be stable for under
failure scenario.

2The notation “{S1,S2}; {S2,S3}” represents “the case in which both
S

1 and S
2 fail; and the case in which both S

2 and S
3 fail,” etc.

B. 4-Component System

Our second example, taken from [2], is shown in Fig. 3.

The LFSS consists of 4 interconnected subsystems arranged
in a plane. For i ∈ {1, 2, 3, 4}, the states of subsystem i

are displacements (ξi, ζi, θi) and velocities (ξ̇i, ζ̇i, θ̇i). Each
control agent Si reads yi ∈ R

3, and produces ui ∈ R
3.
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d13

d14

d21 d22

d23

d24

d31d32

d33

d34

d41d42

d43

d44

K121 K122

K233

K234

K341K342

K413

K414
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D233
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D341D342

D413

Fig. 3. Example from [2], with 4 subsystems.

For the simulation, we chose subsystems [2] to have

identical masses Mi = 25, moment of inertia Ji = 4 and
connector radii dij = 0.3. Interconnections are also identical,
with stiffness Kijk = 250 and damping Dijk = 75.
The colocated LFSS has n = 24 states and m = 12
input/output pairs. Expressing the LFSS in the standard form

(1) reveals n̂ = 5 rigid body modes. L̂ as defined by (3) is:

L̂ =









. α . . α . . . . . . .

. . . . . . . α . . α .

α . . . . . . . . α . .

. . . α . . α . . . . .

. . β . . β . . β . . β









,

(20)

where α = −0.1414, β = 0.2500, and periods denote 0. The
columns are arranged by (ξ1, ζ1, θ1, . . . , ξ4, ζ4, θ4).
[2] effectively assumes Fi ∈ {0, I}, and uses a dynamic
displacement feedback controller [9] to stabilize the system.

The resulting closed loop system is shown to be stable in the

nominal, S1-failure and {S1,S3}-failure cases, but unstable
in the {S1,S2}-failure case.
We reproduced the stability results in [2] using the tuning

PID controller (10), with KP = KD = 100I and KI = I .

Table III addresses all 16 actuator failure cases under the
fault model in [2]. Again, we list the maximum ǫ⋆ and

rank(L̂F) from (17) for each case. The CLS\F is stable
(ǫ⋆ > 0) iff the rank is rank(L̂F) = n̂ = 5; this verifies
Corollary 1. Note that the tuning PID controller also tracks

yref, and regulates disturbances.

We simulated the transient responses for actuator failure

in u1
1, using the same gains with ǫ = 20 and E = I12. Step

response for (yref4 )1 = 1 and ω10 = 1 (both corresponding
to ξ4) are plotted in Fig. 4 (a) and Fig. 4 (b). Only outputs

(y1
1 , y

2
1 , y

3
1 , y

1
2 , y

1
3 , y

1
4) = (ξ1, ζ1, θ1, ξ2, ξ3, ξ4) are displayed.
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TABLE III

VARIOUS FAILURE SCENARIOS FOR THE 4-COMPONENT SYSTEM

Failed controller Maximum ǫ⋆ rank(L̂F)
Nominal 400.000 5
Any 1 fails 194.3 5

{S1, S3}; {S2, S4} 194.3 5
{S1, S2}; {S3, S4} (no solution) 4
{S1, S4}; {S2, S3} (no solution) 4

Any 3 fail (no solution) 3
All fail (no solution) 0

We see that y1
4 = ξ4 tracks properly, but y1

1 = ξ1 (corre-

sponds to failed u1
1) tracks (yref4 )1 = 1, not (yref1 )1 = 0. As

before, this can be explained by the horizontal connection

between subsystems 1 and 4.
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Fig. 4. u1

1
-Failure responses of 4-component benchmark.

Finally, applying Corollary 1 to L̂ in (20) reveals much

insight for this example. In order to decrease rank(L̂F) by
nullifying row 1 if L̂, both u2 (for ζ1) and u5 (for ζ2) need

to fail. Physically, this reflects the system redundancy (w.r.t.

stabilization) that arises from the vertical connection between

subsystems 1 and 2. In the linear model, as long as one of
ζ1 or ζ2 is controlled, the other would not grow unbounded

as t→∞. The same explanation can be given for rows 2, 3
and 4 in L̂. In row 5, (u3, u6, u9, u12) = (θ1, θ2, θ3, θ4) need
to all fail to decrease rank(L̂F). Physically, this means we
only need to apply control to the angle in one subsystem in

order to keep the angles in other subsystem bounded.

V. CONCLUSIONS

In this paper, we augment the LFSS model in [1] with a

sensor and actuator failure model, which is a generalization

of the fault model in [2]. In addition to stabilization, we treat

also tracking of constant set points and regulation of constant

disturbances in a unified framework. The LFSS\F and the
DRSP\F are direct extensions of the LFSS and the DRSP
for systems subject to failures. In defining the DRSP\F, we
use controller adjustments to remove the distinction between

sensor and actuator failures. This allows Red(CLS\F) to be
defined, using a decentralized tuning PID controller with

controller adjustments C1 to C4. We also define RedLFSS,

to which Theorems 1 and 2 can be directly applied. Lemma

1 shows that the resulting RedCLS is equivalent to the

Red(CLS\F); this leads to our main result Theorem 3. If the
rigid body model is known, then the rank test in Corollary 1

provides a powerful and insightful way to test the existence

of a solution to the DRSP\F.
The two examples provided demonstrate the effectiveness

of our results for checking solvability of the fault-tolerant

control problem. In addition, the existence conditions show

the importance of physical connections in the LFSS. The

insight gained can be quite useful for structural design of

LFSS, and sensor and actuator placement.
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