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Abstract— In this paper we focus on the problem of modeling
and controlling a certain configuration of UAV (Unmanned
Aerial Vehicle) considering explicitly the interaction with the
environment. This innovative problem is particularly interesting
in order to employ unmanned aircrafts in tasks and operations
which may require explicitly or implicitly contacts between the
UAV itself and the environment such as manipulation of remote
objects or indoor flight. For a class of VTOL (Vertical Take-
Off and Landing) aircrafts we start studying the problem of
safe take-off from hostile terrains and the control of the vehicle
when in contact with vertical fixed surfaces.

I. INTRODUCTION

The aim of the paper is to present preliminary studies re-
garding modeling and control of a particular configuration of
VTOL UAVs in an innovative scenario in which interaction
with the environment, in term of desired or unpredictable
contacts, is possible and may be a desired control goal. This
problem is particularly interesting for the employment of
unmanned flying machines in operations which may require
explicitly, such as remote manipulation, or implicitly, such
as indoor flight with reduced measurement information, con-
tacts between the UAV itself and the environment, qualifying
the aircraft as a real unmanned flying robot. In all these
possible situations, the control action which is necessary
even to maintain the stability does not come straightforward
from standard control laws which are usually synthesized
considering the free-flight dynamics. For this reason we start
investigating the dynamics of the system considering explic-
itly the constraints deriving from the interaction with the
environment and we synthesize a control strategy to robustly
achieve a desired control goal in a particular configuration.
The problem has been addressed considering the approximate
planar dynamics of a ducted-fan MAV (Miniature Aerial
Vehicle) (see also [12]). This particular configuration of
VTOL UAV have been recently considered in literature (see
[6], [15], [10]), for its interesting flight properties, which
render this system similar to a helicopter. The ducted-fan
aerial vehicle (compactly denoted as DFAV) on which we
concentrate is a miniature unmanned aircraft characterized
by a very simple mechanical structure which is composed of
two main subsystems: the propulsive subsystem, composed
by a propeller and an electric motor, and the attitude control
subsystem, composed by a set of profiled flaps actuated by
miniature servo controllers. Both the propeller and the flaps
are protected by the presence of a cylindrical fuselage, the

This work was supported by MIUR. Corresponding author: Ing. Luca
Gentili, CASY-DEIS University of Bologna, Via Risorgimento 2, 40136
Bologna, Italy. Tel: 0039 051 2093875, Fax: 0039 051 2093073, email:
l.gentili@unibo.it

duct, which can also be designed in order to improve the
flying qualities (see also [6]). The main reason of looking at
this kind of configuration is that, being compact and with the
propeller safely separated from the environment thanks to the
presence of the fuselage, it appears suitable for operations in
which interactions with environment and eventually human
being are possible and may be desired tasks.

We start addressing two different control scenario, the
take-off and set-stand to vertical fixed surfaces. The first
scenario is representative of all the situations in which the
system has to interact with horizontal fixed surfaces, like the
ground or possibly more hostile terrains, while the second
one includes all possible situations in which the system can
come into contact with vertical fixed surfaces such as a wall.
In particular in section II different dynamical models in order
to describe the system both in the free flight condition and in
case of contacts with rigid surfaces are derived; moreover a
hybrid dynamical model of the overall dynamics is presented.
In section III the take-off maneuver is take into account:
the problem of performing this task over hostile terrains
is considered and a control strategy is derived to avoid
undesired overturning (see figure 1 (a)). In section IV the
interaction with a vertical surface is considered (see figure 1
(b)), a co-design hint is pointed out and a control strategy to
perform a tracking task when the DFAV is in contact with
a wall is designed under some conditions depending on the
trajectory to be tracked and on the initial conditions related
to the movement of the DFAV when it is flying freely and
is approaching the wall. In section V conclusions and future
works are explained.

(a) (b)

Fig. 1. The DFAV overturning during a take-off maneuver (a) and
interacting with a wall (set-stand) (b).

II. DFAV MODELING

In the following we will consider different dynamical
models in order to describe the system both in the free
flight condition and in case of contacts with rigid surfaces.
For each dynamical model we derive the conditions on the
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Fig. 2. The DFAV on the configuration manifold S1 × IR2.

state of the system and on the control inputs to define an
hybrid dynamical model of the overall dynamics. For the
sake of simplicity, we will concentrate on a simplified model
(see figure 2) considering only the “planar dynamic” on the
configuration manifold S1 × IR2.

A. Aerodynamic Simplifications

Assuming low translational speed, the overall relative
wind vector for the control flaps is represented only by the
propeller downwash Vi which, according to [16] and [17], is
approximated by Vi =

√
2uM/ρSdisk in which uM denotes

the thrust of the propeller, ρ is the air density and Sdisk is the
area of the propeller (the influence of the duct in our setup is
negligible). For a control flap of area Sflap we denote with
F the aerodynamic lift force, which is given by

F =
1
2
ρSflapCLV 2

i = CL
Sflap

Sdisk
uM

where CL = cLuF , in which cL is a constant coefficient
which depends on the geometry of the flap, and uF is the
angle of attack with respect to the propeller downwash,
which is the control input used to manipulate the flap
force. As an approximation we neglect the aerodynamic drag
forces. We will assume that the thrust uM and the flap’s angle
of attack uF are the available control inputs.

B. Free Flight Model

In order to derive a dynamical model to describe the
ducted-fan UAV in free flight, according to [12], we make
use of Newton-Euler equations of motion of a rigid body
evolving on the configuration manifold S1 × IR2. By fixing
an inertial coordinate frame Fi = {Oi,

−→
i i,

−→
j i} and a body

frame Fb = {Ob,
−→
i b,

−→
j b} in the center of mass of the

aircraft, and, for sake of simplicity, by parameterizing the
S1 manifold with the angle φ ∈ IR, we obtain the following
equations

mẍi = uM sin φ + kF uMuF cosφ
mz̈i = uM cos φ− kF uMuF sin φ−mg

Jφ̈ = −kτuMuF

(1)

in which m and J are respectively the vehicle mass and
inertia, the control inputs u = [uM uF ]T ∈ U , i.e. uM ∈
[0, ūM ] ⊂ IR≥ and uF ∈ [−ūF , ūF ] ⊂ IR, are given re-
spectively by the propeller thrust and the flap’s control angle,
kF = cLSflap/ Sdisk, and finally kτ = cLdSflap/ Sdisk,
with d the moment arm of the flap’s forces with respect to
the center of mass of the vehicle.
Property 1 (Small body forces) [7] - The effects of the flaps
forces on the translational dynamics are small (and indeed
negligible) compared to the effect of the propeller’s thrust,
i.e. kF ūF ¿ 1. 2

Small body forces property holds for this kind of systems:
it comes from a mechanical property of miniature aircraft of
having a very small inertia J compared to the mass m.
Property 2 (Attitude controllability) - The attitude subsys-
tem of (1) is controllable through the input uF if and only
if uM 6= 0 (which means uM > 0). 2

C. Tracking for the approximate dynamics

We consider for the dynamics (1), approximated by small
body forces properties, the problem of tracking a desired
position [xi

r yi
r]

T ∈ IR2 (see also [13], [7]). By exploiting
the property of the approximate system of being flat for the
above choice of the outputs (see [3], [11]), we compute the
inputs which are necessary to achieve the invariance of the
zero-error manifold

uMr =
m(g + z̈i

r)
cos φr

, uFr =
−Jφ̈r cos φr

kτm(g + z̈i
r)

where φr = arctan(ẍi
r/g + z̈i

r). The attitude controllability
property is satisfied by requiring uMr > εu with εu > 0.

D. Constrained Model

In the following sections we consider the dynamics of
the system when the terminal points of the landing gear are
into contact with a horizontal or vertical surface. These two
scenario are representative for all the type of interactions that
we are considering in this work. For sake of simplicity we
will limit the analysis only to the case in which P1 may be
into contact to a fixed surface, observing that the analogous
results can be extended to P2 exploiting the symmetries of
the system.

E. Interaction with a horizontal fixed surface

With an eye at figure 2, we assume that the ducted-fan can
move horizontally over the surface characterized by β = 0
and rotate around the contact point P1. Let us consider the
generalized forces acting on the mass m with respect to the
generalized coordinates α = xi + l cos θ and θ = φ + γ

Fα = kF uMuF cosφ + uM sin φ− λH α̇
Fθ = kF dl sin γF uMuF + l cos γuM

(2)

in which l, dl, γ and γF are defined in figure 2 and λH is
the viscous friction coefficient of the horizontal surface. The
Lagrangian function of the system, considering kinetic and
potential energies, is then given by:

L =
1
2
m(α̇2 − 2lα̇θ̇ sin(θ) + l2θ̇2)−mgl sin θ . (3)
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Simple calculations allow to write the dynamical model

mα̈ + mlθ̈ sin θ + mlθ̇2 cos θ = Fα

mlα̈ sin θ + ml2θ̈ + mgl cos θ = Fθ
(4)

F. Interaction with a vertical fixed surface

With an eye at figure (2), we assume that the ducted-fan
can move along a vertical surface characterized by α = ᾱ
and rotate around the contact point P1. Let us consider the
generalized forces acting on the mass m with respect to the
generalized coordinates β = zi − l sin θ and θ = φ + γ

Fβ = −kF uMuF sin φ + uM cosφ− λV β̇
Fθ = kF dl sin γF uMuF + l cos γuM

(5)

in which λV is the viscous friction coefficient of the vertical
surface. The Lagrangian function of the system, considering
kinetic and potential energies, is then given by:

L =
1
2
m

(
β̇2 + 2l cos θβ̇θ̇ + l2θ̇2

)
−mg(β + l sin θ) (6)

and the dynamical model is given by

mβ̈ + ml cos θθ̈ −ml sin θθ̇2 + mg = Fβ

mlβ̈ cos θ + ml2θ̈ + mgl cos θ = Fθ
(7)

G. An Hybrid Dynamical Model of the Overall Dynamics

In order to define the conditions under which the system
dynamics are described by respectively the free flight model
(1) or by the constrained models (4) and (7) we define
the model domains by introducing appropriate conditions
on system state and inputs. Let us first consider the two
following force contribution

FZi = uM cosφ− kF uMuF sin φ−mg
FXi = uM sin φ + kF uMuF cosφ

where FZi denotes the resultant vertical force directed along
the inertial zi axis, whereas FXi denotes the resultant force
directed towards the vertical fixed surface and then along
the inertial xi axis. To denote a certain macro-state of
the system we introduce a discrete variable q, where q ∈
{L, FF, SS, ToL} with the following meaning
• L: landed. Both P1 and P2 are in contact with a

horizontal surface (ground).
• FF : free flight. Neither P1 nor P2 are constrained by a

contact with a vertical or horizontal surface. The system
dynamics are described by (1).

• SS: set-stand to a vertical surface. P1⊕P2 are into con-
tact with a vertical fixed surface. The system dynamics
are described by (7). (⊕ is the XOR logical operator).

• ToL: take-off and landing. P1 ∨ P2 are into contact
with a horizontal fixed surface. The system dynamics
are described by (4). (∨ is the OR logical operator).

More clearly, we define the two sets Ch = {pi ∈ IR2 :
h(p) = 1} and Cv = {pi ∈ IR2 : v(p) = 1} where
h : IR2 7→ {0, 1} and v : IR2 7→ {0, 1} are functions
which define if a point in the frame Fi belong to respectively
a horizontal or vertical fixed surface, and we consider the
following constraints (see also [8], [1])

L FF

ToL

Fault

Stop

TO

uM ]uMtn>[

FZ ]0>[ i

FZ ]0>[ i

]
L>[φ φ

u
M
uM=
*

u
F
uF=
*

u
M
0=

u
F 0=

F
Z

]0<[ i

<[ θ θ,
.
2Dus ]

Fig. 3. The hybrid automata which model the dynamics during a take-
off (on the left) and the control hybrid automata (on the right). The guard
conditions are denoted with [·].

1) q = L ⇔ (P1 ∈ Ch ∧ P2 ∈ Ch) ∧ (FZi < 0)
2) q = Tol ⇔ (P1 ∈ Ch ∨ P2 ∈ Ch) ∧ (FZi < 0)
3) q = SS ⇔ (P1 ∈ Cv ∧ FXi > 0) ⊕

(P2 ∈ Cv ∧ FXi < 0)
4) q = FF otherwise . (∧ is the AND logical operator).

For each macro-state q, it is possible to design a control
law such that the system evolves inside the domains defined
above. At the same time we consider situations in which the
desired control goal implies the transition from one macro-
state to another one. In particular this happens during the
take-off maneuvers and from FF to SS.
In order to model the transition between FF and SS or ToL
configurations, we make use of momentum conservation to
define the initial conditions for the state of the system.

III. TAKE OFF ANALYSIS

Let us now focus to the study of a particular situation:
the DFAV must perform a take-off maneuver but, as the
horizontal surface is not completely smooth, we will consider
some approximations on the dynamics (4), assuming that the
viscous friction between the contact point and the surface is
large; neglecting the translational dynamics we obtain

ml2φ̈ = l cos γuM + kF dl sin γF uMuF −mgl cos (φ + γ) .
(8)

Our goal is to assure a safe take-off for the DFAV, avoiding
undesired overturning.
Def. (Turn Thrust) - The turn thrust uMtn is the smallest
value of uM , which depends on control input uF , such that
the angular acceleration is greater than zero, i.e. such that
∀[uM uF ]T : uM ≥ uMtn(uF ) ⇒ φ̈ ≥ 0,

uMtn = mgl
cos(φ + γ)

l cos γ + kF dl sin γF uF
. (9)

Def. (Take-Off Thrust) - The take-off thrust uMto is the
smallest value of uM , which depends on the input uF , such
that ∀uM ≥ uMto ⇒ FZi ≥ 0,

uMto =
mg

cosφ− kF sin φuF
. (10)

It is straightforward to see that the choice of uM > uMto

guarantees a safe take-off preventing the system from being
overturned. For a real system anyway, the propeller thrust
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cannot be changed instantaneously, but represent the state of
a low-level dynamics. In particular for fixed pitch propellers,
the thrust is proportional to the square of the angular velocity,
and the dynamics u̇M depends on the engine total power
and, for electric motors, from the battery charge. Let us
now consider the case in which uMturn

< uMto
. This

happens for all initial conditions in which φ(0) > 0, a likely
condition when the horizontal surface is not ideal and the
DFAV is not perfectly horizontal when the take-off maneuver
starts. In this condition we have that, performing a take-
off maneuver increasing the thrust value uM , it reaches the
Turn Thrust before the Take-Off Thrust value; this can lead
to an undesirable overturn the overall system (see figure 1
(a)). The dynamics of the take-off are represented by the
hybrid automata in figure 3, in which the Fault configuration
represent the undesired overturn of the system.
Proposition 1 Given the system (8) with inputs u :=
[uM uF ] = [0 0]T , the point of the state space φ = φL,
φ̇ = 0, where φL = π/ 2− γ is denoted as the limit angle,
corresponds to an unstable equilibrium point. Moreover,
assuming that l cos γ + kF dl sin γF ūF > 0 (small-body
torques), the equilibrium point cannot be robustly stabilized
by feedback unless a structural property holds for the system.
Proof: Considering the linear approximation of (8), we
have that the eigenvalues of the state transition matrix are
±

√
g/ l; converse Lyapunov theorem can be applied to show

that the equilibrium point is unstable. Considering the change
of coordinates φ 7→ φ̃ := φ− φL, we rewrite (8) as

ml2
¨̃
φ = l cos γuM + kF dl sin γF uMuF + mgl sin φ̃ (11)

Pick now an εφ < π/ 2; no matter what is the input
u = col(uM , uF ) ∈ U , we cannot find a positive small
δφ > 0 such that if ‖φ̃(0)‖ ≤ δφ then ‖φ̃(t)‖ ≤ εφ. In fact
observe that, by the hypothesis on the control inputs and
since cos(φ̃ + π/ 2) < 0 if φ̃ > 0, if we start the system
with initial state φ̃1(0) := δφ1 > 0 the system (11) could
be seen as a double integrator driven by a positive input
and the trajectories diverge from the origin. This proves the
proposition. 2

Def. (limit angular velocity) - For any φ′ < φL we
can find an angular velocity φ̇L(φ′) > 0 such that for all
[φ(0) φ̇(0)]T = [φ′ φ̇′]T with φ̇′ < φ̇L(φ′), the trajectory
φ(t) of (8) with u := [uM uF ] = [0 0]T is such that
|φ(t)| < φL for all t ≥ 0.

The limit angular velocity can be derived numerically
solving the system equations (8) with u := [uM uF ] =
[0 0]T for different initial conditions.

A. Hybrid take-off controller

Let us introduce an hybrid take-off controller able to avoid
undesired overturning; the hybrid control law is represented
by the second automata in figure 3. Let us consider the case
in which φ(0) = φ? > 0. We design the control inputs uM ,
uF as open loop signals

• uM = u?
M > uMto(φ

?, u?
F )

• uF = u?
F with u?

F solution of the following optimiza-
tion problem min uMto + 1/uMtn , uF ∈ [−ūF , ūF ]
which for φ > 0 has the solution u?

F = −ūF .
Then we define the unsafe domain Dus ={

[φ φ̇]T : φ̇ > φ̇L(φ)− εφ

}
with εφ a positive value.

Once the state of the system is inside Dus, if the actual
input uM has not reached, because of delays of the internal
dynamics, the uMto

value, then the controller turn off the
inputs to prevent the system from being overturned.

IV. INTERACTION WITH RIGID VERTICAL SURFACES

In this section we consider the DFAV interacting with a
vertical surface: this issue reveals to be very interesting as
modern UAVs are requested to be not only capable to attain
flight tasks, but even to perform tasks while interacting with
the environment such as remote manipulation or indoor flight
with reduced measurement information. In the next sections
we are going to study firstly the mechanical characteristics
that the DFAV must satisfy to be suitable to perform tasks
while interacting with a wall and then a control law able to
maintain the DFAV in SS configuration while performing a
tracking task for the contact point.

A. Equilibrium analysis and design hints

Let us consider a DFAV as showed in figure 2 when its
point P1 is in contact with the wall placed in α = ᾱ. The
system dynamics are described by (5), (7). Consider a generic
equilibrium point (θ̂ = φ̂ + γ , β̂); the control actions that
should be performed at the equilibrium are

ûM =
mg(d̂l sin γF + cos θ̂ sin φ̂)

(d̂l sin γF cos φ̂ + cos γ sin φ̂)

ûF =
− sin θ̂ sin φ̂

kF (d̂l sin γF + cos θ̂ sin φ̂)
,

(12)

where d̂l = dl/l.
As our goal is to maintain the DFAV in contact with the wall
(i.e. being able to perform tasks in SS configuration), we
should investigate that the guard condition on the hybrid state
transition in not verified while the system is performing its
task. Let us calculate the constraining reaction of the wall, i.e.
the resulting force acting along the Xi axis in equilibrium.
To assure that the DFAV remains in contact with the wall
this force should be positive (the discrete variable q defining
the hybrid state of the system is constrained to be equal to
SS). The resulting force F̂Xi is

F̂Xi = mg
sin φ̂ sin (γF − γ)

cos γ sin (γF + φ̂)
. (13)

As our objective will be likely to control the DFAV with
small positive attitude angles, it is possible to remark that,
if φ̂ ∈]0;π/2 − γ[, then F̂Xi < 0. Hence the DFAV
showed in figure 2 is not adequate to perform tasks in SS
configuration as, already in equilibrium, resulting forces are
trying to move the DFAV away from the wall, switching to
the FF configuration (in this case q+ = FF ). This property
is mainly due to the position of the flaps with respect to
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the contact point P1: term (dl sin γF − l sin γ) in (13) is
structurally negative as the aerodynamic force F is applied
between the center of mass and the projection of P1 on
the symmetry axis. In order to make the DFAV perform
tasks in SS configuration, it should be possible to consider
the equilibrium points characterized by φ̂ ∈] − π/2 + γ; 0[;
unfortunately this solution contrasts with the usual approach
maneuver as the DFAV directs toward the wall with positive
angle φ (and a controller able to switch from a configuration
to another should be really difficult to implement) and with
the small body forces property as this equilibrium should
relay on the relevant use of force F in order to generate
a positive FXi

force. Nevertheless this issues represent an
interesting future work to investigate. On the other hand the
problem of maintain the DFAV in contact with the wall when
particular tasks in SS configuration are requested can be
solved with an accurate design of the mechanical structure
of the DFAV: it is possible to design the system such that
the aerodynamic lift force F acts below the contact point.
In figure 2 a possible solution is depicted considering P1′ as
the contact point (see also figure 1 (b)). Note that the model
(5), (7) remains true just substituting γ with γ′, l with l′,
dl with d′l and γF with γ′F < 0. In order to improve the
readability of the paper, in the following we consider P1′ as
the contact point but continue to use variables name without
the suffix ′; then from now on γ := γ′, l := l′, dl := d′l
and γF := γ′F < 0. It is possible to show that in this new
configuration, considering an equilibrium point (φ̂ , β̂), the
resulting force along the Xi axis F̂Xi > 0 if φ̂ ∈ ]0; |γF |[.
All those considerations leads to an explicit mechanical
design for a DFAV able to perform tasks in SS configuration:
the contact point P1 should have its projection on the
symmetry axis as much as possible near to the center of mass
and away from the attitude control subsystem (maximizing
|γF | and hence the set of admissible attitude angles when
the system is in SS configuration).

B. Tracking control law

In this section we are going to introduce a control law able
to make the DFAV track a suitably defined trajectory in SS
configuration. In particular we consider the system designed
as in figure 2 with P1′ as contact point with the vertical
surface (i.e. γF < 0). Let us introduce two new “virtual”
control variables F1 and F2 as

Fθ

l
= mlF1 + m cos θF2

Fβ + λV β̇ = ml cos θF1 + mF2 .
(14)

It is now possible to write the system model (5) and (7) as

θ̈ = F1 − cos θθ̇2

sin θ
+

λV β̇ cos θ

ml sin2 θ

β̈ = F2 +
lθ̇2

sin θ
− g − λV β̇

m sin2 θ
.

(15)

Remark 1 If system trajectories fulfill 0 < φ(t) < γF , ∀ t ≥
0, then real control actions uF , uM are univocally defined
by F1, F2 and θ.

As model (15) identifies the system when it is in SS
configuration, if we want to perform a certain task in this
configuration ∀t > 0, it must be assured that in this period
FXi > 0. Writing again FXi with respect to the new control
inputs F1 and F2

FXi
=

mlF1ā1 + mF2ā2

sin (φ + γF ) cos γ
(16)

with ā1 = cos γF − cos γ cos (φ + γF ) cos θ and ā2 =
cos θ cos γF −cos γ cos (φ + γF ), it is possible to show that,
suitably designing angles γ and γF , if φ ∈ ]0; |γF |[, ā1 > 0
and ā2 ≤ 0.
Remark 2 If we are able to design a control action assuring
that, considering a suitable set Ω? of initial conditions
(θ(0), θ̇(0), β(0), β̇(0))∈ Ω?, φ(t) ∈ ]0; |γF |[ ∀t ≥ 0 and
F1(t) < 0, F2(t) > 0 ∀t ≥ 0 then FXi

(t) > 0 and the
system remains in SS configuration ∀t ≥ 0.

Now let us introduce the family of trajectories that the
system is structurally able to track when constrained in SS
configuration. When system (15) is forced to track a generic
trajectory defined by θr(t), βr(t), asymptotically, “virtual”
control inputs F1, F2 are

Fr
1 = θ̈r +

cos θr θ̇r
2

sin θr
− λV β̇r cos θr

ml sin2 θr

Fr
2 = β̈r + g − lθ̇r

2

sin θr
+

λV β̇r

m sin2 θr
.

In order to be trackable, trajectories must be defined such that
FXi > 0; in our discussion we are interested in trajectories
such that φr(t) ≥ 0 and in particular we are going to consider
0 < φr(t) < γF , ∀t ≥ 0. Hence trajectories must be
designed such that Fr

1 < 0 and Fr
2 > 0.

Given suitably defined trajectories θr(t) and βr(t), it is
possible to design the “virtual” control input F1 and F2 as

F1 =
cosθθ̇2

sin θ
− λV β̇ cos θ

ml sin2 θ
+ θ̈r − θ + θr − θ̇ + θ̇r

F2 = g − lθ̇2

sin θ
+

λV β̇

m sin2 θ
+ β̈r − β + βr − β̇ + β̇r .

(17)
Defining M :=

√
(θ(0)− θr(0))2 + (θ̇(0)− θ̇r(0))2 and

N :=
√

(β(0)− βr(0))2 + (β̇(0)− β̇r(0))2, it is possible
to state the following proposition.
Proposition 2 If initial conditions and trajectories to be
tracked are such that ∀t ≥ 0

M < min {θr − γ , |γF | − θr + γ} (18)

and

cos (θr −M)
sin (θr −M)

(M + θ̇r)2+

−λV (β̇r −N) cos (θr + M)
ml sin2 (θr + M)

+ θ̈r + 2M < 0
(19)

g− l(M + θ̇r)2

sin (θr −M)
+

λV (β̇r −N)
m sin2 (θr + M)

+ β̈r−2N > 0 , (20)
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then ∀t ≥ 0 φ ∈ ]0 , |γF |[, FXi
> 0 and asymptotically

θ → θr and β → βr.
Proof: To prove this proposition consider that control actions
(17) decouple completely θ and β dynamics. Defining error
variables as θ̃ = θ− θr end β̃ = β−βr, select as Lyapunov
function for θ̃ dynamic Vθ̃ = 1/2θ̃2 +1/2 ˙̃

θ2. It is possible to
check that V̇θ̃ ≤ 0 and by LaSalle invariance principle θ̃ → 0
as well as ˙̃

θ → 0. Moreover {θ̃2(t) ,
˙̃
θ2(t)} ≤ M2 ∀t ≥ 0. As

θ̃ = θ−θr = φ−φr, algebraic calculations and condition (18)
show that 0 < φ(t) < γF as requested. For the β̃ dynamic
let us choose the Lyapunov function Vβ̃ = 1/2β̃2 + 1/2 ˙̃

β2.
Again it is simple to check that V̇β̃ ≤ 0 and by LaSalle

invariance principle β̃ → 0 as well as ˙̃
β → 0. Moreover

{β̃2(t) ,
˙̃
β2(t)} ≤ N2 ∀t ≥ 0. Equations (19), (20) assure

that, in the worst cases, F1 < 0 and F2 > 0. Hence FXi >
0 ∀t ≥ 0, proving the proposition. 2

Remark 3 The control designed to perform the tracking task
relies on a suitable choice of the desired trajectory to be
tracked and on a suitable definition of the initial conditions.
These can be imposed by a suitable choice of the desired free
flight state trajectories for xi, zi and φ (and hence for β and
α). Since we consider inelastic hits, the momentum remains
constant and initial conditions when the system switches from
FF to SS are defined by

α̇+ + l sin θ+θ̇+ = α̇− + l sin θ−θ̇−

β̇+ + l cos θ+θ̇+ = β̇− + l cos θ−θ̇−
(21)

with α̇+ = 0, θ− = θ+ and β− = β+. Conditions
(18), (19) and (20) could be verified not only choosing the
task to be performed in SS configuration, but also with a
suitable definition of the trajectories to be tracked in FF
configuration when the DFAV is approaching the wall.
Remark 4 Some preliminary developments have been car-
ried out to study robustness issues with respect to friction
constant λV ; the following adaptive algorithm assures the
asymptotic stability of the system (see [4], [14]) but only
preliminary and conservative conditions regarding the trajec-
tories to be tracked and initial conditions have been derived.

F1 =
cos θθ̇2

sin θ
− λ̂V β̇ cos θ

ml sin2 θ
+ θ̈r+

−(k2
1 + k1 + 1)θ̃ − (k1 + 1) ˙̃

θ

F2 = g − lθ̇2

sin θ
+

λ̂V β̇

m sin2 θ
+ β̈r+

−(k2
2 + k2 + 1)β̃ − (k2 + 1) ˙̃

β

(22)

with k1 ≥ 1, k2 ≥ 1 and

˙̂
λV = − ( ˙̃

β + k2β̃)β̇
(m sin2 θ)

+
( ˙̃
θ + k1θ̃)β̇ cos θ

ml sin2 θ
. (23)

Further studies are surely required in order to assure non
conservative conditions under which the system will remain
in SS configuration attaining the required task; with this
regard, our belief is that saturated adaptive techniques (see
[9] or [2]) will naturally help to obtain robust control
algorithms.

Some simulations have been carried out to point out the
effectiveness of the control design and to enlighten the
robustness of the adaptive extension. Due to reason of space,
they can be found in [5].

V. CONCLUSION AND FUTURE WORKS

In this paper the problem of modeling and control of a
particular configuration of ducted-fan aerial vehicle (DFAV)
is taken into account considering explicitly the interaction
with the environment. In particular two different scenario
have been investigated: the first regards the study of safe
take-off and is representative of all the situations in which
the system has to interact with horizontal fixed surfaces.
The second one includes all possible situations in which the
system can come into contact with vertical fixed surfaces.
In particular a controller able to perform a tracking task
when the DFAV is in contact with a wall is designed under
some conditions depending on the trajectory to be tracked
and on the initial conditions related to the movement of the
DFAV when it is flying freely and is approaching the wall.
Robustness issues have been preliminarily taken into account
and an adaptive algorithm to estimate system friction have
been designed; nevertheless further studies are required in
order to obtain less conservative results.
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