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Abstract— The paper examines the stabilization and the H∞

norm performance analysis and control of state-delayed systems
with a symmetric state-space realization. Such symmetric real-
izations appear in many engineering applications. By exploiting
the state-space symmetry, we obtain an explicit solution for
a bound on the H∞ norm of such symmetric time-delayed
systems. Also, we derive an explicit parametrization of static
output feedback gains that solve the stabilization and H∞

control synthesis problems. Computational examples are used
to demonstrate the significance and validity of the proposed
methods and results.

I. INTRODUCTION

Time delays often appear in many control systems either in

the state, in the control input, or in the measurements. Time

delay commonly exists in various engineering, biological,

and economical systems because of the finite speed of

information processing and it is a source of performance

degradation and instability (see [4], [3] and numerous refer-

ences therein). Since the control process involves measuring

response data, computing control laws, and transmitting data

and signals to actuators, a time-delay in processing and

applying control inputs to the system cannot be avoided.

Application of unsynchronized control inputs due to time-

delay may result in a degradation of the control performance

and may even render the controlled system to be unstable.

Therefore, the stability and performance analysis and the

control of systems with time-delays are both theoretically

and practically important (see [1] and the references therein).

Recent efforts concerning the topic of stability and sta-

bilization of time-delay systems can be divided into two

categories, namely, delay-independent and delay-dependent

stability criteria (see [4], [3]).

In this paper, we consider the analysis and control problem

for state delayed systems with a symmetry property in their

state-space realization. Symmetric systems appear in many

different engineering fields, such as electrical and power

networks, structural systems, and chemical reaction systems.

In particular, physical systems with only one type of energy

storage capability, such as mechanical systems with only

potential energy or only kinematic energy, and electrical

systems with only electric energy or only magnetic energy

(e.g., RL or RC circuits) provide models of such symmetric

systems (see [2], [5]). Moreover, systems with zeros interlac-

ing the poles (ZIP) can be modeled as symmetric systems as

shown in [8]. Stability criteria for the state-space symmetric
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systems have been examined in [10]. The H∞ control of

symmetric systems has been also addressed in [9].

In the present paper, we examine the H∞ control analysis

and the output feedback stabilization and H∞ control synthe-

sis problems for time-delayed state-space symmetric systems.

The objective of the paper is to show that, by exploiting the

particular structure of these systems, an explicit expression

for an upper bound on the H∞ norm of a symmetric delayed

system can be developed, which requires only the compu-

tation of the maximum eigenvalue of a matrix containing

the state-space data. In addition, an explicit solution for

the output feedback controllers that guarantee the stability

of the closed-loop system and a prescribed level of H∞

performance is obtained for such systems.

The notation used in this paper is standard. Given a

symmetric matrix X = XT ∈ R
n×n, X > 0 (X ≥ 0)

denotes matrix positive definiteness (semi-definiteness). (.)T

denotes the transpose of a real matrix, (.)† represents the

Moore-Penrose generalized inverse of a matrix. Given a real

n×m matrix Y with rank r, the orthogonal complement Y ⊥

is defined as the (n− r)× n matrix that satisfies Y ⊥Y = 0
and Y ⊥Y ⊥⊤ > 0. The maximum eigenvalue of a matrix M
will be denoted by λmax(M). Finally, in a symmetric block

matrix, the star (∗) is used to denote the sub-matrices lying

above the diagonal.

II. PLANT FORMULATION AND PRELIMINARIES

In this section, we define the notion of time delayed

systems with symmetry in their state-space realization. Also,

some preliminary concepts and results that will be used later

in the paper are introduced.

Definition 1: Consider the following state-space system

that includes a delay term in its state dynamics

ẋ(t) = Ax(t) + Ahx(t − h) + Bw(t)

z(t) = Cx(t) (1)

We will say that the system is symmetric if the state-space

matrices satisfy the following conditions

A = AT , Ah = AT
h , B = CT . (2)

The conditions in (2) define the symmetric property of the

delayed system under study. The next lemmas and definitions

will be useful in the proofs of the main results of the paper.

Lemma 1: [4] Consider the time delay system given by

(1). Suppose that there exist positive definite matrices P and

Q and a positive scalar γ such that the following linear matrix
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inequality condition holds








AT P + PA + Q ∗ ∗ ∗
AT

h P −Q ∗ ∗
BT P 0 −γI ∗

C 0 0 −γI









≤ 0. (3)

Then the time delay system (1) is asymptotically stable and

has induced L2-gain from w(t) to z(t) less than γ, that is

‖Tzw‖∞ ≤ γ.

Lemma 2: [7] Consider the matrices Γ and Λ such that Γ
has full column rank, and Λ is symmetric positive definite.

Then Λ ≥ ΓΓT if and only if λmax(ΓT Λ−1Γ) ≤ 1.

Lemma 3: (Finsler’s Lemma [7]) Consider the matrices

M and Z such that M has full column rank and Z = ZT .

Then the following statements are equivalent:

1) There exists a scalar µ such that

µMMT − Z > 0. (4)

2) The following condition holds

M⊥ZM⊥T < 0.

If the above statements hold, then all scalars µ satisfying (4)

are given by

µ > λmax[M†(Z − ZM⊥T (M⊥ZM⊥T )−1M⊥Z)M†T ].
(5)

Lemma 4: (Generalized Finsler’s Lemma [7]) Consider

matrices M and Z such that M has full rank column rank

and Z = ZT . Then the following statements are equivalent:

1) There exists a symmetric matrix X such that

MXMT − Z > 0. (6)

2) The following condition holds

M⊥ZM⊥T < 0.

If the above statements hold, then all matrices X satisfying

(6) are given by

X > M†[Z − ZM⊥T (M⊥ZM⊥T )−1M⊥Z]M†T . (7)

Definition 2: Consider a symmetric matrix N with eigen-

value/eigenvector decomposition

N = EΛET

where E is the orthogonal matrix of eigenvectors and Λ
the diagonal matrix of eigenvalues of N . Hence, λ =
diag(λ1, ..., λn) where λk, k = 1, ..., n, are the real eigen-

values of N . We define the absolute value of the matrix N
as

|N | = E|Λ|ET

where |Λ| = diag(|λ1|, ..., |λn|).

III. THE H∞ ANALYSIS OF DELAYED SYMMETRIC

SYSTEMS

The next result shows that for a delayed state-space

symmetric system represented by (1)-(2), an upper bound

on its H∞ norm can be computed using a simple explicit

formula.

Theorem 1: A stable state-space symmetric delayed sys-

tem described by (1)-(2) has an H∞ norm that satisfies the

following bound

γ ≤ γ̄ = λmax{−BT (A + |Ah|)
−1B}. (8)

Proof. Let us consider the Lyapunov matrix in the analysis

condition (3) as P = I . Taking (2) into account, the matrix

inequality (3) can be written as









2A + Q ∗ ∗ ∗
Ah −Q ∗ ∗
BT 0 −γI ∗
BT 0 0 −γI









≤ 0. (9)

Applying Schur complement formula, we obtain the follow-

ing inequality

2

γ
BBT ≤ −2A − (Q + AhQ−1Ah). (10)

Using Lemma 2, we obtain that

γ ≥ 2λmax{B
T (−2A − Q − AhQ−1Ah)−1B}.

Hence, the best bound is obtained as

γ̄ = 2λmax{B
T (−2A − Q − AhQ−1Ah)−1B}. (11)

We seek to minimize this bound with respect to the parameter

matrix Q. To this end, notice that since the right hand side

in (10) is positive

λmax{B
T (−2A − Q − AhQ−1Ah)−1B} ≤

trace{BT (−2A − Q − AhQ−1Ah)−1B} ≤

trace(BBT )trace{(−2A − Q − AhQ−1Ah)−1}.

Therefore, to minimize the above bound with respect to Q
we set

∂

∂Q
trace(−2A − Q − AhQ−1Ah)−1 = 0

or

(−2A − Q − AhQ−1Ah)−1{
∂

∂Q
trace(−2A − Q−

AhQ−1Ah)}(−2A − Q − AhQ−1Ah)−1 = 0

where [6]

∂

∂Q
trace(−2A − Q − AhQ−1Ah) = −I + Q−1A2

hQ−1.

Hence, the minimization occurs for

Q2 = A2

h.
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The unique positive definite solution for Q is obtained as

Q = |Ah|

where |Ah| is the absolute value of Ah. Since

−|Ah| − Ah|Ah|
−1Ah = −2|Ah|

for the above value of Q the bound (11) results in expression

(8) and this concludes the proof. ¤

We now generalize the above results to symmetric systems

that include a feedthrough matrix D as follows

ẋ(t) = Ax(t) + Ahx(t − h) + Bw(t)

z(t) = Cx(t) + Dw(t) (12)

where D = DT , and all the conditions given in (2) hold.

Theorem 2: Consider the symmetric delayed system de-

scribed by (12). The H∞ norm of this system satisfies the

following bound

γ ≤ γ̄ = max(λmax(D), λmax{D − BT (A + |Ah|)
−1B}).

(13)

Proof. The proof follows similar lines as in the proof of

Theorem 1. Considering the Lyapunov matrix as P = I , the

associated inequality condition (3) becomes








2A + Q ∗ ∗ ∗
Ah −Q ∗ ∗
BT 0 −γI ∗
BT 0 D −γI









≤ 0. (14)

Applying the Schur complement, we obtain

2B(γI − D)−1BT ≤ −2A − Q − AhQ−1Ah. (15)

Solving a similar minimization problem to the one in the

proof of Theorem 1 results in the same solution as Q = |Ah|.
Substituting Q back into the LMI (15) leads to

B(γI − D)−1BT ≤ −(A + |Ah|). (16)

This inequality can be alternatively rewritten as
[

A + |Ah| B
BT −(γI − D)

]

≤ 0 (17)

if and only if

λmax(D) ≤ γ. (18)

Taking advantage of the Finsler’s Lemma, (17) can be written

as

γMMT − Z ≥ 0

where

M =

[

0
I

]

, Z =

[

A + |Ah| B
BT D

]

.

Note that

M⊥ =
[

I 0
]

.

Hence, if the solvability condition in Lemma 3, i.e., A +
|Ah| ≤ 0, is satisfied, the H∞ norm of the symmetric delayed

system is given by (5). After simplifying the expression and

taking (18) into account, (13) is obtained. ¤

Remark 1: It can be shown, (e.g. see the algebraic steps

in the proofs of the Theorems in [9]), that for the case of

symmetric systems examined here the results in Theorems

1 and 2 provide the best achievable bound obtained from

the BRL-type LMI condition (3). That is, for a symmetric

time delay realization if the LMI condition (3) has a positive

definite solution P , then P = I is a solution of (3).

Remark 2: It is easy to observe that the H∞ norm bound

condition given in (8) is recovered from the bound given in

(13) by setting D = 0.

Remark 3: It is noted that for a time invariant delay-free

symmetric system, i.e., for Ah = 0, Theorem 2 provides the

exact H∞ norm given in [9].

Remark 4: The determined explicit expressions given in

Theorems 1 and 2 are based on the delay-independent anal-

ysis condition represented by LMI (3). Delay-independent

analysis conditions are known to provide conservative results

compared to the delay-dependent analysis conditions due to

ignoring the size of the delay (see [4], [3]). Similar algebraic

tools as he ones presented in this paper can be used to address

the delay-dependent analysis problem for symmetric systems.

IV. THE OUTPUT FEEDBACK STABILIZATION PROBLEM

For the output feedback control synthesis problem we

consider the following state-space representation of a delayed

symmetric system.

ẋ(t) = Ax(t) + Ahx(t − h) + Bu(t)

y(t) = Cx(t) (19)

where u(t) is the vector of control inputs, and y(t) is the

vector of measured outputs. We call this system state-space

symmetric if conditions (2) hold.

The static symmetric output feedback stabilization prob-

lem is to design a symmetric static feedback gain G = GT

such that the control law

u = −Gy (20)

stabilizes the closed-loop system formed by the interconnec-

tion of (19) and (20). The following result provides a solution

to the symmetric time-delayed output feedback stabilization

problem.

Theorem 3: Consider the delayed symmetric system (19).

There exists a symmetric output feedback control law (20)

to asymptotically stabilize the closed-loop system if

B⊥NB⊥T ≤ 0 (21)

where N is given by

N = A + |Ah|. (22)
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If the above condition is satisfied, then all stabilizing sym-

metric output feedback gains G satisfy

• If B is square and invertible, then G can be selected as

any matrix such that

G ≥ B−1NB−T . (23)

• If BBT is singular, then G can be selected as any matrix

such that

G ≥ B†NB†T − B†NB⊥T (B⊥NB⊥T )−1B⊥NB†T

(24)

Proof. The equation of the closed-loop state-space represen-

tation of the system reads

ẋ(t) = (A − BGBT )x(t) + Ahx(t − h). (25)

The stability condition for this system is the existence of

symmetric positive definite matrices P and Q such that
[

PAcl + AT
clP + Q PAh

AT
h P −Q

]

≤ 0 (26)

where Acl = A − BGBT . Following the same approach as

in the proof of Theorem 1, we obtain

BGBT ≥ N . (27)

If matrix B is square and nonsingular, the solution G to (27)

is determined by inequality (23). Otherwise, Lemma 4 may

be used to find a matrix bound on G, which results in the

inequality (24), and this concludes the proof. ¤

In the next section a similar approach is applied to derive

the symmetric output feedback control laws that guarantee

the closed-loop H∞ specifications.

V. THE H∞ CONTROL SYNTHESIS PROBLEM

Now consider the following state-space system represen-

tation

ẋ(t) = Ax(t) + Ahx(t − h) + B1w(t) + B2u(t)

z(t) = C1x(t) (28)

y(t) = C2x(t)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

m1 is the vector

of exogenous inputs, u(t) ∈ R
m2 is the vector of control

inputs, z(t) ∈ R
p1 is the vector of controlled outputs, and

y(t) ∈ R
p2 is the vector of measured outputs. We call this

system state-space symmetric if the system state-space data

satisfy the following symmetry conditions

A = AT , Ah = AT
h , B1 = CT

1
, B2 = CT

2
. (29)

The static symmetric output feedback H∞ control synthesis

problem is to design a symmetric static output feedback gain

G such that the control law

u(t) = −Gy(t) (30)

renders the system stable and guarantees a prescribed level

of the H∞ performance for the closed-loop system.

The closed-loop system of the open-loop system (28) and

the controller (30) becomes

ẋ(t) = (A − B2GBT
2

)x(t) + B1w(t)

z(t) = C1x(t). (31)

Note that the closed-loop system (31) is also symmetric. The

following result provides an explicit expression for an upper

bound on the H∞ norm of the closed-loop system and an

explicit parametrization of controller gains that guarantee this

performance bound for the closed-loop system.

Theorem 4: Consider the symmetric system represented

by (28)-(29). There exists a symmetric output feedback

control law (30) to stabilize the system and satisfies the

suboptimal H∞ performance if

B⊥
2
NB⊥T

2
< 0 (32)

where N is given by (22). If the above condition is satisfied,

an upper bound on the achievable level of the H∞ perfor-

mance can be computed from

γbound = λmax{B
T
1

B⊥T
2

(B⊥
2
NB⊥T

2
)−1B⊥

2
B1} (33)

For any γ ≥ γbound, a static symmetric output feedback H∞

control gain which makes the closed-loop system stable with

H∞ norm less than γ can be selected as any matrix G such

that

G ≥ B†
2
[Σ − ΣB⊥T

2
(B⊥

2
ΣB⊥T

2
)−1B⊥

2
Σ]B†T

2
(34)

where Σ is defined as

Σ = A + |Ah| +
1

γ
B1B

T
1

. (35)

Proof. Substituting the closed-loop system (31) into LMI (3),

and following the same lines as in proof of Theorem 3, we

obtain the results of Theorem 4. ¤

VI. NUMERICAL EXAMPLES

In this section, we validate the proposed analysis and

design results of the previous sections using numerical

examples.

In the first example we calculate the H∞ bound for a

scalar symmetric system with state-delay and compare our

proposed bound with the H∞ norm computed via linear

analysis when a Pade approximation for the delay is used.

Then, two additional numerical examples are presented to

validate the analysis and synthesis results of this paper.

Example 1: Consider the scalar state-delay system repre-

sented as follows

ẋ(t) = ax(t) + ahx(t − h) + bw(t)

z(t) = bx(t). (36)

For this particular case, employing Theorem 1 results in the

following explicit H∞ norm bound

γ ≤ γ̄ = −b2(a + |ah|)
−1. (37)
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Let us assume that in the above system a = −2, ah = −0.5,

b = 0.5. Then, the bound γ̄ = 0.167 is obtained. Note that

the same exact value of γ̄ is obtained from the solution of

the Bounded Real Lemma (BRL)-type analysis LMI in (3).

Next, we use the first- and the second-order Pade approx-

imation to approximate the delay term x(t − h) as follows

e−hs ≈
1 − hs/2

1 + hs/2
, e−hs ≈

1 − hs/2 + (hs)2/12

1 + hs/2 + (hs)2/12
.

(38)

Hence, we obtain LTI systems that approximate the delay

system (36) and the state-space data are functions of the

delay h. The exact H∞ norm of these two systems is

obtained from the standard BRL condition [7] and it is

plotted in Figure 2. Figure 2 also shows the analytical bound

γ̄ obtained from (37). It is observed that as the delay size h
increases, the H∞ norms of the LTI systems obtained from

the Pade approximations converge to the explicit H∞ bound

computed using the delay-independent analysis condition.

Hence, these results demonstrate that for the above scalar

system, the proposed explicit bound on the H∞ norm is tight

and provides the exact H∞ norm for the delay-independent

case.

Example 2: We consider the symmetric system (12) with

the following randomly generated state-space data:

A = AT =









−1.9092 −0.4588 −0.0902 −0.6758
−0.4588 −1.9149 −0.7137 −1.4493
−0.0902 −0.7137 −0.8758 −0.7530
−0.6758 −1.4493 −0.7530 −1.7289









Ah = AT
h =









−0.1β 0 −0.1 0
0 0.2 0 0

−0.1 0 0.09β 0
0 0 0 0.25









B = CT =









0.9516 0.4010 0.0431 0.4776
0.2603 0.4866 0.3709 0.1291
0.5147 0.7505 0.6933 0.4838
0.6363 0.1262 0.9358 0.9456









D = DT =









0.8437 0.9280 0.7998 0.4248
0.9280 0.4022 0.1510 0.6874
0.7998 0.1510 0.0430 0.7157
0.4248 0.6874 0.7157 0.4577









Notice that the delay matrix Ah contains a scalar parameter

β that we will vary to examine its effect on the H∞ norm

bound of the system.

Solving the stability LMI condition in (26), it is easy

to verify that for β ∈ [0, 4.5], the open-loop system is

asymptotically stable. While the parameter β changes in

β ∈ [0, 4.5], the H∞ norm bound of this system is calculated

using 1) the LMI condition as given in (3), and 2) the explicit

formula of this paper as given by Theorem 2. Figure 2

illustrates this comparison. As observed from this figure, the

results provide consistent estimation of the H∞ norm bound.

Example 3: As a third example, we consider the following

state-space matrices to validate our explicit expression for

0 5 10 15 20 25 30

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

h (sec)

H
∞
 N

o
rm

computed from BRL in (3)

computed from our proposed bound in (36)

1st−order Pade approximation

2nd−order Pade approximation

Fig. 1. H∞ norm of the symmetric delayed system determined using
different methods

0 0.5 1 1.5 2 2.5 3 3.5 4
6.5

7

7.5

8

8.5

9

9.5

10

10.5

β

H
∞
 N

o
rm

computed from BRL

computed from proposed formula

Fig. 2. H∞ norm comparison

the feedback control gain to stabilize the unstable time delay

symmetric systems.

A = AT =





−1 1 0
1 −2 1
0 1 −1



 ,

Ah = AT
h =





−0.1 0 0
0 −0.2 0
0 0 −0.1



 ,

B = CT =





1
0
0



 , D = 0.

It is not difficult to verify that the open-loop system is

unstable; hence, we seek to design an output feedback

controller to asymptotically stabilize the closed-loop system.

To this purpose, we use the result presented in Theorem 3.

The stabilizing output feedback controller for this example is

obtained from the explicit expression (24) (using the equality
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−0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
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2.5

ρ

H
∞
 N

o
rm

s

Desired closed−loop norm

Computed using proposed formula

Fig. 3. Closed-loop H∞ norm comparison

sign) as

u(t) = −0.5516y(t).
Example 4: Consider the symmetric time delay system

represented by

ẋ(t) =

[

−2ρ 1.1 + 2ρ
1.1 + 2ρ −3.3 + ρ

]

x(t)

+

[

−0.5 0
0 −1.2

]

x(t − h)

+

[

2ρ
0.1 + ρ

]

w(t) +

[

1 + ρ
0.1 + ρ

]

u(t)

z(t) =
[

2ρ 0.1 + ρ
]

x(t)

y(t) =
[

1 + ρ 0.1 + ρ
]

x(t)

We vary the parameter ρ in the interval (−0.2, 1) and

compute the best achievable level of the H∞ performance

bound of the closed-loop system γbound using the explicit

expression (33). Then, we calculate a symmetric static output

feedback control using the explicit expression (34) (with

the equality sign) which guarantees a desired closed-loop

system H∞ performance for any γ > γbound. For each

ρ ∈ (−0.2, 1), we assume the desired level of the closed-loop

system H∞ norm to be γ = 1.01γbound. Hence, the control

gain calculated from (34) will guarantee a closed-loop H∞

norm less than γ. Comparison between the H∞ norm bound

of the closed-loop system computed from the BRL condition

in (3) and the explicitly computed bound γ is illustrated in

Figure 3. It is observed that for any ρ the closed-loop system

H∞ norm bound is matching the explicitly computed bound.

Shown in Figure 4 is the control gain required to guarantee

the closed-loop stability and desired H∞ performance. It is

noted that for ρ = 0.55, γbound reaches its minimum at

γbound = 0.0003. This results in a large peak in the profile

of the control output u(t) as observed in Figure 4.

VII. CONCLUSION

We have examined the stabilization and the H∞ norm

analysis and control for state-space symmetric systems with

−0.2 0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

ρ

C
o
n
tr

o
l 
g
a
in

Fig. 4. Controller gain vs. ρ

a state delay term. For these systems, we have obtained

analytical explicit solutions for an upper bound H∞ norm

calculation, as well as, explicit solutions of the output feed-

back stabilization and H∞ performance synthesis problems.

For the stabilization problem, we have developed an explicit

parametrization of asymptotically stabilizing output feedback

gains. For the H∞ control problem we have obtained an

explicit parametrization of static output feedback gains that

guarantee a desired closed-loop H∞ norm bound. The results

of the paper are expressed in terms of the state-space data

with no need for iterative calculations. The main results

follow from a particular solution to the LMI formulation of

the above problems and the use of basic matrix algebraic

tools. These results represent analytical solutions of the

delay-independent analysis and control problems for the class

of symmetric systems.
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