
Increasingly Correct Message Passing Averaging Algorithms

Kurt Plarre and Francesco Bullo

Abstract— We study averaging algorithms, when imple-
mented in large networks of wirelessly connected elements. We
extend the notion of “Increasing Correctness” (IC) which was
defined for cycle-free graphs, to general graphs. An averaging
algorithm that is IC has meaningful outputs at each iteration.
This makes it possible to stop the algorithm at any time, and
use the output values computed up to that time.

We prove that the class of IC averaging algorithms is non-
trivial. We then present a simple IC averaging algorithm that is
based on ideas from Graphical Models, and study its properties.
Finally, we give example applications and simulations of IC
averaging algorithms.

I. INTRODUCTION

Large networks of wirelessly connected elements, such as

sensor networks and robot teams promise new ways of per-

ceiving the world and acting upon it. For example, a sensor

network can be used to monitor environmental variables in

a large area to study their behavior or detect events such as

a forest fire. Robotic networks could be used, for example,

for surveillance, reconnaissance, oil spill contention, search-

and-rescue missions, and space exploration.

Algorithms for large sensor networks or robot teams

must be power aware, computationally and memory efficient,

scalable, operate in real-time, and take into account inherent

communication constraints. See, for example, [1] and [2].

Systems such as sensor networks can generate large

amounts of data. It is sometimes more efficient to compute

aggregates or summaries of the data, before processing, than

to process the raw data. Algorithms to compute aggregates

in sensor and robot networks have been extensively studied.

See, for example, [3], [4], [5]. See also [6] and the references

therein.

We are interested in averaging algorithms to compute

weighted averages in a decentralized environment. Such

averaging algorithms can be compared according to different

criteria. For example, convergence time, scalability, robust-

ness to, for example, link failures and delays, and suitability

to asynchronous operation. Here we study a property of

some averaging algorithms, which we call “Increasing Cor-

rectness” Such property was introduced in [7] for message

passing-like algorithms in loop-free graphs. In that case IC

describes the fact that at each time instant, the output of the

algorithm at each node in the network is the exact solution

This material is based upon work supported in part by AFOSR MURI
Award FA9550-07-1-0528 and ONR Award N00014-07-1-0721.

Kurt Plarre is with the Department of Mechanical Engineering, and Center
for Control, Dynamical Systems and Computation, University of California
at Santa Barbara, Santa Barbara, CA 93106, plarre@engineering.ucsb.edu

Francesco Bullo is with the Department of Mechanical Engi-
neering, University of California at Santa Barbara, CA 93106,
bullo@engineering.ucsb.edu

of a subproblem defined on a neighborhood of that node, and

that neighborhood grows with time.

The main contributions of this paper are two. First, we

give a definition of increasing correctness for averaging

algorithms in general graphs, and prove that the class of IC

averaging algorithms is non-trivial. Second, we introduce a

simple message passing-like averaging algorithm that is IC

by definition. The algorithm appears to be a novel simple ver-

sion of a more sophisticated “Belief Consensus” algorithm

presented in [6]. We analyze the convergence properties of

our algorithm in deterministic and stochastic environments

using ideas from graphical models. Finally, we apply our

ideas to a spatial filtering problem and a target localization

application in a simulation study.

II. SETUP

Let G = (V,E), |V | = n be an undirected graph, with

vertex set V and edge set E. Let a ∈ R
n be a vector that

represents the input to the averaging algorithm. Node vi in V
“knows” only ai. We are interested in computing weighted

averages of the ai, i.e., expressions of the form

āβ :=
n
∑

i=1

βiai,

where, for i ∈ {1, . . . , n}, βi ∈ R≥0, and
∑n

i=1 βi = 1. In

the algorithms we present, we will not have control over the

weights βi. Instead, we define an algorithm by local rules,

and study the behavior of the computed averages.

We consider recursions of the form

x(t + 1; a, x0) = f(x(t; a, x0), a),
y(t; a, x0) = g(x(t; a, x0), a),

(1)

where x ∈ R
nx is the state of the algorithm, with

x(0; a, x0) = x0, and y ∈ R
n is the output, with yi the output

at node i. f : R
nx ×R

n → R
nx and g : R

nx ×R
n → R

n are

given maps. To simplify the presentation, of what we call an

“averaging algorithm,” we introduce the following notation:

(i) Given m ∈ Z>0, x ∈ R
m, S ⊆ {1, . . . ,m}, let

xS denote the subvector of x containing the entries

indexed by S, in order.

(ii) Given m,n ∈ Z>0, R1, . . . , Rm ⊆ {1, . . . , n}, and

S ⊆ {1, . . . ,m}, let RS :=
⋃

i∈S Ri.

(iii) For each i ∈ {1, . . . , n}, let Ni denote the set of

neighbors of node vi, in G, and N̄i := Ni ∪ {i}.

For each i ∈ {1, . . . , n}, let Si ⊆ {1, . . . , nx} be the indices

of the state variables, known to node vi. With this notation

we can introduce what we call an “averaging algorithm.”

Definition 1 (Averaging algorithm): We say that (1) is an

averaging algorithm for G, if the following holds:

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuC02.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1304

(i) fSi
(x, a) = fSi

(xSN̄i
, aN̄i

) and gi(x, a) = gi(xSi
, ai).

(ii) There exist βi,j ∈ R≥0, i, j = 1, . . . , n, such that
∑n

j=1 βi,j = 1, and yi(t; a, x0) →
∑n

j=1 βi,jaj , as

t → +∞, from any initial condition x0.

Notice that the computation of f requires communication,

while the computation of g is performed locally at each node.

We denote an averaging algorithm by a tuple: A := (G, f, g).
We give an example of a simple averaging algorithm in

Section III.

We define increasing correctness in the following way.

Definition 2 (Increasing correctness): Let A = (G, f, g)
be an averaging algorithm. We say that A is “increasingly

correct,” if for all a ∈ R
n, there exists x0 ∈ R

n, βi,j(t) ∈
R≥0, i, j = 1, . . . , n, and Ni(t) ⊂ V , i = 1, . . . , n, such

that Ni(0) = {vi}, Ni(+∞) = V , and for all t ≥ 0,

vi ∈ Ni(t), Ni(t + 1) ⊇ Ni(t), βi,j(t) = 0, for j /∈ Ni(t),
∑

j∈Ni(t)
βi,j(t) = 1, and yi(t; a, x0) =

∑

j∈Ni(t)
βi,j(t)aj .

We now specialize our definition of averaging algorithm.

Definition 3 (Linear averaging algorithm): We say that

an averaging algorithm A = (G, f, g) is linear if there

exist matrices A ∈ R
nx×nx , B ∈ R

nx×n, C ∈ R
n×nx ,

and D ∈ R
n×n, with nonnegative coefficients, such that

f(x, a) = Ax + Ba, and g(x, a) = Cx + Da. In other

words, the algorithm is given by the recursion

x(t + 1; a, x0) = Ax(t; a, x0) + Ba,

y(t; a, x0) = Cx(t; a, x0) + Da.

We denote a linear averaging algorithm by a tuple AL =
(G,A,B,C,D).

The following two lemmas show that the class of IC aver-

aging algorithm is non-trivial.

Lemma 4 (Linear consensus is IC): The linear averaging

algorithm AL = (G,A, 0, I, 0), with A ∈ R
n×n a stochastic

matrix, and x0 = a, is IC.

Proof: The proof is an immediate consequence of the

properties of stochastic matrices.

The following lemma shows how to obtain an IC correct

averaging algorithm from any linear averaging algorithm.

Lemma 5 (Constructing IC algorithms): For any linear

averaging algorithm AL = (G,A,B,C,D) there exists a,

possibly non-linear, IC averaging algorithm.

Proof: Let x̄, e ∈ R
nx , with e a vector of ones.

The output of a linear averaging algorithm, with zero initial

condition, satisfies

y(t; x̄, 0) =

(

C

t−1
∑

k=0

AkB + D

)

x̄, (2)

Considering only the i−th entry of y, we can write (2) as

yi(t; x̄, 0) =

n
∑

j=1

αi,j(t)x̄j ,

for i ∈ {1, . . . , n}. The coefficients αi,j(t) are obtained

directly from (2). Letting βi,j(t) := αi,j(t)/
∑n

l=1 αi,l(t),
we have that

∑n

j=1 βi,j(t) = 1, and

yi(t; a, 0)

yi(t; e, 0)
=

n
∑

j=1

βi,j(t)aj .

Therefore the following defines an IC averaging algorithm.

x(t + 1; a, 0) = Ax(t; a, 0) + Ba,

x(t + 1; e, 0) = Ax(t; e, 0) + Be,

z(t; a, 0) = Cx(t; a, 0) + Da,

z(t; e, 0) = Cx(t; e, 0) + De,

yi(t; (a, e), 0) =
zi(t; a, 0)

zi(t; e, 0)
, i = 1, . . . , n.

Lemmas 4 and 5 show that there exist a large number of

IC averaging algorithms. Notice that in this paper we have

considered only time invariant algorithms. More generally

one could consider f and g as functions of time also.

In the next section we present an IC averaging algorithm,

which is based on ideas from Graphical Models, and study

some of its properties.

III. ANALYSIS OF A MESSAGE PASSING-LIKE

AVERAGING ALGORITHM

Let G = (V,E), |V | = n be an undirected graph. Let

a1, . . . , an ∈ R be given numbers. As before, the averaging

algorithm is defined by its state, output, and initial condition.

As in message passing, we call the states “messages” mi→j

and the outputs “beliefs,” bi. For each edge (vi, vj) ∈ E,

there are two messages mi→j , and mj→i. For each node

vi ∈ V , there is a belief bi. The update rules for the messages

are given by

mi→j(t + 1; a, 0) = ai +
∑

k∈Ni,j

mk→i(t; a, 0), (3)

and similarly for mi→j(t; e, 0). The expressions for the

beliefs are

bi(t; a, 0) = ai +
∑

k∈Ni

mk→i(t; a, 0),

bi(t; e, 0) = 1 +
∑

k∈Ni

mk→i(t; a, 0),

bavg
i (t; (a, e), 0) =

bi(t; a, 0)

bi(t; e, 0)
,

(4)

where Ni,j := Ni \ {j}, and we have assumed zero initial

conditions. The algorithm is defined by local rules. We study

properties of the algorithm and the computed averages that

these rules produce.

It is not difficult to see that if the graph G is cycle-free,

then bavg
i (t; a, 0) converges after a finite number of iterations,

to the correct average. It can also be proved that at each

time t, bavg
i (t; a, 0) is the exact average in the subgraph of

G containing all nodes at distance up to t from vi.

If we implement equation (3) in a general loopy graph,

then the messages diverge. To avoid this problem, we use

a scaling factor α ∈]0, 1[. The resulting algorithm is then

given by the following update rule for the messages:

mi→j(t; a, 0) = α

ai +
∑

k∈Ni,j

mk→i(t; a, 0)

 , (5)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC02.2

1305

(a) (b)

1

1

4

1

2 3

2 4

2 3

3

4 4

1 3 1 1 2

Fig. 1. Loopy graph (a), and corresponding unwrapped tree (b), rooted at
v1.

and similarly for mi→j(t; e, 0).
This algorithm is related to other filtering and averaging

algorithms found in the literature. The weighted sum-count

algorithm can be seen as a simplified version of the algorithm

presented in [6], but its purpose is to compute local weighted

averages, rather than the average of all the ai as in [6]. It

is also related to consensus algorithms, with the following

differences: (1) it is affine, rather than linear, (2) the state is

defined on the edges of the graph not the vertices, and (3) the

output is a function of the state, not the state itself. The idea

of running two parallel averaging algorithms and combining

their outputs has been proposed before, for example, in [8]

to compute maximum likelihood estimates in a distributed

environment and [9]. Finally, we can also find a connection to

some filtering algorithms for image restoration; e.g., see [10].

A. Unwrapped trees

The message that vi sends to vj at time t is a function

of all messages received by vi at time t − 1, except from

vj . For every vi and t, it is possible to construct a rooted

tree, such that the messages received by the root node are

equal to the messages received by vi at time t. Such a tree

is called an “unwrapped tree.” We define such a tree in the

following way.

Definition 6 (Unwrapped tree): Given a graph G =
(V,E), an unwrapped tree, T , rooted at vi, for a message

passing algorithm (3) is a tree, rooted at vi, such that the

nodes at distance t from the root in T , are replicas of nodes

reachable from vi in G, following treks of length t.
A “trek” is a walk without backtracking, which can have

cycles, and the length of a trek W , which we denote by |W |,
is the number of edges of W . Figure 1 shows an example

of an unwrapped tree. Notice that in the unwrapped tree, the

label “i” denotes “replicas” of node vi. The size of the tree

depends on the time instant, t. Unwrapped trees are used to

study the behavior of message passing algorithms [11], [12].

If A = (G,A,B,C,D) is a linear averaging algorithm

with zero initial condition, we can use the superposition

principle to analyze the contribution of each node in the

unwrapped tree, to the messages received by the root node,

separately. This simplifies the analysis.

(b)

. . .

. . .

(a)

1

1

3 2 1

2 3

1

2 3

Fig. 2. Loopy graph (a), and corresponding unwrapped tree (b), rooted at
v1.

B. Steady state analysis

For example, consider the averaging algorithm in (5), with

G a cycle on three nodes. The unwrapped tree, rooted at v1

is a path. See Figure 2. We can easily see that

m2→1(+∞; a, 0) = a2

(

α + α4 + α7 + . . .
)

+

a3

(

α2 + α5 + α8 . . .
)

+ a1

(

α3 + α6 + α9 . . .
)

,

and similarly for m3→1(+∞; a, 0). Therefore

b1(+∞; a, 0) = a1 + m2→1(+∞; a, 0) + m3→1(+∞; a, 0)

=
(1 + α3)a1 + (α + α2)a2 + (α + α2)a3

1 − α3
,

and similarly for b1(+∞; e, 0). For a general cycle on n
nodes, we will have

b1(+∞; a, 0) =

(1 + αn)a1 +
n
∑

i=2

(αi−1 + αn−i+1)ai

1 − αn
,

and similarly for b1(t; e, 0).
For general graphs, we can prove the following result

Lemma 7 (Stability conditions): Consider the averaging

algorithm given by (5). If α(dmax − 1) < 1, where dmax

is the maximum degree of a node in G, then the algorithm

converges, and

bi(+∞; a, 0) = ai +

n
∑

j=1

∑

all W
i,j

k

α|W i,j

k
|

 aj ,

where W i,j
k is any trek from vi to vj . The expres-

sion for bi(+∞; e, 0) is similar. Thus, the expression for

bavg
i (+∞; (a, e), 0) is

bavg
i (+∞; (a, e), 0) =

ai +
n
∑

j=1

∑

all W
i,j

k

α|W i,j

k
|

 aj

1 +
∑

all W i
k

α|W i
k
|

,

where W i
k denotes any trek starting at node vi.

Proof: Consider the unwrapped tree, rooted at a node,

say, vi. The maximum number of nodes at depth l, in the

unwrapped tree at time t is (dmax − 1)l. The contribution of

any copy of vj at depth l to the belief at the root node is

αlaj . Therefore

|bi(t; a, 0)| ≤ |ai| +

t
∑

l=1

αl(dmax − 1)lmax {|ai|}
n

i=1 ,

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC02.2

1306

which is finite, for all t, if α(dmax − 1) < 1.

This proves that the algorithm converges. To find the limit,

we observe that any path from the root node to a copy of vj

in the unwrapped tree, corresponds to a trek in G, from vi to

vj . Thus, in the unwrapped tree, any copy of vj contributes

to only one message at the root node, and the contribution is

given by α|W |aj , where W is the path from the root node to

the copy of vj in the tree. The result then follows by adding

all contributions.

C. Transient analysis

We are not only interested in the asymptotic output values

computed by an averaging algorithm, but also in their be-

havior before convergence. We would like to know (1) how

close those outputs are to the asymptotic ones, and (2) how

meaningful they are, i.e., can those outputs be used even if

they are far from their final values?

In this section we answer the first question for the algo-

rithm given by (5). We prove the following lemma.

Lemma 8 (Convergence rate): If α(dmax − 1) < 1, then

|bi(t; a, 0) − bi(+∞; a, 0)| ∈ O
(

αt+1(dmax − 1)t+1
)

,

where we used Landau’s “big O” notation.

Proof: We assume that the algorithm is executed in

a synchronous fashion, i.e., at each time instant t, each

sensor receives (possibly empty) incoming messages from

its neighbors, and sends outgoing messages to its neighbors.

Following the analysis in the last section, it is not difficult

to see that

bi(t; a, 0) = ai +
n
∑

j=1

∑

|W i,j

k
|≤t

α|W i,j

k
|

 aj ,

Therefore

|bi(t; a, 0) − bi(+∞; a, 0)| =

=

∣

∣

∣

∣

∣

∣

n
∑

j=1

∑

|W i,j

k
|>t

α|W i,j

k
|

 aj

∣

∣

∣

∣

∣

∣

≤
∑

l>t

αl(dmax − 1)lmax {|aj |}
n

j=1

=
αt+1(dmax − 1)t+1max {|aj |}

n

j=1

1 − α(dmax − 1)
,

which proves the lemma.

Noticing that bi(t; e, 0) ≥ 1, for all t ≥ 0, and the fact

that for any x, δx, y, δy ∈ R, with y ≥ 1, and y + δy ≥ 1,

we have
∣

∣

∣

∣

x + δx

y + δy
−

x

y

∣

∣

∣

∣

≤

(

1 +

∣

∣

∣

∣

x

y

∣

∣

∣

∣

)

max {|δx|, |δy|} ,

by letting x := bi(+∞; a, 0), x + δx := bi(t; a, 0), y :=
bi(+∞; e, 0), and y + δy := bi(t; e, 0), we can prove that

also

∣

∣bavg
i (t; (a, e), 0) − bavg

i (+∞; (a, e), 0)
∣

∣ ∈

O
(

αt+1(dmax − 1)t+1
)

.

When the inputs to the algorithm, ai, are estimates of a

random variable a0, we can formalize our notion of “mean-

ingful.” We do so in the following lemma.

Lemma 9 (Unbiased estimators): Let AL =
(G,A,B,C,D), be an IC averaging algorithm. Let ai,

i ∈ {1, . . . , n}, be unbiased estimates of a random variable

a0, and a = [a1, . . . , an]. Then bi(t; a, x0) computed using

AL is an unbiased estimate of a0, for all t.
Proof: The assumption that AL is IC implies that at

each time t, it holds that bi(t; a, x0) =
n
∑

j=1

βi,j(t)aj , with

βi,j(t) ∈ R≥0 and
∑n

j=1 βi,j(t) = 1. Taking expectations

we have

E [bi(t; a, x0)] =
n
∑

j=1

βi,j(t)E [aj] = E
[

a0
]

.

This proves the lemma.

D. Random weights

In this section we study a randomized version of the

previous algorithm. The state and output of the algorithm

are the same as before, but in this case, any given message

is transmitted with a certain probability, rater than with cer-

tainty. The resulting algorithm can be described as follows:

mi→j(t; a, 0) = αi,j(t)

ai +
∑

k∈Ni,j

mk→i(t; a, 0)

 , (6)

and similarly for mi,j(t; e, 0). Here αi,j(t) = α with

probability p, and αi,j(t) = 0 with probability 1 − p,

with αi1,j1(t1) independent of αi2,j2(t2) for (i1, j1, t1) 6=
(i2, j2, t2). A zero message is not sent, and a message that is

not received is assumed zero. The update rules of the beliefs

are as before.

We notice that even in the random case, at each time t,
bavg
i (t; a, 0) is a weighted average of the ai, although, in this

case, the coefficients are random. We prove the following

lemma.

Lemma 10 (Convergence in expectation): If αp(dmax −
1) < 1, then (6) converges exponentially in expectation, and

bavg
i (t; a, 0) is L1 bounded.

Proof: Let m̄i,j(t; a, 0) := E [mi,j(t; a, 0)],
m̄i,j(t; e, 0) := E [mi,j(t; e, 0)], and ᾱi,j(t) := E [αi,j(t)].
Then,

m̄i→j(t; a, 0) = ᾱi,j(t)

ai +
∑

k∈Ni,j

m̄k→i(t; a, 0)

 ,

and similarly for m̄i→j(t; e, 0). But ᾱi,j(t) = αp, which

means that m̄i,j(t; a, 0) converges as t → ∞, if αp(dmax −
1) < 1.

If we now define m̃i,j(t; a, 0) := E [|mi,j(t; a, 0)|], and

α̃i,j(t) := E [|αi,j(t)|], we can write

0 ≤ m̃i→j(t; a, 0) ≤ α̃i,j(t)

|ai| +
∑

k∈Ni,j

m̃k→i(t; a, 0)

 .

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC02.2

1307

Fig. 3. Estimated temperatures before (left) and after (right) spatial filtering.

This inequality shows that, if α̃i,j(t)(dmax − 1) ≤ 1, then

each m̃i→j(t; a, 0) is bounded. Since b(t; e, 0) ≥ 1, for all t,
we can write

0 ≤ E
[∣

∣bavg
i (t; a, 0)

∣

∣

]

≤ |ai| +
∑

k∈Ni

m̃k→i(t; a, 0),

which proves that E
[∣

∣bavg
i (t; a, 0)

∣

∣

]

is also bounded, under

the same conditions.

IV. APPLICATIONS AND SIMULATIONS

In this section we discuss two applications: Spatial filtering

in a sensor network and target localization with mobile

sensors.

A. Spatial filtering

A sensor network is used to estimate the temperature

produced by a heat source located at the origin of the

plane. Sensors are arranged on a randomly perturbed grid,

where the horizontal and vertical perturbations are uniform

in [−0.25, 0.25]. In other words each sensor location was

chosen, uniformly in a square with sides of length 0.5. The

temperature at location (x, y) at time t is given by

θ(x, y, t) =

∫ t

0

1

τ
e−

x2+y2

τ dτ,

where we have omitted constants, for simplicity.

Each sensor takes one noisy measurement of the field at its

location. The noise at each node is Gaussian with variance

(0.2)2. The noises at different locations are independent.

After taking measurements the sensors execute the averaging

algorithm given by 5 and 4. The communication graph is

a grid, i.e., each sensor communicates only with its four

neighbors on the grid.

The resulting estimated field is shown in Figure 3. The

left panel in Figure 3 shows the measured temperatures at

each sensor. The right panel shows the estimated temper-

atures, after running the averaging algorithm. We can see

from Figure (3) that filtering greatly improved the estimated

temperature profile.

B. Target localization

A network of mobile robots must localize and move to-

wards a number of fixed targets on the plane. Each robot can

make noisy measurements of the location of the target that

is closest to it. The operation of the robots is synchronous.

Robots execute the following operations, in order: (1) sense,

(2) initialize their estimates of the target’s location, (3)

execute an averaging algorithm for K steps, and (4) move

according to the updated estimate. We now describe the

sensing, communication, computation, and control models.

Sensing model: Each robot can take noisy measurements

of the location of the target closest to it. We neglect the

effect of other targets that might affect such measurements.

As in [13], we use the following sensor model: ax
i (t) =

xo
j + ri(t) cos(θi(t)), ay

i (t) = yo
j + ri(t) sin(θi(t)), where

(i) ax
i (t) and ay

i (t) are the measured horizontal and verti-

cal positions, at node i, of the target that is closest to

it, and at time t,
(ii) (xo

j , y
o
j) represents the actual location of the target

closest to robot i,
(iii) ri(t) is uniformly distributed in [0, rmax], and θi(t) is

uniformly distributed in [0, 2π].

The location of robot i at time t is (xi(t), yi(t)).

Communication model: Two robots can communicate

if they are at distance less than dcomm. Communication is

bidirectional. Robots communicate their current estimates of

the location of the targets (each robot estimates the location

of only one target). At each time each robot communicates

with a subset of its neighbors in the communication graph.

Computation model: Each robot stores an estimate of the

location of the source (x̂i(t, k), ŷi(t, k)). At each time, this

estimate is initialized as x̂i(t, 0) = ax
i (t) and ŷ(t, 0) = ay

i (t).
These estimates are updated according to the following rule:

x̂′
i(t, k + 1) = ax

i (t) + α

x̂′
i(t, k) +

∑

j∈Ni(t)

x̂′
j(t, k)

 ,

and similarly for ŷ′
i(t + 1, k). Here Ni(t) is a subset of the

neighbors of robot i in the communication graph. The size

of Ni(t) and α are chosen to make the algorithm stable.

As initial conditions we set x̂i(t, 0) = ax
i (t) and ŷi(t, 0) =

ay
i (t). The following recursion is executed in parallel to the

previous two:

ci(t, k + 1) = 1 + α

ci(t, k) +
∑

j∈Ni(t)

cj(t, k)

 ,

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC02.2

1308

Fig. 4. Snapshots of the operation of the target localization algorithm at t = 0, 10, 20, 40 (left) and behavior of average (over all robots) quadratic error
in estimated target location.

with initial condition ci(t, 0) = 1. These update rules are

executed K times. The estimates of the locations of the

targets are obtained as x̂i(t) = x̂′
i(t,K)/ci(t,K) and ŷi(t) =

ŷ′
i(t,K)/ci(t,K).

By Lemma 4, we know that this averaging algorithm is IC.

Hence, at each time, the estimates at each node are convex

combinations of the measurements in a neighborhood of that

node.

Control model: After the averaging algorithm has been

executed, each robot moves towards (x̂i(t,K), ŷi(t,K)),
by a fixed distance dcontrol. If the robot is closer to

(x̂i(t,K), ŷi(t,K)) than dcontrol, it moves directly to that

point.

Initially, the robots and targets are uniformly distributed

in the square [−1, 1] × [−1, 1]. In the simulations we used

dcomm = 0.1, dcontrol = 0.05, rmax = 2, and n = 300 robots.

The location of the sources was chosen uniformly in [−1, 1]×
[−1, 1]. Figure 4 (left) shows snapshots of the operation of

the algorithm for t = 0, 10, 20, 40. We can see that the robots

cluster around the targets.

In Figure 4 (left), we compare the behavior of the average

(over all robots) quadratic error in the location of the robots,

with respect to time. The error in the location of a robot is

the squared distance to the target that is closest to that robot.

Each curve in Figure 4 (right) corresponds to a different value

of K. We simulated the algorithm for K = 0, 1, 3, 10. The

number of robots was n = 1000. The noise model was the

same as before, but with rmax = 2. We observe that averaging

improves the rate of convergence of the robots to the targets.

V. CONCLUSIONS

We extended the notion of increasing correctness from

loop-free graphs to loopy graphs, showed that the class of

IC algorithms is non-trivial, and studied a simple Message

Passing-like IC algorithm. We also showed the performance

of the proposed IC algorithms in two interesting applications.

Future work includes studying other applications of the

proposed algorithms and more general linear recursions on

graphs.

REFERENCES

[1] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE

Transactions on Information Theory, 46(2):388–404, 2000.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A sur-

vey on sensor networks. IEEE Communications Magazine, 40(8):102–
114, 2002.

[3] C. Intanagonwiwat, R. Govindan, and D. Estrin. A scalable and robust
communication paradigm for sensor networks. In ACM/IEEE Inter-

national Conference on Mobile Computing and Networking, Boston,
MA, August 2000.

[4] S. R. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny
aggregation service for ad hoc wireless sensor networks. In USENIX

Symposium on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[5] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting
aggregate queries over ad-hoc wireless sensor networks. In Workshop

on Mobile Computing Systems and Applications, pages 49–58, Calli-
coon, NY, June 2002.

[6] C. C. Moallemi and B. Van Roy. Consensus propagation. IEEE

Transactions on Information Theory, 52(11):4753–4766, 2006.
[7] K. Plarre, P. R. Kumar, and T. I. Seidman. Increasingly correct mes-

sage passing algorithms for heat source detection in sensor networks.
In IEEE Conference on Sensor and Ad Hoc Communications and

Networks (SECON), pages 470–479, October 2004.
[8] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor

fusion based on average consensus. In Symposium on Information

Processing of Sensor Networks (IPSN), pages 63–70, Los Angeles,
CA, April 2005.

[9] A. Olshevsky and J. N. Tsitsiklis. Convergence rates in distributed
consensus and averaging. In IEEE Conf. on Decision and Control,
pages 3387–3392, San Diego, CA, December 2006.

[10] A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall,
Englewood Cliffs, NJ, 1989.

[11] Y. Weiss and W. T. Freeman. On the optimality of solutions of the
max-product belief-propagation algorithm in arbitrary graphs. IEEE

Transactions on Information Theory, 47(2):736–744, 2001.
[12] Y. Weiss. Correctness of belief propagation in Gaussian graphical

models of arbitrary topology. Neural Computation, 13:2173–2200,
2001.

[13] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. S. Shamma. Belief
consensus and distributed hypothesis testing in sensor networks. In
P.J. Antsaklis and P. Tabuada, editors, Network Embedded Sensing and

Control. (Proceedings of NESC’05 Worskhop), volume 331 of Lecture

Notes in Control and Information Sciences, pages 169–182. Springer
Verlag, New York, 2006.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC02.2

1309

