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Abstract— Consider a coverage problem for a team of agents
in the plane: target points appear sporadically over time in a
bounded environment and must be visited by one of the agents.
It is desired to minimize the expected elapsed time between the
appearance of a target point, and the instant it is visited. For
holonomic agents, this reduces to a continuous facility location
problem, well studied in the geometric optimization literature.
In this paper, we consider a team of nonholonomic vehicles
constrained to move with constant forward speed along paths
of bounded curvature. We show that, in this case, the optimal
policy depends on the density of vehicles in the environment.
In low density scenarios, the optimal policy resembles that of
holonomic agents: the environment is partitioned into subre-
gions of dominance, and each vehicle is responsible for targets
appearing in its own subregion (territorial behavior). As the
density increases, the optimal policy exhibits a transition to a
gregarious behavior in which the team loiters in a coordinated
pattern, and each vehicle visits targets that appear immediately
in front of it.

I. INTRODUCTION

Wide-area surveillance is one of the prototypical missions
for Uninhabited Aerial Vehicles (UAVs), e.g., in environ-
mental monitoring, security, or military setting. Low-altitude
UAVs on such a mission must provide coverage of a region
and investigate events of interest as they manifest themselves.
In particular, we are interested in cases in which close-range
information is required on targets detected by high-altitude
aircraft, spacecraft, or ground spotters, and the UAVs must
proceed to the locations to gather on-site information.

Variations of problems falling into this class have been
studied in a number of papers in the recent past, e.g.,
[1], [2]. In these papers, as in ours, the UAV is modeled
as a planar vehicle that can move on paths of bounded
curvature. However, in some of these papers, the locations
of targets are known a priori and a strategy is computed
that attempts to optimize the cost of servicing the known
targets. We address a scenario in which the target points
are generated dynamically, with only prior statistics on their
location, and a policy is designed to minimize the expected
time a target waits to be visited. Furthermore, we assume
that the targets appear sporadically throughout time, so the
focus is not on planning efficient paths to visit many targets
consecutively. Instead, the challenge is to design loitering
patterns or policies in such a way that, when a target does
appear, the expected wait for the “closest” UAV to arrive is
minimized.

This paper is along the vehicle routing themes of [3], [4],
and many of the new results presented here are shadowed in
[5]. However, by focusing on the case in which targets appear
rarely, this work is applicable to coverage problems [6],
[7], [8], in which the agents spread out with some sense of

balance, or comb the environment efficiently. On the other
hand, mathematically its structure has a strong resemblance
with facility location problems [9], [10], [11], [12], [13], with
the main difference that the facilities are vehicles constantly
in motion with nontrivial dynamics.

The main contributions of this paper are the following.
1) We employ a novel approach to establish a lower bound
on the achievable performance for the problem, related to
the reachable set of the vehicle. The approach taken may be
of independent interest as it can be applied to other non-
holonomic vehicles performing similar tasks. 2) We design
two strategies. One strategy assigns regions of dominance
to the vehicles and requires the vehicles to guard their own
territory, thus requiring them to spread out. This strategy
is optimal when vehicle density is low. The other strategy
requires the agents to move as a group in a coordinated
pattern, balancing the amount of space directly in front
of each agent. This strategy is within a constant factor of
the optimal for high vehicle densities. We observe that the
optimal system time shrinks with the cube root of the number
of vehicles (as opposed to the square root in the holonomic
case). 3) As a consequence of the aforementioned algorithm
design and analysis, we recognize a phase transition in
the optimal behavior mode, depending on the density of
vehicles in the environment. We introduce a non-dimensional
parameter which characterizes the phase of the system, and
use both numerical and analytical techniques to determine
the value which demarcates the transition itself.

Other researchers, including [14] and, more recently, [15],
have investigated phase transitions in the behavior of large
groups of agents. In these works, the individuals follow local
interaction laws, sometimes inspired by physical laws, and it
is shown to give rise to group behavior of different modes,
depending on design parameters and possible noise input.
In some cases, these types of approaches are useful for
accomplishing large-scale multi-agent coverage and similar
tasks, in a distributed, robust fashion. In contrast, we take
a top-down approach. We begin with simple motion con-
straints (found in nature and technology) for the individual
agents, and an explicit task and performance measurement,
we aim to design control strategies achieving near optimal
performance. As a result of our analysis, we have noticed that
the optimal policy exhibits more than one distinct mode of
behavior. We are not attempting to imitate nature. Rather, we
are attempting to uncover a possible cause (efficiency) behind
natural multi-agent systems which exhibit phase transitions
between territorial and gregarious behavior [16].

The rest of the paper is organized as follows. In Sections II
and III, we set up the problem and review relevant results
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about the Dubins vehicle. In Section IV, we establish two
lower bounds on the optimal coverage cost. In Section V,
we propose two policies and prove their optimality for
the limiting cases of low and high vehicle densities. In
Section VI we study the phase transition between the two
policies. Finally, we conclude with comments about future
work in Section VII.

II. NOTATION AND PROBLEM FORMULATION

In this section, we present some preliminary notations and
formulate the probem. Let Q ⊂ R2 be a convex, compact
domain on the plane, with non-empty interior; we will refer
to Q as the environment. Let A be the area of Q.

Service request points are generated in the environment
sporadically throughout time, with uniform spatial density.
In order to service the request, one of the m UAVs has to
move to the target point associated with it. The UAVs are
modeled as nonholonomic vehicles constrained to move at
unit speed along a path with bounded curvature; 1/ρ being
the maximum curvature. In other words, let the configuration
gi ∈ SE(2) of the i-th vehicle (∀i ∈ Im where we
denote Im = {1, . . . ,m}) be given in coordinates by gi =
(xi, yi, θi), where xi, yi are the projections of the vehicle’s
position along inertially fixed orthogonal axes, and θi is the
orientation of the vehicle’s longitudinal axis with respect to
the x-axis; then the kinematics of the vehicle is described
by the Dubins model:

ẋi = cos(θi),
ẏi = sin(θi),
θ̇i = ωi, ωi ∈ [−1/ρ, 1/ρ].

(1)

The UAVs are identical, and have unlimited sensing range.
We note that the above kinematic model of an airplane is
very common in the literature on UAV motion planning; the
model is very similar to the one studied in [17], with the
difference that the vehicle we consider is constrained to move
at constant speed. Results in terms of minimum-length paths
for Dubins vehicle hold for our model, where they assume
an additional connotation of being minimum-time paths as
well.

In the course of this paper, we shall use the term Dubins
frame to refer to a coordinate frame with origin fixed to the
Dubins vehicle and x-axis along the longitudinal axis. Let
Lρ(gi, q) : SE(2) × R2 → R+ be the minimum length of
a path satisfying (1), steering a Dubins vehicle from initial
configuration g in SE(2) to a point q in the plane, without
any constraints on the final heading, i.e., to any configuration
in the set {q} × S1 ⊂ SE(2). For a given configuration
of the vehicles g(t) = {g1(t), . . . , gm(t)} ∈ SE(2)m at
time t, we define the coverage cost function at time t
as W(g(t)) :=

∫
q∈Q

1
A mini∈Im Lρ(gi(t), q)dq. The cost

function quantifies the expected time for the closest UAV to
reach a target point uniformly distributed in the environment
at time t. If the UAVs were capable of stopping, this problem
could be reduced to finding the optimal configuration of the
m-vehicle system. Instead, we must design control policies

that keep the configuration near optimal in a time-averaged
sense.

A control policy π = {π1, . . . , πm} for the coverage task
is specified by the initial configurations of the vehicles and
the subsequent control inputs, i.e., πi = (gi(0), (ωi(t) ∈
[−1/ρ, 1/ρ], t ≥ 0)) ∀i ∈ Im. We define the coverage cost
associated with policy π as Wπ = Et≥0[W(g(t))], where,
from Eq. (1), g(t) is completely determined by the policy π
for all t ≥ 0.

We are now ready to state our problem. Given a region Q
and m vehicles modeled by Eq. (1), design control policies
π such that the coverage cost associated with that policy
achieves or approximates the theoretical optimal coverage
cost given by Wopt = infπWπ. In the following, we
are interested in designing computationally efficient control
policies that are within a constant factor of the optimal, i.e.,
policies π such that Wπ ≤ κWopt for some constant κ. We
conclude this section with some notation that is the standard
concise way to state asymptotic properties. For f, g : N→ R,
we say that f ∈ O(g) (respectively, f ∈ Ω(g)) if there
exist N0 ∈ N and k ∈ R+ such that |f(N)| ≤ k|g(N)|
for all N ≥ N0 (respectively, |f(N)| ≥ k|g(N)| for all
N ≥ N0). If f ∈ O(g) and f ∈ Ω(g), then we use the
notation f ∈ Θ(g).

III. OPTIMAL PATHS AND THE REACHABLE SET FOR THE
DUBINS VEHICLE

Minimum-length Dubins paths between two configurations
have been extensively studied, due to their importance in
mobile robotics. A full characterization of optimal paths is
given in [17]. For our purpose, we need optimal paths for a
different type of boundary condition; the difference is that
the final heading at the target point is not constrained a
priori. The characteristics of paths of minimal length with
such boundary conditions were studied in [18], where it is
proved that all such paths are a concatenation of an arc of
a minimum-radius circle (either in the positive or negative
direction), with either an arc of a minimum-radius circle (in
the opposite direction), or with a straight segment. Closed-
form expressions for the lengths for such paths were derived
in [3], [5].

We now present an upper bound on Lρ(gi, q), originally
from [3], which will be useful in analyzing one of the
policies.

Lemma 3.1: The function Lρ(gi, q) satisfies the following
inequality, for all q ∈ R2:

Lρ(gi, q) ≤ c1ρ+ ‖q − qcirc‖, (2)

where, expressed in the Dubins frame, qcirc = (0,±c2ρ).
The constants are c1 ≈ 3.75595 and c2 ≈ 2.91801.
In other words, if the vehicle is circling point qcirc at radius
c2ρ, it can reach any point q ∈ R2 within time c1ρ + ‖q −
qcirc‖.

We now introduce the reachable set for a Dubins vehicle
and state a property which will be useful later on in the
paper. Given a configuration gi ∈ SE(2), the reachable set
Rt(gi) for a Dubins vehicle is a subset of SE(2) such that
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for every configuration gf ∈ Rt(gi), there exist admissible
controls to drive the vehicle from the initial configuration gi
to the final configuration gf ∈ Rt(gi) within time t.

We are interested in the reachable region on the Euclidean
plane, i.e., the projection of the reachable set onto R2. For
simplicity of notation we shall henceforth denote Rt(gi) as
the reachable region on the plane.

The minimum-length path to any point within the interior
of one of the minimum turning radius circles has a length of
at least πρ, and so any point reachable within time t ≤ πρ/2
is of type CL. In Fig. 1, we depict Rt(gi) for some time
t ≤ πρ/2, along with a generic minimum-length path of
length t. Let us denote the length of the C segment with s and
the angle it sweeps out with θ. Since s = ρθ, the length of the
L segment is t−s = t−ρθ. Also, denote the switching point
between the C and L segments with (x1, y1), the point at the
end of the L segment with (x2, y2). Using planar geometry,
we can write x1 = ρ sin θ, y1 = ρ(1 − cos θ), x2 = x1 +
(t− ρθ) cos θ, and y2 = y1 + (t− ρθ) sin θ. For fixed ρ and
t, Area(Rt(gi)) = 2

(∫ t/ρ
0

y1
dx1
dθ dθ +

∫ 0

t/ρ
y2

dx2
dθ dθ

)
, hence

Area(Rt(gi)) =
t3

3ρ
, for t ≤ πρ

2
. (3)

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x

y (x1, y1)s

(x2, y2)θ
ρ

Fig. 1. The derivation of Area(Rt(gi)) for t ≤ πρ/2.

Remark 3.2: Eq. (3) implies that area of the Dubins
reachable set decreases faster than the area of the reachable
set for a Euclidean vehicle as t/ρ→ 0.

IV. LOWER BOUNDS

We first show that a trivial lower bound is obtained by
adopting the corresponding lower bound for a Euclidean
vehicle, i.e., a vehicle moving with unit speed and hav-
ing no motion constraints. In order to do that, we give
a brief overview of a related problem from geometric
optimization. Given a set Q ⊂ R2 and a set of points
p = {p1, p2, . . . , pm} ∈ Qm, the Voronoi partition of Q
generated by p is V(p) = (V1(p),V2(p), . . . ,Vm(p)), where
Vi(p) = {q ∈ Q : ‖q − pi‖ ≤ ‖q − pj‖,∀i, j ∈ Im}.
The expected distance between a random point q, sampled
from a uniform distribution over Q, and the closest point in
p is given by Hm(p,Q) :=

∑m
i=1

∫
Vi(p) ‖pi − q‖dq. The

problem of choosing p to minimize Hm(p,Q) is known
in the geometric optimization literature as the continuous
supply / continuous demand k-median problem [12], [13].

Related problems include k-medians and centers for discrete
supply and/or demand sets; see [9], [10], [11], [19], [20]
and references therein. The m-median of the set Q is the
global minimizer p∗(Q) = argminp∈Qm Hm(p,Q). We
let H∗m(Q) = Hm(p∗(Q),Q) be the global minimum of
Hm(p,Q) for fixed Q and m. The map p 7→ Hm(p,Q) with
m > 1 is differentiable (whenever (p1, . . . , pm) are distinct)
but not convex, thus making the solution of the continuous
m-median problem hard in the general case. In fact, it is
known [10] that the discrete version of the m median prob-
lem is NP-hard for d ≥ 2. However, numerical techniques
for finding local minima of continuous m-median problems
can be designed using i) the ”honeycomb heuristic” [12],
and ii) the fact that pi is the median of Vi(p) for each pi in
p∗(Q). We will not pursue the issue of computation of the
m-median and of the corresponding H∗m(Q) further, but will
assume that these values are available.

In the following result we characterize how the optimal
value of the m-median function depends on the number of
generators, i.e., how H∗m(Q) depends on the integer m, for
a fixed environment Q. This is a variation of a more general
result given in [12] for d dimensions, whose lower bound
proof has much of the logical structure to be used in the
Theorem 4.4, without the additional geometrical complexity
due to the motion constraints associated with the Dubins
vehicle.

Lemma 4.1: The function H∗m(Q) is Θ(1/
√
m) for a

given Q. In particular,

2
3

√
A
πm
≤ H∗m(Q) ≤ csq

√
3L(Q)√
m

,

where csq ≈ 0.38 and L(Q) is the side-length of the smallest
square enclosing Q.

We now state the following trivial lower bound.
Theorem 4.2: The coverage cost satisfies the following

lower bound.
Wopt ≥ H∗m(Q).

Remark 4.3: Theorem 4.2 and Lemma 4.1 imply that
Wopt ≥ 2

3

√
A
πm . Note that this lower bound holds for any

region and any number of vehicles.
The lower bound in Theorem 4.2 was obtained trivially by

adopting the corresponding lower bound for the Euclidean
vehicle. It is reasonable to expect that one can obtain a
tighter lower bound by eplicitly considering the motion
constraints of the Dubins vehicle. Before deriving a new
lower bound, we introduce a few concepts. To that effect,
we first define tρ(A) = {t|Area(Rt(gi)) = A} to be
the time for which the Dubins reachable set has area A.
With a slight abuse of notation, in the following, we shall
use an alternate notation to denote the Dubins reachable
set parametrized by its area: RA(gi) = Rtρ(A)(gi). The
approach of the lower bound heavily exploits the following
fact: for a given configuration, gi, the region of area A
with least expected Dubins distance is the reachable region
of area A. Given a set Q ⊂ R2 and a set of Dubins
configurations g = {g1, g2, . . . , gm} ∈ SE(2)m, let us define
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DV(g) = {DV1(g),DV2(g), . . . ,DVm(g)} as the Dubins
Voronoi partition of the set Q generated by the configurations
g. In other words, q ∈ DVi(g) if Lρ(gi, q) ≤ Lρ(gj , q), for
all j ∈ Im. Note that a vehicle’s Dubins Voronoi region is
exactly its instantaneous region of dominance. We are now
ready to state a new lower bound on Wopt, based on the
idea of finding the optimal configuration for the m-vehicle
system, as if it were capable of stopping motion.

Theorem 4.4: For any m, the coverage cost satisfies

Wopt ≥
m

A

∫
RA /m(gi)

Lρ(gi, q) dq.

Proof: In the following, we use the notation Ai =
Area(DVi(g)) and A = {A1, . . . ,Am}. We begin with

Wopt ≥ min
g∈SE(2)m

∫
Q

1
A

min
i∈Im

Lρ(gi, q)dq

= min
g∈SE(2)m

m∑
i

∫
DVi(g)

1
A
Lρ(gi, q)dq

≥ min
g∈SE(2)m

m∑
i

∫
RAi (gi)

1
A
Lρ(gi, q)dq

≥ min
A∈Rm+

m∑
i

∫
RAi (gi)

1
A
Lρ(gi, q)dq s.t.

m∑
i

Ai = A.

Let us define f : R+ → R+ as f(A) =
∫
RA(gi)

Lρ(gi, q) dq.
It is easy to verify that the function f is a contin-
uous, strictly increasing function of A. One can also
show that f is convex. Thus by using the Karush-Kuhn-
Tucker conditions [21], one can show that the quantity
minA∈Rm+

1
A

∑m
i f(Ai) subject to

∑m
i Ai = A is mini-

mized with an equitable partition, i.e., Ai is A/m, ∀i ∈ Im.
This yields the stated result.

Note that the above lower bound holds for any region and
any number of vehicles. Although, in this integral form, the
lower bound’s dependency on parameters such as m and ρ
is not transparent, we have shown that a lower bound can
be obtained by dividing the environment into equally sized
domains of responsibility, i.e., balance the workload in terms
of coverage.

We now introduce a non-dimensional parameter, which
we call the nonholonomic vehicle density as dρ = ρ2m/A .
The motivation of this parameter is shown in the following
theorem.

Theorem 4.5: The coverage cost for any Q of area A,
ρ ∈ R+ and m ∈ N such that dρ ≥ 24/π3 satisfies

Wopt ≥
3
4

(
3ρA
m

)1/3

.

Proof: Rearranging Eq. (3), we see that tρ(A /m) =
(3ρA/m)1/3 for tρ(A /m) ≤ πρ/2, i.e., for dρ ≥ 24/π3.
Also under this condition, Lρ(gi, q) ≥ x, and thus,∫

RA /m(gi)

Lρ(gi, q) dq ≥ 2
∫ y2

0

∫ tρ(A /m)

x1(y)

x dx dy

=
t4ρ(A /m)

4ρ
+ o(t4ρ(A /m)) ≈ 1

4ρ

(
3ρA
m

)4/3

,

where x1(y) =
√
ρ2 − (y − ρ)2 and y2 = ρ(1 − cos tρ ).

Combining with Theorem 4.4 yields the result.
Remark 4.6: Theorem 4.5 shows thatWopt = Ω(1/ 3

√
m).

The above result is simply the integral in Theorem 4.4
carried out for a specific range of the problem parameters.
Thus, it is reasonable to assume that a policy approximating
this lower bound would somehow allow the regions of
dominance to remain balanced throughout time. In a low
density scenario, this requires the vehicles to simply spread
out. However, as the density increases, a balanced coverage
requires that a vehicle’s region of dominance be very small,
i.e., the area immediately in front of it. Thus the optimal
policy in this phase involves dynamic regions of dominance.

V. ALGORITHMS AND UPPER BOUNDS

In this section, we propose control policies for the cover-
age task and then analyze their performances. The first policy
– the Median Circling Policy essentially attempts to imitate
the optimal policy for Euclidean vehicles, assigning static
regions of responsibility. The algorithm is formally described
as follows.

The Median Circling (MC) Policy

Each agent is associated with a generator pi, i ∈ Im. Let
p∗ be the m-median of Q, and define the loitering station for
the i-th agent as a circular trajectory of radius c2ρ centered
at p∗i . Each agent visits all targets in the Voronoi region of its
own generator Vi(p∗) in the order in which they arrive. When
no targets are available, the vehicle returns to its loitering
station; the direction in which the orbit is followed is not
important. A depiction of the MC policy is shown in Fig. 2.

Q

Fig. 2. Depiction of the Median Circling policy. The yellow squares
represent p∗, the m-median of Q. Each UAV loiters about its respective
generator at a radius c2ρ. The regions of dominance are demarcated
according to the Voronoi partition generated by p∗.

Note that there may be vehicles closer to a given target in
terms of Euclidean distance or Dubins minimum-length path.
However, we find the target-assignment strategy described
above lends itself to tractable analysis.

Theorem 5.1: For any convex, compact Q ⊂ R2 of area
A and ρ ∈ R+, the coverage cost of the Median Circling
policy satisfies

WMC ≤ H∗m(Q) + c1ρ. (4)
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Proof:

WMC ≤ min
g∈SE(2)m

∫
Q

1
A

min
i∈Im

Lρ(gi, q) dq

≤ min
p∈Qm

∫
Q

1
A

min
i∈Im

(‖pi − q‖+ c1ρ) dq

=
m∑
i=1

∫
Vi(p∗)

1
A
‖p∗i − q‖ dq + c1ρ

= H∗m(Q) + c1ρ.

Remark 5.2: In other words, we have shown that the
system time achieved by the MC policy is within a constant
additive factor c1ρ ≈ 3.76ρ from the optimal. The additive
factor, which can be considered a penalty due to the non-
holonomic constraints imposed on the vehicle’s dynamics,
depends linearly on the minimum turn radius ρ.

Note that the upper bound stated above does not tend to
zero as the size of the team grows large. We now compare the
performance of the Median Circling Policy with the optimal
limit shown in Theorem 4.2.

Theorem 5.3: The system time of the Median Circling
policy in light load satisfies WMC/Wopt ≤ 1 + 10

√
dρ. In

particular, limdρ→0+(WMC/Wopt) = 1.

Proof: Since 2
3

√
A
πm ≤ H

∗
m(Q) from Proposition 4.1,

we have that
c1ρ ≤ c1ρ

H∗m(Q)
2
3

√
A
πm

.

The first statement in the theorem then follows by substitut-
ing this into Equation (4) and applying Theorem 4.2. The
second result follows by taking the limit as dρ → 0+ in the
first statement.

Remark 5.4: Theorem 5.3 implies that the Median Cir-
cling Policy is an efficient policy for scenarios where we have
low nonholonomic vehicle density. In low density scenarios,
Euclidean distance dominates the cost, and thus, a policy
imitating that of Euclidean vehicles is near optimal.

The next strategy aims to i) maintain balanced coverage
despite the requirement of dynamic regions of dominance
due to high vehicle density, and ii) achieve a system time
that provably tends to zero as the size of the team grows to
+∞.

The Strip Loitering (SL) Policy
The Strip Loitering policy is based on the following idea.

Bound the environment Q with a rectangle of minimum
height, where we use height to denote the smaller of the
two side lengths of a rectangle. Let W and H be the width
and height of this bounding rectangle respectively. Divide Q
into strips of width w where

w = min
{( 4

3
√
ρ

WH + 10.38ρH
m

)2/3

, 2ρ
}
. (5)

Orient the strips along the side of length W . Construct a
closed Dubins-feasible path which runs along the longitu-
dinal bisector of each strip, visiting all strips from top-to-
bottom, making U-turns between strips at the edges of Q,

and finally returning to the initial configuration. The m UAVs
loiter on this path, equally spaced, in terms of path length.

A depiction of the Strip Loitering policy can be viewed in
Figure 3. Moreover, in Figure 4 we define two distances that
are important in the analysis of this policy. Variable d2 is the
length of the shortest path departing from the loitering path
and ending at the target (a circular arc of radius ρ). The UAV
responsible for visiting the target is the one closest in terms
of loitering path length to the point of departure (variable
d1), at the time of target-arrival. Note that there may be
UAVs closer to the target in terms of Euclidean distance or
Dubins minimum-length path. However, we find the target-
assignment strategy described above lends itself to tractable
analysis.

After a UAV has serviced a target, it must return to its
place in the loitering pattern. We now describe a method to
accomplish this task through the example shown in Fig. 4.
After making a left turn of length d2 to service the target, the
UAV makes a right turn of length 2d2 followed by another
left turn of length d2, returning it to the loitering path.
However, the UAV has fallen behind in the loitering pattern.
To rectify this, as it nears the end of the current strip, it takes
its U-turn early.

Q

Fig. 3. Depiction of the Strip Loitering policy. The segment providing
closure of the loitering path (returning the UAVs from the end of the last
strip to the beginning of the first strip) is not shown here for clarity of the
drawing.

d2d1 δ

target

point
of

departure

ρ

Fig. 4. Close-up of the Strip Loitering policy with construction of the
point of departure and the distances δ, d1, and d2 for a given target, at the
instant of appearance.

Theorem 5.5: For any ρ ∈ R+ and a convex, compact
Q ⊂ R2 with a bounding rectangle of width W and height
H , the system time of the Strip Loitering Policy satisfies

WSL ≤


1.24(ρWH+10.4ρ2H

m )
1
3 + W+H+6.2ρ

m if m ≥ mc,

WH+10.4ρH
4ρm + W+H+6.2ρ

m + 1.06ρ otherwise,
(6)

where mc = 0.47(WH
ρ2 + 10.4H

ρ ). In particular, for any ρ ∈
R+ and Q,

lim sup
m→+∞

WSLm
1/3 ≤ 1.24

(
ρWH + 10.4ρ2H

)1/3
. (7)
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Also,
lim sup
ρ
W→+∞

WSL
m

ρ
≤ 6.2. (8)

Proof: It is easy to verify that Nstrips = dHw e ≤
H
w +

1 and Lstrip ≤ W + 2ρ. Bounds from [22] give us that
Lu−turn ≤ w + κπρ and Lclosure ≤ W + H + 2ρ + κπρ,
where κ ≈ 8/3. The length of the closed path, L1, satisfies

L1 ≤ NstripsLstrip + (Nstrips − 1)Lu−turn + Lclosure.

Due to equal spacing of the UAVs along the loitering path,
E [d1] = L1/2m. Combining these bounds we get that

E [d1] ≤ WH + 10.38ρH
2mw

+
W +H + 6.19ρ

m
.

To calculate E [d2] we define δ as the smallest distance
from the target to any point on the loitering path (see
Fig. 4). Since d2(s) = 2ρ sin−1(

√
s
2ρ ) for s ≤ ρ and

δ is uniformly distributed between 0 and w/2, E [d2] =
4ρ
w

∫ w/2
0

sin−1
(√

s
2ρ

)
ds. From which, one can show that

E [d2] ≤ (3/4)
√
ρw. The coverage cost satisfies WSL ≤

E [d1] + E [d2] . Combining this with the bounds on E [d1]
and E [d2] we get that for w ≤ 2ρ

WSL ≤
WH + 10.38ρH

2mw
+
W +H + 6.19ρ

m
+

3
4
√
ρw. (9)

Minimizing the right hand side of Equation (9) with respect
to w subject to the constraint that w ≤ 2ρ, we arrive at
Eq. (5) and Eq. (6). The results in Eqs. (7) and (6) follow
by taking the associated limits on Eq. (6).

Remark 5.6: Theorem 5.5 and Theorem 4.5 imply that the
coverage cost belongs to Θ(1/m1/3).

Simulations
Simulations of the MC policy, in Fig. 5 (left), confirm the-

oretical predictions that the system time shrinks with 1/
√
m:

the log-log plots of system time versus number of vehicles
have slopes ranging from −0.48 to −0.52, implying a power
law of approximately −1/2, As the minimum turning radius
becomes very small, the performance of the MC policy
approximates the lower bound valid for a vehicle without
kinematics constraints, i.e., as ρ→ 0, WMC → H∗(Q).

Simulations of the SL policy, in Fig. 5 (right), confirm that
the system time shrinks with 1/m1/3: the log-log plot has
a slope of −0.34, implying a power law of approximately
−1/3.
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Fig. 5. Performance of the MC policy as a function of the number of
vehicles (left) with A = 1×108 and dρ ≤ 0.0056. Simulation performance
results for the SL policy (right) with A = 1, ρ = 0.2, and dρ ≥ 2.

VI. THE PHASE TRANSITION

In Section V, we proposed two policies. These policies
exhibit different modes of behavior. We have shown that
the territorial MC policy is optimal as dρ → 0+ and the
gregarious SL policy is constant-factor optimal as m→ +∞.
This suggests the existence of a phase transition in the
optimal policy as one increases the number of vehicles for a
fixed ρ and A.

We use simulation to compare the performances of the
two policies under varying conditions. Fig. 6 shows which
policy performs better under varying conditions. We vary
the number of vehicles m between 1 and 100 and the ratio
A /ρ2 between 1 and about 2000. In these simulations, the
environment is a square of unit area. The transition line has a
slope of approximately 10.8, implying that the optimal policy
switches behavior when dsim

ρ ≈ 0.0925.
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Fig. 6. Simulation results aimed at demarcating the phase transition. The
environment is a square of unit area.

L

w

Fig. 7. The MC (left) and SL (right) policies with an infinite number of
vehicles on an unbounded domain.

We are interested in fundamental factors driving the tran-
sition, ignoring its dependence on the shape of Q. Towards
this end, we envision an infinite number of vehicles operating
on the unbounded plane, where the system is characterized
by the vehicle density. Let us denote the inverse of the
density with a, the area per vehicle. Depictions of the MC
and SL policies operating on an unbounded domain are
shown in Fig. 7. In this case, the configuration p∗ yielding
the minimum of the function H(p) is that in which the
Voronoi partition induced by p∗ is a network of regular
hexagons [12], each of area a. Each generator pi is the
median of its own Voronoi region, and it is known that if Q
is a regular hexagon of area a then H∗1(Q) ≈ 0.377

√
a. The

system time of the policy satisfiesWMC ≤ 0.377
√
a+3.76ρ.

In this scenario, the SL policy reduces to vehicles moving
straight on infinite strips, where the design criteria are the
width of the strips w ≤ 2ρ, and the distance between
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consecutive vehicles in the same strip L. The system time
of the policy satisfies WSL ≤ L/2 + 3

√
ρw/4. The area per

vehicle is related to the design parameters by Lw = a. We
substitute to get WSL ≤ a/2w+ 3

√
ρw/4. Minimizing with

respect to w, with the constraint that w ≤ 2ρ, we choose
w = min{(4a/3√ρ)2/3, 2ρ}, yielding

WSL ≤
{

1.238(ρa)1/3 for dρ ≥ 0.471,
a/4ρ+ 1.06ρ otherwise ,

(10)

where we have substituted the nonholonomic vehicle density
with dρ = ρ2/a. Equating the upper bound on the MC policy
with the upper bound on the SL policy for dρ < 0.471,
we get 0.377

√
a + 3.76ρ = a/4ρ + 1.06ρ. Dividing both

sides by ρ and substituting x =
√
a/ρ, the quadratic formula

gives x ≈ 4.127 and hence the critical nonholonomic vehicle
density is given by dunbd

ρ = 1/x2 ≈ 0.0587. This is a
lower critical density than implied by the simulation results,
favoring the SL policy. It would seem that the relaxation
of the environment boundary has a greater impact on the
performance of the SL policy, no longer requiring U-turns.

To gain intuition on the nature of this critical condition,
consider the area per vehicle acrit = ρ2/dcrit

ρ , which yields
asim ≈ 3.44πρ2. and aunbd ≈ 5.42πρ2. In other words,
the transition occurs when each vehicle is responsible for a
region of area 3.44 or 5.42 times that of a minimum turning-
radius disk.

VII. CONCLUSIONS

In this paper, we considered a coverage problem for a
team of nonholonomic agents. We prove that the system
time belongs to Θ(1/m1/3). It is interesting to compare
this with the Euclidean case, where the system time belongs
to Θ(1/m1/2). This shows that, in dynamic vehicle routing
scenarios with low target-generation rate, the nonholonomic
constraints make the system time less sensitive to the team
size. This is in stark contrast to a result in [3], [5]: nonholo-
nomic dynamics cause greater sensitivity to the team size
when the target generation rate is high.

We showed that the optimal policy exhibits a phrase tran-
sition: in low density scenarios, the optimal policy is one of
territorial behavior, but as the density increases, a gregarious
behavior is required to reap the benefits of a large team.
We identified a parameter we call the nonholonomic vehicle
density as a key in characterizing the mode of the system,
and used numerical experiment and analytical techniques
to study the value of the parameter which demarcates the
phase transition Furthermore, we aim to design decentralized
strategies for the individual agents to obey, maintaining near
optimal performance for the system as a whole. A game-
theoretic approach might lend itself naturally to a completely
distributed control policy.

We also would like to compare our results with those
found empirically by observing biological systems [16].
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