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Abstract— This paper focuses on the reconstruction of com-
plete state information in all the individual nodes of a complex
network dynamical system, at a supervisory level. Sliding mode
observers are designed for this purpose. The proposed network
observer is inherently robust, nonlinear and can accommodate
time-varying coupling strengths and switching topologies, pro-
vided the number of nodes remain fixed. At the supervisory
level, decentralised control signals are computed based on the
state estimates in order to operate the network of dynamical
systems in synchrony. A network of Chua circuits with six nodes
is used to demonstrate the novelty of the proposed approach.

I. INTRODUCTION

It is conspicuous that control applications in distributed
and cooperative environments are increasing in number. This
has given prominence to the problems associated with the
control of network systems as well as systems of systems.
A substantial research problem in this area is answering the
question of how the collective dynamical systems operating
over a network, in most cases having interactions with each
other, can achieve synchronised performance. Analysis and
control of complex behaviours in networks consisting of a
large number of dynamical nodes has attracted the attention
of researchers from different fields: see [19] for an overview
of work in the area of general complexity problems related to
the dynamics of networks; [28] for contributions in synchro-
nisation of complex networks; and [17], [21] for contribu-
tions in cooperative control. The key feature of networks is
their complexity, including dynamical evolution, topological
structure, and time varying coupling strengths. Traditionally,
a complex network was realized as a random graph – the so-
called E-R model [9]. Later, Watts and Strogatz introduced
the concept of a small-world network in [26], [27]. An
important discovery, reported in [26], is the observation that
a number of complex networks are also scale-free, and scale-
free and small-world phenomena contribute to complexity. A
general scale-free dynamical network model was discussed in
[25], and subsequently conditions for synchronisation were
derived [24]. A particular representation of the scale-free
dynamical network (in a modified form), that is consistent
with the one in [28], will be utilised in this paper.

The motivation for the present work is increasing the
level of autonomy in the case of ‘systems of systems’ i.e.
a group of dynamic systems operated over a network to
perform synchronously. Systems operated in a distributed
and cooperative environment are prevalent in many areas
of research. For example mobile robots, cooperating UAV
team operations, formation flying of UAV’s and satellites,
and distributed state estimation applications (for example lo-
calisation): for details of these kinds of applications, see [12],
[17], [21]. Research in the area of communication, command
and control is also very active [12], [20]. It is important that
in autonomous operation, the systems are monitored at a
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supervisory level, and in most cases the situation will be
such that the supervisory level node commands and controls
the systems during operation; for example see [12], [20].

In [1] an adaptive sliding mode observer has been de-
signed for synchronisation of coupled nonlinear systems (in
a master-slave architecture). Adaptive sliding mode control
has also been applied in [30] for synchronisation of general
master slave systems. Notice that all these applications
follow the master-slave framework. Recently a second order
sliding mode observer has been designed specifically for
online monitoring and fault detection in satellite formations,
in the presence of uncertainty [29]. In [20], an observer-
controller combination is discussed for a single unicycle
mobile robot. Reference [18] considers a similar problem,
providing a sufficient condition for nonlinear observability
and an associated Extended Kalman Filter (EKF) scheme
for the localization problem. The EKF observer estimates
the states of the leader-follower formation from the mea-
surements and control signals computed at the leader level.
References [18], [20], [29], [31] give details and examples
of the use of observers in complex applications.

In this paper, an observer-controller combination for a
class of systems operating over a network is considered. Al-
gebraic graph theoretic tools, based on the connectivity of the
graph, are used to represent the dynamical systems operating
over the network. The individual node level dynamics are
represented as a combination of linear and nonlinear parts.
The basic idea and focus of this paper is to estimate the states
of a complex network from the measurement signals by a
centralised observer at a supervisory level. The reconstructed
state signal is then used to generate decentralised control
commands sent to the individual subsystems. The focus of
this paper is on the reconstruction of the states. Sliding mode
observers – well recognized nonlinear robust observers –
have been developed over a number of years [2], [4]–[7],
[10], [11], [13], [14], [16]. By making use of the particular
structure of the problem, appropriate observer gains are
designed. The underlying idea is to drive the state estimation
error to the sliding plane in finite time and thereby achieve
asymptotic observers for the network of subsystems. A
systematic state reconstruction and control signal generation
approach at a supervisory level is developed. The main
contribution of this paper is the extension of existing sliding
mode observer ideas to the problem of node state estimation
in a network environment in which there are time varying
coupling strengths and unknown changes in the topology.

II. NOTATION AND PRELIMINARIES

The expression D iag(.) defines a diagonal matrix and
C ol(.) defines a column vector. For a symmetric positive
definite (s.p.d) matrix P = PT > 0, λmin(P) and λmax(P) are
the minimum and maximum eigenvalues. The symbols N (·)
and R (·) represent the null space and range space of a
matrix respectively. For the graph G , the adjacency matrix
A (G ) = [ai j], is defined by setting ai j = 1 if i and j are
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adjacent nodes of the graph, and ai j = 0 otherwise. This
is a symmetric matrix. The symbol ∆(G ) = [δi j] represents
the degree matrix, and is an N ×N diagonal matrix, where
δii is the degree of the vertex i. The Laplacian of G , L (G ),
is defined as the difference ∆(G ) − A (G ). The smallest
eigenvalue of L (G ) is exactly zero and the corresponding
eigenvector is given by 1. The Laplacian L (G ) is always
rank deficient and positive semi-definite. Moreover, the rank
of L (G ) is n − 1 if and only if G is connected.

III. SYSTEM DESCRIPTION

The network considered in this paper consists of N dy-
namical systems, indexed as 1,2, ...,N, with communication
interactions. This is viewed as a graph G with N labelled
vertices, each representing an n-dimensional dynamic sys-
tem. The nodes are assumed to be coupled linearly and
diffusively. As and where there is an interconnection between
any two dynamical systems, it constitutes an edge connecting
those nodes. In the case of a dynamically varying interaction
topology among the fixed number of N systems, the notation
G = {G 1,G 2, ...,GM} will be used, where each G i represents
an interaction topology for a particular time period. The
dynamics of the ith individual node of graph G are given
in equations (1) and (2).

ẋi = Axi + Bui + D fi(yi)− c(t)
N

∑
j=1

L i jΓx j (1)

yi = Cxi (2)

where xi ∈ IRn represents the n-dimensional state vector of
the ith node of the network. The symbol x represents the
collective state of the network x = col(x1,x2, ..,xi, ..,xN). The
matrices A ∈ IRn×n, B ∈ IRn×m, D ∈ IRn×q and C ∈ IRp×n

represent the nominal linear part of the system comprising
the dynamics of the ith node. Assume that the matrices D
and C have full column and row rank respectively. The
triplet (A,D,C) is assumed to be a minimal realization of
the ith node of the network. The coefficient c(t) > 0 is
the time varying coupling strength between the ith and jth

node. The coupling strength is assumed to be identical for
all the connections between the nodes. As described earlier,
L ∈ IRN×N denotes the connectivity of the topology of the
network being considered.

The matrix Γ = τi j ∈ IRn×n represents the local coupling
configuration among the states of the nodes. All the entries
of Γ are 1 or 0 and represent the existence or non-existence
of coupling in the respective channels in the network. In the
paper it is assumed that

Γ = D iag [τ1,τ2, ..,τi, ..,τn]

is diagonal, implying the coupling is identical in each node
of the network. The signal yi ∈ IRp represents the measured
outputs of the ith node respectively. Here it is assumed that
p ≥ q. The functions fi(yi), represent the unknown nonlinear
part of the dynamical system and are assumed to satisfy
certain sector bounds which will be precisely defined later
in the paper.

Assumption 1 rank(CD) = q for each node.

Assumption 2 The linear part of a decoupled node in the
system (1)-(2), represented as (A,D,C), is minimum phase.

IV. SLIDING MODE OBSERVER DESIGN PRELIMINARIES

Consider the autonomous system

ẋ = Ax + Bu + D f (y) (3)

y = Cx (4)

thought of as the decoupled dynamics of a typical node.
Note that the structure of (3)-(4) is similar to the one used
for absolute stability analysis in classical Lur’e systems.

If Assumptions 1 and 2 hold then, as argued in [8], there
exists a nonsingular mapping x 7→ T0x transforming the co-
ordinates to ones in which the system triple (A,D,C) has the
following structure

A =

[
A11 A12

A21 A22

]

D =

[
0

Do

]

C = [ 0 C2 ] (5)

where A11 ∈ IR(n−p)×(n−p),Do ∈ IRq×q is non-singular, and
C2 ∈ IRp×p is orthogonal. Define A211 as the top p−q rows
of A21. By construction, the pair (A11,A211) is detectable and
the unobservable modes of (A11,A211) are the invariant zeros
of (A,D,C) [8]. Also for convenience, define D2 ∈ IRp×q as
the bottom p rows of D (and therefore includes Do).

The discontinuous observer structure which will be used
here is of the form

ż(t) = Az(t)+ Bu(t)−Gley(t)−Gnν (6)

where the discontinuous vector

ν = −ρ(t,y)
Poey

‖Poey‖
if ey 6= 0 (7)

and z denotes the state estimate. The output estimation error
is ey(t) := C(x(t)− z(t)) and Po ∈ IRp×p is a s.p.d. matrix.
The scalar modulation function ρ : IR+× IRp×→ IR+ will be
described formally later but it represents an upper bound on
the magnitude of the nonlinear term.

A suitable choice for the matrix Gn in the co-ordinate
system in (5) is

Gn =

[
LCT

2

CT
2

]

(8)

where L = [ Lo 0 ] with Lo ∈ IR(n−p)×(p−q). The matrices
Lo, Po and Gl are to be determined. In [8], the system
associated with the state estimation error e := x − z was
analyzed and the following result was proved: Consider a
s.p.d. matrix P, with the structure

P =

[
P1 P1L

LTP1 P2 + LTP1L

]

> 0, (9)

where P1 ∈ IR(n−p)×(n−p), P2 ∈ IRp×p such that

P(A + GlC)+ (A + GlC)TP < 0 (10)

If Po := C2P2CT
2 , the error e(t) which satisfies

ė = (A + GlC)e + D f (x)+ Gnν

is quadratically stable. Furthermore, sliding occurs in finite
time on

S = {e : ey = 0}

and the reduced order dynamics are governed by the system
matrix A11−LoA211. If Assumptions 1 and 2 hold, a solution
to this problem is guaranteed to exist [8] and Lo can be
chosen to make A11 −LoA211 stable.
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In the case when p = q, Lo is the empty matrix and L = 0.
In this situation the approach is still valid provided A11 is
stable. It can be easily verified if p = q then (A,D,C) has
exactly n− q invariant zeros which are the eigenvalues of
A11 and so Assumption 2 is equivalent to A11 being stable.

V. A NETWORK OBSERVER

Now consider these ideas extended to the problem of net-
work supervision. Consider the observer dynamical system

żi = Azi + Bui− c(t)
N

∑
j=1

L i jΓz j −Gli(ey)−Gni
νi (11)

yi = Cxi (12)

for i = 1, ...,N where eyi
= C(xi − zi), ey = C ol(ey1

, . . .eyN
)

and νi is a discontinuous injection term which depends only
on eyi

for i = 1, ...,N: specifically

νi = −ρ(t,y)
eyi

‖eyi
‖
, if eyi

6= 0 (13)

The gain Gni
is assumed to have the structure given in

(8). Note this is a ‘centralised’ observer in the sense that
the supervisory node receives information yi from all other
subsystem nodes in the network in order to utilise the output
estimation error term ey. The gain matrix Gli(ey) is a function
of the output estimation error from the whole network and
unlike in (6) will be time varying since it depends on c(t).
The error in the state estimate of the ith node is given by

ėi = Aei + D fi(yi)− c(t)
N

∑
j=1

L i jΓe j + Gli(ey)+ Gni
νi (14)

where i = 1, ...,N.

Assumption 3 Assume that in the coordinate system of (5)

Γ =

[
Γ1 0
0 Γ2

]

(15)

where Γ2 ∈ IRp×p. By changing the coordinates within the
null space of C, it can be assumed that

Γ1 = D iag{τ1,τ2, . . .τn−p}

where the scalars τi ∈ {0,1}. In fact it can be assumed
without loss of generality

Γ1 =

[
Ir 0
0 0

]

(16)

where r := rank(Γ1).

To obtain an expression for the reduced order sliding
mode, consistent with the 4-block partition of the triple
(A,D,C), write the node state estimation error as

ei :=

[
e1i

e2i

]

(17)

where e1i
∈ IRn−p. Suppose a sliding motion can be attained

on the surface S =
⋂

i=1...N S i where

S i = {(e1i
,e2i

) | e2i
= 0} (18)

The sliding motion on S associated with system (14) is
governed by:

ė1i
= A11e1i

− c(t)
N

∑
j=1

L i jΓ1e1 j
+ LCT

2 νeq,i (19)

0 = A21e1i
+ D2 fi(yi)+CT

2 νeq,i (20)

where νeq,i is the so-called equivalent injection necessary to
maintain sliding and represents the ‘average’ switched signal
[7]. To develop an expression for the reduced order sliding
motion write

CT
2 νeq,i =

[
ν1

eq,i

ν2
eq,i

]

where ν1
eq,i ∈ IRp−q. From the structure of D2 and the

definition of A211, it follows from the top p − q rows of
equation (20) that

0 = A211e1i
+ ν1

eq,i

Note since L = [ Lo 0 ] where Lo ∈ IR(n−p)×(p−q) then

LCT
2 νeq,i = Loν1

eq,i = −LoA211e1i
(21)

Substituting the expression from (21) into (19), it follows:

ė1i
= (A11 −LoA211)e1i

− c(t)
N

∑
j=1

L i jΓ1e1 j
, i = 1 . . .N (22)

Since the Laplacian matrix L is symmetric, by applying
spectral decomposition [15], it can be written as

L = V TDV (23)

where

D = diag{d1,d2, . . . ,dN}

are the eigenvalues, and V is an orthogonal matrix composed
of the eigenvectors. By making use of the Kronecker repre-
sentation, equation (22) at a network level can be written

ė1 = (IN ⊗ (A11 −LoA211))e1 − c(t)(L ⊗Γ1)e1 (24)

where e1 = C ol(e11
,e12

, . . .e1N
). In order to study the stabil-

ity of the reduced order sliding motion a suitable change of
coordinates e1 7→ Tde1 = η is introduced, where

Td := (V T ⊗ I(n−p)) (25)

From the properties of Kronecker products

(V T ⊗ I(n−p))(IN ⊗ (A11 −LoA211))(V ⊗ I(n−p))

= IN ⊗ (A11 −LoA211) (26)

and

(V T ⊗ I(n−p))(L ⊗Γ1)(V ⊗ I(n−p)) = (V TLV )⊗Γ1 = D⊗Γ1

Since η̇ = Td ėi, from applying the transformation in (25) to
(24), it follows

η̇ = (IN ⊗ (A11 −LoA211)− c(t)(D⊗Γ1))η (27)

Since D is diagonal, (27) can be decoupled to node level
dynamics of the form

η̇i = (A11 −LoA211 − c(t)diΓ1)ηi, i = 1 . . .N (28)
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where η = C ol(η1,η2 . . .ηN). Consequently the stability of
the reduced order sliding motion depends on the stability of
the system matrices

Ai(t) =: (A11 −LoA211 − c(t)diΓ1) (29)

for i = 1 . . .N. Notice that c(t)di ≥ 0 for i = 1 . . .N since L
is positive semi-definite.

The stability of (A11 − LoA211 − c(t)diΓ1) may be ex-
amined by synthesizing a Lyapunov function of the form
Vi = ηT

i P1ηi.

V̇i = ηi

(
P1(A11 −LoA211)+ (A11 −LoA211)

TP1

−c(t)di (P1Γ1 + ΓT
1P1)

)
ηi (30)

A sufficient condition to ensure negative definiteness of V̇i is
to synthesize a s.p.d matrix P1 such that

−P1Γ1 −ΓT
1P1 ≤ 0 (31)

P1(A11 −LoA211)+ (A11 −LoA211)
TP1 < 0 (32)

Because of the specific structure of Γ1 in assumption 3, the
matrix inequality (31) can only hold if

P1 =

[

P11 0
0 P22

]

(33)

where P11 ∈ IRr×r. This follows because for a general s.p.d
matrix P1 partitioned as

P1 =

[
P11 P12

PT
12 P22

]

it follows by direct computation that

P1Γ1 + Γ1P1 =

[
2P11 P12

PT
12 0

]

and hence P1Γ1 + Γ1P1 ≥ 0 if and only if P12 ≡ 0.
From the structure of P1 in (33), the problem can be posed

as an LMI in the decision variables P1 and M of the form

P1A11 + A11P1 −MA211 −AT
211MT < 0 (34)

where the variable change M := P1Lo has been employed.
Efficient routines exist to solve these problems [3].

In the situation in which an s.p.d. matrix P1 can be found
to satisfy (31)-(32), then Ai(t) from (29) is stable for all
di ≥ 0. This means that the stability of Ai(t) is independent
of the Laplacian L since, whilst a change in L alters D and
V in (23) and hence di for i = 1 . . .N, the stability of Ai(t)
from (29) is unaffected.

Consider the change of coordinates ei 7→ TLei where

TL :=

[
In−p −L

0 Ip

]

Partition the transformed error state vector as
[

ẽ1i

e2i

]

= TLei (35)

where ẽ1i = e1i −Le2i. Write the injection gain as
[

G1i
(ey)

G2i
(ey)

]

= Gli(ey) (36)

It follows from (14) that

˙̃e1i
= (A11 −LoA211)ẽ1i

+ Ã12e2i

−c(t)
N

∑
j=1

L i j(Γ1ẽ1 j
+ Γ12e2 j

)+ G1i
(ey)−LG2i

(ey)(37)

ė2i
= A21ẽ1i

+ Ã22e2i
+ D2 fi(yi)

−c(t)
N

∑
j=1

L i jΓ2e2 j
+ G2i

(ey)+CT
2 νeq,i (38)

where Ã12 ∈ IR(n−p)×p and Ã22 ∈ IRp×p come from the
partition

[
Ã11 Ã12

A21 Ã22

]

= TAT−1

and Ã11 = (A11 −LoA211). The matrix Γ12 := Γ1L−LΓ2 in
(37) is obtained from the partition

[
Γ1 Γ12

0 Γ2

]

= TΓT−1

Define

G2i
(ey) := −Ã22CT

2 eyi
+ ΦCT

2 eyi
+ c(t)

N

∑
j=1

L i jΓ2CT
2 ey j

(39)

where Φ ∈ IRp×p is a stable matrix. Then define

G1i
(ey) := LG2i

(ey)− Ã12C
T
2 eyi

+ c(t)
N

∑
j=1

L i jΓ12CT
2 ey j

(40)

Substituting the expressions for G1i
(ey) and G2i

(ey) into
equations (37)-(38)

˙̃e1i
= (A11 −LoA211)ẽ1i

− c(t)
N

∑
j=1

L i jΓ1ẽ1 j
(41)

ė2i
= A21ẽ1i

+ Φe2i
+ D2 fi(yi)−CT

2 νi (42)

for i = 1 . . .N.
Write ẽ1 = C ol(ẽ11

, . . . ẽ1N
) and e2 = C ol(e21

, . . .e2N
) then

(41)-(42) can be written as

˙̃e1 = (IN ⊗ (A11 −LoA211)− (L i j ⊗Γ1))ẽ1 (43)

ė2 = (IN ⊗A21)ẽ1 +(IN ⊗Φ)e2

+(IN ⊗D2) f (y)− (IN ⊗CT
2 )ν (44)

where ν = C ol(ν1, . . .νN). It was demonstrated earlier that
by construction (IN ⊗ (A11 −LoA211)− (L i j ⊗Γ1)) is stable.
Let V1 = ẽT

1 P̃1ẽ1 be a quadratic Lyapunov equation for the
sub-system (43) such that

V̇1|(43) ≤−qẽT
1 ẽ1

Note that

‖(IN ⊗D2) f (y)‖ ≤ ‖D2‖‖ f (y)‖

and eyi
= C2e2i

which implies ‖ey‖ = ‖e2‖. Consider

V := V1 + keT
2e2 (45)

where k is a positive scalar to be decided upon. For simplicity
assume Φ =−φIp for some positive scalar φ. It can be shown
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using the quadratic form in (45) that (43)-(44) is quadrati-
cally stable: taking time derivatives along the trajectories

V̇ ≤ −qẽT
1 ẽ1 + 2keT

2 ė2

≤ −q‖ẽ1‖
2 + 2k‖e2‖‖(IN ⊗A21)‖‖ẽ1‖−2φk‖e2‖

2

+2k‖e2‖‖D2‖‖ f‖−2keT
2(IN ⊗CT

2 )ν

It is easy to see that

eT
2(IN ⊗CT

2 ) = eT
2(IN ⊗C2)

T = ((IN ⊗C2)e2)
T = eT

y (46)

Applying (46) and the definition of ν in (13), it follows:

eT
2(IN ⊗CT

2 )ν = −ρ
N

∑
i=1

‖eyi‖ ≤ −ρ‖ey‖

Hence,

V̇ ≤ −q‖ẽ1‖
2 + 2k‖e2‖‖(IN ⊗A21)‖‖ẽ1‖−2φk‖e2‖

2

+2k‖e2‖‖D2‖‖ f‖−2kρ(t,y)‖ey‖

≤ −q‖ẽ1‖
2 + 2k‖e2‖‖(IN ⊗A21)‖‖ẽ1‖−2φk‖e2‖

2

if ρ(t,y)≥‖D2‖‖ f (y)‖ since ‖e2‖= ‖ey‖. Furthermore since
‖I⊗A21‖ = ‖A21‖,

V̇ ≤

[
‖ẽ1‖
‖e2‖

]T [
−q k‖A21‖

k‖AT
21‖ −2kφ

]

︸ ︷︷ ︸

Q

[
‖ẽ1‖
‖e2‖

]

It can be verified that Q < 0 if and only if

k‖A21‖
2 ≤ 2φq (47)

Since k is a free parameter, it can always be chosen to ensure
(47) is satisfied.

A. Static state error feedback control

The control strategy adopted in the supervisory level node
is the static state error feedback controller discussed in
[23]. Synchronisation in [23] to a pre-defined master system
behaviour is obtained with full static-state error feedback
to the individual nodes using the control signal ui ∈ IRm

with feedback matrix F ∈ IRm×n. An identical procedure
to the one discussed in [23] is employed to synthesise the
feedback matrix for control purposes. However, estimated
state information for the individual nodes has been used
in place of the true node level state information. Here,
an F ∈ IRm×n has been constructed with the intention of
obtaining ‘double-scroll’ attractor behaviour and to force all
the individual nodes to reach consensus to this trajectory.

VI. NUMERICAL EXAMPLE

To demonstrate the theory developed in this paper, a
network of Chua oscillators is considered where

A =

[
−am1 a 0

1 −1 1
0 −b 0

]

, D=

[
−a(m0 −m1)

0
0

]

(48)

C = [ 1 0 0 ] , Γ = D iag{1,0,0} (49)

and B = I3. The nonlinearity is fi(yi) = 1
2
(|xi1 +c|−|xi1−c|),

which has a sector bound [0,1]. The chosen values of the
parameters are a = 9,b = 14.286,c = 1,m0 = −1/7,m1 =
2/7 in order to obtain the double scroll attractor [23]. A
decentralised control signal ui is generated following the
procedure described in subsection V-A, which is essentially

the one reported in [23]. Consistent with [23], the control
input matrix B is taken as the identity. Here, one assumption
is that each node communicates its output information to the
supervisory monitoring node. Hence, this could be viewed
as a network monitoring framework.

The objective is to demonstrate robust state estimation
even in the presence of time varying coupling strengths and
varying network topologies at different time intervals. A 100
second simulation time window is considered. A chirp signal
with an input frequency of 0.5Hz and with an amplitude bias
of 1.25, is considered as the ‘random’ time varying coupling
strength c(t) > 0.

Time [0 to 12 sec] Time [12 to 24 sec] Time [24 to 36 sec]

1

2 3

4

56

Time [50 to 65 sec]

λ2(L) = 6

1

2 3

4

56

λ2(L) = 1

1

2 3

4

56

λ2(L) = 0.7639

1

2 3

4

56

Time [36 to 50 sec]

λ2(L) = 0

1

2 3

4

56

λ2(L) = 0.6972

1

2 3

4

56

Time [65 to 100 sec]

λ2(L) = 6

Fig. 1. Schematic representation of varying Graph topology

Note that by assumption there is no change in the number
of nodes/dynamic systems comprising the network over the
simulation time. However, the interaction topologies can vary
over time as shown in figure 1. Initially at time t = 0, the
Chua oscillator network is assumed to be fully connected,
i.e. G (6,15), see the first subfigure in figure 1. At time
t = 12 seconds, the network configuration is changed to
the one shown in the second upper subfigure in figure
1, i.e. G (6,11), and remains this way until time t = 24
seconds. There is a change in λ2, (representing the algebraic
connectivity [22]), from 6 to 1 (the λ2 values of each
graph are given above in the subfigures in figure 1). During
the time intervals [24,36), [36,50), [50,65) and [65,100], the
network topologies are G (6,8),G (6,5),G (6,6) and G (6,15)
respectively. It is important to notice that during the period
- 36 seconds to 50 seconds - the algebraic connectivity is
zero, with the 6th node being completely isolated while the
remainder form a cyclic structure.

Figure 2 shows the convergence of the error in the
difference between the true state and the estimated state
at the individual node level. To illustrate the convergence
of the estimation error, only a 10 second time window is
provided in the six subfigures in Fig. 2. The two bottom
subfigures (e5(t) and e6(t) vs. Time) in Fig. 2 are drawn
over a period of 100 seconds. Note that at 12, 24, 36, 50
and 65 seconds the network topology varies. However, it is
important to note that at the supervisory level there is no
information about the variation of the network topologies.
Furthermore, once sliding is achieved, provided the nonlinear
gain ρ(t) is sufficiently large to maintain sliding, the linear
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Fig. 2. Error in state estimation at each individual node
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Fig. 3. Phase portrait of true state x1vsx2 with estimated state z1vsz2

gain term Gl i(ey) ≡ 0 and so the observer is independent of
the coupling strength c(t) and L . At the supervisory level, the
control signal is generated as a static error feedback based
on the estimated state and the supervisory level master node
state at that instant of time. This establishes the effectiveness
of sliding mode observers in estimating the state of node
level systems in the network robustly, in the presence of
the time varying coupling strength and the varying unknown
network topologies given in figure 1.

VII. CONCLUSIONS

The primary objective of this paper is to reconstruct
complete state information in a complex network dynamical
system at a supervisory node level. Sliding mode observers
are designed for this purpose. The proposed network observer
is inherently robust and can accommodate time varying cou-
pling strengths and switching topologies. At the supervisory
level, decentralised control signals are computed based on
the state estimates in order to operate the network in a
synchronous fashion. A network of Chua circuits with six
nodes is used to demonstrate the proposed approach.
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